Gamma-aminobutyric acid-containing sympathetic preganglionic neurons in rat thoracic spinal cord send their axons to the superior cervical ganglion.

Ito T
Hioki H
Nakamura KC
Tanaka Y
Nakade H
Kaneko T
Iino S
Nojyo Y
Scientific Abstract

Gamma-aminobutyric acid (GABA)-containing fibers have been observed in the rat superior cervical ganglion (SCG) and, to a lesser extent, in the stellate ganglion (STG). The aim of present study is to clarify the source of these fibers. No cell body showed mRNAs for glutamic acid decarboxylases (GADs) or immunoreactivity for GAD of 67 kDa (GAD67) in the cervical sympathetic chain. Thus, GABA-containing fibers in the ganglia are suggested to be of extraganglionic origin. GAD67-immunoreactive fibers were found not in the dorsal roots or ganglia, but in the ventral roots, so GABA-containing fibers in the sympathetic ganglia were considered to originate from the spinal cord. Furthermore, almost all GAD67-immunoreactive fibers in the sympathetic ganglia showed immunoreactivity for vesicular acetylcholine transporter, suggesting that GABA was utilized by some cholinergic preganglionic neurons. This was confirmed by the following results. 1) After injection of Sindbis/palGFP virus into the intermediolateral nucleus, some anterogradely labeled fibers in the SCG were immunopositive for GAD67. 2) After injection of fluorogold into the SCG, some retrogradely labeled neurons in the thoracic spinal cord were positive for GAD67 mRNA. 3) When the ventral roots of the eighth cervical to the fourth thoracic segments were cut, almost all GAD67- and GABA-immunoreactive fibers disappeared from the ipsilateral SCG and STG, suggesting that the vast majority of GABA-containing fibers in those ganglia were of spinal origin. Thus, the present findings strongly indicate that some sympathetic preganglionic neurons are not only cholinergic but also GABAegic.

Citation

2007.J. Comp. Neurol., 502(1):113-25.

Related Content
Publication
West TO, Berthouze L, Halliday DM, Litvak V, Sharott A, Magill PJ, Farmer SF
2018. J. Neurophysiol., 119(5):1608-1628.
Publication
Duchet B, Weerasinghe G, Cagnan H, Brown P, Bick C, Bogacz R
2020. J. Math. Neurosci., 10(1):4.
Publication
Wiest C, Torrecillos F, Tinkhauser G, Pogosyan A, Morgante F, Pereira EA, Tan H

2022. Exp Neurol, 351:113999.

Publication
Fischer P, Lipski WJ, Neumann WJ, Turner R, Fries P, Brown P, Richardson RM
2020. eLife, 9:e51956.
Publication
Wiest C, Tinkhauser G, Pogosyan A, He S, Baig F, Morgante F, Mostofi A, Pereira EA, Tan H, Brown P, Torrecillos F

2021. Neurobiol Dis, 152:105287.