EMD: Empirical Mode Decomposition and Hilbert-Huang Spectral Analyses in Python

Quinn AJ
Lopes-Dos-Santos V
Dupret D
Nobre AC
Woolrich M
Scientific Abstract

The Empirical Mode Decomposition (EMD) package contains Python (>=3.5) functions for analysis of non-linear and non-stationary oscillatory time series. EMD implements a family of sifting algorithms, instantaneous frequency transformations, power spectrum construction and single-cycle feature analysis. These implementations are supported by online documentation containing a range of practical tutorials.

A local field potential plotted and the top in black, and plots of six extracted 'intrinctic mode functions' (IMFs) which are oscillatory, each at a different frequency, with amplitude for each changing throughout the plotted period. The bottom plot, IMF 6, theta, is a large and fairly constant amplitude.
A segment of the LFP recording separated into six intrinsic mode functions using a masked empirical mode decomposition. The theta oscillation is isolated into IMF 6.
Citation
Journal of Open Source Software, 6(59), 2977.
DOI
10.21105/joss.02977
Related Content
Publication
Wiest C, Torrecillos F, Tinkhauser G, Pogosyan A, Morgante F, Pereira EA, Tan H

2022. Exp Neurol, 351:113999.

Publication
Lopes-Dos-Santos V, van de Ven GM, Morley A, Trouche S, Campo-Urriza N, Dupret D
2018. Neuron, 100(4):940–952.
Publication
Khawaldeh S, Tinkhauser G, Torrecillos F, He S, Foltynie T, Limousin P, Zrinzo L, Oswal A, Quinn AJ, Vidaurre D, Tan H, Litvak V, Kühn AA, Woolrich M, Brown P

2022. Brain, 145(1):237-250.

Publication
Averna A, Debove I, Nowacki A, Petermann K, Duchet B, Sousa M, Bernasconi E, Alva L, Lachenmayer ML, Schuepbach M, Pollo C, Krack P, Nguyen TAK, Tinkhauser G

2023. Mov Disord, 38(5):818-830.

Publication
Barron HC, Vogels TP, Behrens TE, Ramaswami M
2017.Proc. Natl. Acad. Sci. U.S.A., 114(26):6666-6674.