EMD: Empirical Mode Decomposition and Hilbert-Huang Spectral Analyses in Python

Quinn AJ
Nobre AC
Woolrich M
Scientific Abstract

The Empirical Mode Decomposition (EMD) package contains Python (>=3.5) functions for analysis of non-linear and non-stationary oscillatory time series. EMD implements a family of sifting algorithms, instantaneous frequency transformations, power spectrum construction and single-cycle feature analysis. These implementations are supported by online documentation containing a range of practical tutorials.

A local field potential plotted and the top in black, and plots of six extracted 'intrinctic mode functions' (IMFs) which are oscillatory, each at a different frequency, with amplitude for each changing throughout the plotted period. The bottom plot, IMF 6, theta, is a large and fairly constant amplitude.
A segment of the LFP recording separated into six intrinsic mode functions using a masked empirical mode decomposition. The theta oscillation is isolated into IMF 6.
Citation
Journal of Open Source Software, 6(59), 2977.
DOI
10.21105/joss.02977
Related Content
Publication
Author
Wiest C
Torrecillos F
Morgante F
Pereira EA

2022. Exp Neurol, 351:113999.

Publication
Author
van de Ven GM
Morley A
Trouche S
Campo-Urriza N
2018. Neuron, 100(4):940–952.
Publication
Author
Khawaldeh S
Torrecillos F
Foltynie T
Limousin P
Zrinzo L
Quinn AJ
Vidaurre D
Litvak V
Kühn AA
Woolrich M

2022. Brain, 145(1):237-250.

Publication
Author
Averna A
Debove I
Nowacki A
Petermann K
Duchet B
Sousa M
Bernasconi E
Alva L
Lachenmayer ML
Schuepbach M
Pollo C
Krack P
Nguyen TAK

2023. Mov Disord, 38(5):818-830.

Publication
Author
Vogels TP
Behrens TE
Ramaswami M
2017.Proc. Natl. Acad. Sci. U.S.A., 114(26):6666-6674.