Physiological basis of transcranial direct current stimulation.

Stagg CJ
Nitsche MA
Scientific Abstract

Since the rediscovery of transcranial direct current stimulation (tDCS) about 10 years ago, interest in tDCS has grown exponentially. A noninvasive stimulation technique that induces robust excitability changes within the stimulated cortex, tDCS is increasingly being used in proof-of-principle and stage IIa clinical trials in a wide range of neurological and psychiatric disorders. Alongside these clinical studies, detailed work has been performed to elucidate the mechanisms underlying the observed effects. In this review, the authors bring together the results from these pharmacological, neurophysiological, and imaging studies to describe their current knowledge of the physiological effects of tDCS. In addition, the theoretical framework for how tDCS affects motor learning is proposed.

Citation

2011. Neuroscientist, 17(1):37-53.

DOI
10.1177/1073858410386614
Related Content
Publication
Tan H, Debarros J, He S, Pogosyan A, Aziz TZ, Huang Y, Wang S, Timmermann L, Visser-Vandewalle V, Pedrosa D, Green AL, Brown P
2019. Brain Stimul., 12(4):858-867.
Publication
Cagnan H, Denison T, McIntyre C, Brown P
2019. Nat. Biotechnol., 37(9):1024-1033.
Publication
Mandali A, Torrecillos F, Wiest C, Pogosyan A, He S, Soriano DC, Tan H, Stagg CJ, Cagnan H

2024. Brain Stimul, 17(2):392-394.

Publication
Reis C, Arruda BS, Pogosyan A, Brown P, Cagnan H

2021. Sci Rep, 11(1):17720.

Publication
Perera T, Tan JL, Cole MH, Yohanandan SAC, Silberstein P, Cook R, Peppard R, Aziz TZ, Coyne TJ, Brown P, Silburn PA, Thevathasan W
2018. Brain, 141(10):3009-3022.