Rebound activation of 5-HT neurons following SSRI discontinuation.

Collins HM
Gullino LS
Ozdemir D
Lazarenco C
Sudarikova Y
Daly E
Pilar Cuéllar F
Pinacho R
Bannerman DM
Sharp T
Scientific Abstract

Cessation of therapy with a selective serotonin (5-HT) reuptake inhibitor (SSRI) is often associated with an early onset and disabling discontinuation syndrome, the mechanism of which is surprisingly little investigated. Here we determined the effect on 5-HT neurochemistry of discontinuation from the SSRI paroxetine. Paroxetine was administered repeatedly to mice (once daily, 12 days versus saline controls) and then either continued or discontinued for up to 5 days. Whereas brain tissue levels of 5-HT and/or its metabolite 5-HIAA tended to decrease during continuous paroxetine, levels increased above controls after discontinuation, notably in hippocampus. In microdialysis experiments continuous paroxetine elevated hippocampal extracellular 5-HT and this effect fell to saline control levels on discontinuation. However, depolarisation (high potassium)-evoked 5-HT release was reduced by continuous paroxetine but increased above controls post-discontinuation. Extracellular hippocampal 5-HIAA also decreased during continuous paroxetine and increased above controls post-discontinuation. Next, immunohistochemistry experiments found that paroxetine discontinuation increased c-Fos expression in midbrain 5-HT (TPH2 positive) neurons, adding further evidence for a hyperexcitable 5-HT system. The latter effect was recapitulated by 5-HT receptor antagonist administration although gene expression analysis could not confirm altered expression of 5-HT autoreceptors following paroxetine discontinuation. Finally, in behavioural experiments paroxetine discontinuation increased anxiety-like behaviour, which partially correlated in time with the measures of increased 5-HT function. In summary, this study reports evidence that, across a range of experiments, SSRI discontinuation triggers a rebound activation of 5-HT neurons. This effect is reminiscent of neural changes associated with various psychotropic drug withdrawal states, suggesting a common unifying mechanism.


2024. Neuropsychopharmacology (e-Pub ahead of print).

Related Content
van Rheede JJ, Alagapan S, Denison T, Riva-Posse P, Rozell CJ, Mayberg HS, Waters AC, Sharott A

2024. Transl Psychiatry, 14(1):103.

Avvisati R, Kaufmann AK, Young CJ, Portlock GE, Cancemi S, Costa RP, Magill PJ, Dodson PD

2024. Cell Rep, 43(4):114080.

Bogacz R, Martin Moraud E, Abdi A, Magill PJ, Baufreton J
2016.PLoS Comput. Biol., 12(7):e1005004.
Sharott A, Gulberti A, Hamel W, Köppen JA, Münchau A, Buhmann C, Pötter-Nerger M, Westphal M, Gerloff C, Moll CK, Engel AK
2018. Neurobiol. Dis., 112:49-62.
Sharott A, Vinciati F, Nakamura KC, Magill PJ
2017. J. Neurosci., 37(41):9977-9998.