EMD: Empirical Mode Decomposition and Hilbert-Huang Spectral Analyses in Python

Quinn AJ
Lopes-Dos-Santos V
Dupret D
Nobre AC
Woolrich M
Scientific Abstract

The Empirical Mode Decomposition (EMD) package contains Python (>=3.5) functions for analysis of non-linear and non-stationary oscillatory time series. EMD implements a family of sifting algorithms, instantaneous frequency transformations, power spectrum construction and single-cycle feature analysis. These implementations are supported by online documentation containing a range of practical tutorials.

A local field potential plotted and the top in black, and plots of six extracted 'intrinctic mode functions' (IMFs) which are oscillatory, each at a different frequency, with amplitude for each changing throughout the plotted period. The bottom plot, IMF 6, theta, is a large and fairly constant amplitude.
A segment of the LFP recording separated into six intrinsic mode functions using a masked empirical mode decomposition. The theta oscillation is isolated into IMF 6.
Journal of Open Source Software, 6(59), 2977.
Related Content
Wiest C, Torrecillos F, Tinkhauser G, Pogosyan A, Morgante F, Pereira EA, Tan H

2022. Exp Neurol, 351:113999.

Lopes-Dos-Santos V, van de Ven GM, Morley A, Trouche S, Campo-Urriza N, Dupret D
2018. Neuron, 100(4):940–952.
Khawaldeh S, Tinkhauser G, Torrecillos F, He S, Foltynie T, Limousin P, Zrinzo L, Oswal A, Quinn AJ, Vidaurre D, Tan H, Litvak V, Kühn AA, Woolrich M, Brown P

2022. Brain, 145(1):237-250.

Averna A, Debove I, Nowacki A, Petermann K, Duchet B, Sousa M, Bernasconi E, Alva L, Lachenmayer ML, Schuepbach M, Pollo C, Krack P, Nguyen TAK, Tinkhauser G

2023. Mov Disord, 38(5):818-830.

Barron HC, Vogels TP, Behrens TE, Ramaswami M
2017.Proc. Natl. Acad. Sci. U.S.A., 114(26):6666-6674.