Brown Group

motor

Rendered whole brain magnetic resonance image showing which cortical areas have their activities coupled with those in the motor region of the subthalamic nucleus in Parkinson’s disease. Coupling is determined by simultaneous recordings of magnetoencephalographic activity and deep brain recordings in patients with electrodes implanted for deep brain stimulation treatment. Representative deep brain waves are also shown. The effects of drugs and of high frequency stimulation on coupling and deep brain activity can thereby be determined, and provide clues as to how treatments can be improved.

Our goal is to define how activity in large populations of neurons is coordinated in healthy movement and how such coordination may go awry in diseases, translating this information in to improved treatment for Parkinson’s Disease and other disorders of movement.

tifftiff

Adaptive stimulation in patients with Parkinson's Disease using local field potential

cagnan

Phase-specific brain stimulation for the treatment of tremor.

beta

Brown Group

brown group

Brown Group

directional

Brown Group

Group Science

The Group takes a multidisciplinary approach, combining experimental manipulations in healthy subjects and patients with sophisticated signals analysis and modelling. Our experimental manipulations include non-invasive brain stimulation, and often involve patients who have had deep brain stimulation electrodes implanted as treatment for problems with movement. Over the years we have made major advances in understanding how abnormal interactions between brain cells cause slowness of movement, tremor and stiffness in people with Parkinson’s disease. At the same time we have leveraged these insights to pioneer closed-loop approaches to therapeutic brain stimulation. Currently we are refining these closed-loop strategies still further, and extending them to the treatment of gait dysfunction and essential tremor. We are also capitalising on our understanding of circuit dynamics in the basal ganglia to help predict, with high spatial resolution, optimal sites for therapeutic stimulation, and are exploiting local dynamics in basal ganglia nuclei as a basis for Brain-Computer Interfaces that control the environment for paralysed patients. These are challenging applications and, within the Unit, we work closely with the groups led by Hayriye Cagnan and Huiling Tan.

Key Research Areas
  • Oscillations within subcortico-cortical motor loops in health and disease
  • Decoding circuit dynamics to understand and manipulate function
  • Closed-loop approaches to the treatment of movement disorders
  • Non-invasive brain stimulation
Longer-term Perspectives

We are at the beginning of a therapeutic revolution whereby we can interact with neural dynamics from moment-to-moment as necessary to reverse or ameliorate dysfunctional brain activity. To this end, we must record and interpret brain signals in real-time with sufficient temporal and spatial resolution to give nuanced control. Although electrical brain stimulation is already affording major therapeutic benefits, there is vast scope for improving and extending this to provide adaptive and tailored interventions, and for harnessing recent advances in non-invasive stimulation techniques to deliver multisite manipulation of brain circuits.

Selected Publications
Unit Publication
Herz DM
Little S
Pedrosa D
Tinkhauser G
Cheeran B
Foltynie T
Bogacz R
Brown P

2018.Curr. Biol., 28(8):1169-1178.e6.

Unit Publication
Tinkhauser G
Pogosyan A
Tan H
Herz DM
Kühn AA
Brown P
2017.Brain, 140(11):2968-2981.
Unit Publication
Tinkhauser G
Pogosyan A
Little S
Beudel M
Herz DM
Tan H
Brown P

2017.Brain, 140(4):1053-1067.

Unit Publication
Cagnan H
Pedrosa D
Little S
Pogosyan A
Cheeran B
Aziz TZ
Green AL
Fitzgerald J
Foltynie T
Limousin P
Zrinzo L
Hariz M
Friston KJ
Denison T
Brown P
2017.Brain, 140(1):132-145.
Unit Publication
Tan H
Pogosyan A
Ashkan K
Green AL
Aziz TZ
Foltynie T
Limousin P
Zrinzo L
Hariz M
Brown P
2016. eLife;5:e19089.