Thrombospondin-1 Mediates Axon Regeneration in Retinal Ganglion Cells.

Bray ER
Yungher BJ
Levay K
Ribeiro M
Dvoryanchikov G
Ayupe AC
Thakor K
Marks VS
Randolph M
Danzi MC
Schmidt TM
Chaudhari N
Lemmon VP
Hattar S
Park KK
Scientific Abstract

Neuronal subtypes show diverse injury responses, but the molecular underpinnings remain elusive. Using transgenic mice that allow reliable visualization of axonal fate, we demonstrate that intrinsically photosensitive retinal ganglion cells (ipRGCs) are both resilient to cell death and highly regenerative. Using RNA sequencing (RNA-seq), we show genes that are differentially expressed in ipRGCs and that associate with their survival and axon regeneration. Strikingly, thrombospondin-1 (Thbs1) ranked as the most differentially expressed gene, along with the well-documented injury-response genes Atf3 and Jun. THBS1 knockdown in RGCs eliminated axon regeneration. Conversely, RGC overexpression of THBS1 enhanced regeneration in both ipRGCs and non-ipRGCs, an effect that was dependent on syndecan-1, a known THBS1-binding protein. All structural domains of the THBS1 were not equally effective; the trimerization and C-terminal domains promoted regeneration, while the THBS type-1 repeats were dispensable. Our results identify cell-type-specific induction of Thbs1 as a novel gene conferring high regenerative capacity.

Citation

2019. Neuron, 103(4):642-657.e7.

DOI
10.1016/j.neuron.2019.05.044
Related Content
Publication
McHugh SB, Lopes-Dos-Santos V, Gava GP, Hartwich K, Tam SKE, Bannerman DM, Dupret D
2022. Nat. Neurosci., 25(11):1481-1491.
Publication
Reis C, Sharott A, Magill PJ, van Wijk B, Parr T, Zeidman P, Friston KJ, Cagnan H
2019. Neuroimage, 193:103-114.
Publication
Tan H, Fischer P, Shah SA, Vidaurre D, Woolrich M, Brown P
2018. Conf Proc IEEE Eng Med Biol Soc, 2018:1384-1387.
Publication
Roberts BM, Doig NM, Brimblecombe KR, Lopes EF, Siddorn RE, Threlfell S, Connor-Robson N, Bengoa-Vergniory N, Pasternack N, Wade-Martins R, Magill PJ, Cragg SJ
2020. Nat. Commun., 11(1):4958.