A Novel Modular Neural Architecture for Rule-Based and Similarity-Based Reasoning

Giraud-Carrier C
Scientific Abstract

Hybrid connectionist symbolic systems have been the subject of much recent research in AI. By focusing on the implementation of high- level human cognitive processes (e.g., rule-based inference) on low-level, brain-like structures (e.g., neural networks), hybrid systems inherit both the eciency of connectionism and the comprehensibility of symbolism. This paper presents the Basic Reasoning Applicator Implemented as a Neural Network (BRAINN). Inspired by the columnar organisation of the human neocortex, BRAINN's architecture consists of a large hexagonal network of Hop eld nets, which encodes and processes knowledge from both rules and relations. BRAINN supports both rule-based reasoning and similarity-based reasoning. Empirical results demonstrate promise.

Citation
2000.Hybrid Neural Systems, LNAI 1778, pp. 63–77
Related Content
Publication
Author
Reeve HM
Koolschijn RS
Shpektor A
Nili H
Rothaermel R
Campo-Urriza N
O'Reilly JX
Bannerman DM
Behrens TE
2020. Cell, 183(1):228-243.e21.
Publication
Author
Harmer CJ
Klein-Flügge MC

2025. Brain Neurosci Adv, 9:23982128251322241.

Publication
Author
Aziz TZ
Huang Y
Wang S
Timmermann L
Visser-Vandewalle V
Pedrosa D
Green AL
2019. Brain Stimul., 12(4):858-867.