A 2 μW 100 nV/rtHz Chopper-Stabilized Instrumentation Amplifier for Chronic Measurement of Neural Field Potentials

Denison T
Consoer K
Santa W
Avestruz AT
Cooley J
Kelly A
Scientific Abstract

This paper describes a prototype micropower instrumentation amplifier intended for chronic sensing of neural field potentials (NFPs). NFPs represent the ensemble activity of thousands of neurons and code-useful information for both normal activity and disease states. NFPs are small - of the order of tens of muV- and reside at low bandwidths that make them susceptible to excess noise. Therefore, to ensure the highest fidelity of signal measurement for diagnostic analysis, the amplifier is chopper-stabilized to eliminate 1/f and popcorn noise. The circuit was prototyped in an 0.8 mum CMOS process and consumes under 2.0 muW from a 1.8 V supply. A noise floor of 0.98 muVrms was achieved over a bandwidth from 0.05 to 100 Hz; the noise-efficiency factor of 4.6 is one of the lowest published to date. A flexible on-chip high-pass filter is used to suppress front-end electrode offsets while maintaining relevant physiological data. The monolithic architect and micropower low-noise low-supply operation could help enable applications ranging from neuroprosthetics to seizure monitors that require a small form factor and battery operation. Although the focus of this paper is on neurophysiological sensing, the circuit architecture can be applied generally to micropower sensor interfaces that benefit from chopper stabilization.

2007. IEEE J Solid-St Circ 42(12):2934-45
Shah SA, Tan H, Brown P

2017.Int IEEE EMBS Conf Neural Eng, 2017():371-374.

He S, Baig F, Mostofi A, Pogosyan A, Debarros J, Green AL, Aziz TZ, Pereira EA, Brown P, Tan H
2021. Mov. Disord., 36(4):863-873.
Tinkhauser G, Pogosyan A, Debove I, Nowacki A, Shah SA, Seidel K, Tan H, Brittain JS, Petermann K, di Biase L, Oertel M, Pollo C, Brown P, Schuepbach M
2018.Mov. Disord., 33(1):159-164.
Shah SA, Tan H, Tinkhauser G, Brown P
2018.IEEE Trans Neural Syst Rehabil Eng, 26(7):1460-1468.
Tan H, Pogosyan A, Ashkan K, Green AL, Aziz TZ, Foltynie T, Limousin P, Zrinzo L, Hariz M, Brown P
2016. eLife;5:e19089.