Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo.

Klausberger T
Márton LF
Roberts JD
Cobden PM
Buzsáki G
Somogyi P
Scientific Abstract

Neural-network oscillations at distinct frequencies have been implicated in the encoding, consolidation and retrieval of information in the hippocampus. Some GABA (gamma-aminobutyric acid)-containing interneurons fire phase-locked to theta oscillations (4-8 Hz) or to sharp-wave-associated ripple oscillations (120-200 Hz), which represent different behavioural states. Interneurons also entrain pyramidal cells in vitro. The large diversity of interneurons poses the question of whether they have specific roles in shaping distinct network activities in vivo. Here we report that three distinct interneuron types--basket, axo-axonic and oriens-lacunosum-moleculare cells--visualized and defined by synaptic connectivity as well as by neurochemical markers, contribute differentially to theta and ripple oscillations in anaesthetized rats. The firing patterns of individual cells of the same class are remarkably stereotyped and provide unique signatures for each class. We conclude that the diversity of interneurons, innervating distinct domains of pyramidal cells, emerged to coordinate the activity of pyramidal cells in a temporally distinct and brain-state-dependent manner.

Citation

2003.Nature, 421(6925):844-8.

Related Content
Publication
Author
Dreyer JK
Jennings K
Syed EC
Wade-Martins R
Cragg SJ
2016. Proc. Natl. Acad. Sci. U.S.A., 113(15):E2180-8.
Publication
Author
Baaske MK
Kormann E
Holt AB
Gulberti A
Pötter-Nerger M
Westphal M
Engel AK
Hamel W
Moll CK
2020. Neurobiol. Dis., 146:105119.
Publication
Author
Salib M
Joshi A
Katona L
Howarth M
Somogyi P
Viney TJ
2019. J. Neurosci., 39:4527-4549.
Publication
Author
Wang HL
Cheng W
Rolls ET
Dai F
Gong W
Du J
Zhang WN
Wang S
Liu F
Wang J
Feng J
2020. Neurology, 95(11):e1445-e1460.