An integrated measure of GABA to characterize post-stroke plasticity.

Paparella I
Vanderwalle G
Stagg CJ
Maquet P
Scientific Abstract

Stroke is a major cause of death and chronic neurological disability. Despite the improvements in stroke care, the number of patients affected by stroke keeps increasing and many stroke survivors are left permanently disabled. Current therapies are limited in efficacy. Understanding the neurobiological mechanisms underlying post-stroke recovery is therefore crucial to find new therapeutic options to address this medical burden. Long-lasting and widespread alterations of γ-aminobutyric acid (GABA) neurotransmission seem to play a key role in stroke recovery. In this review we first discuss a possible model of GABAergic modulation of post-stroke plasticity. We then overview the techniques currently available to non-invasively assess GABA in patients and the conclusions drawn from this limited body of work. Finally, we address the remaining open questions to clarify GABAergic changes underlying post-stroke recovery, we briefly review possible ways to modulate GABA post stroke and propose a novel approach to thoroughly quantify GABA in stroke patients, by integrating its concentration, the activity of its receptors and its link with microstructural changes.

Citation

2023. Neuroimage Clin, 39:103463.

DOI
10.1016/j.nicl.2023.103463
Related Content
Publication
Bazelot M, Bocchio M, Kasugai Y, Fischer D, Dodson PD, Ferraguti F, Capogna M
2015.Neuron, 87(6):1290-1303.
Publication
Zamora M, Toth R, Morgante F, Ottaway J, Gillbe T, Martin S, Lamb G, Noone T, Benjaber M, Nairac Z, Sehgal D, Constandinou TG, Herron J, Aziz TZ, Gillbe I, Green AL, Pereira EA, Denison T

2022. Exp Neurol, 351:113977.

Publication
Duchet B, Bick C, Byrne Á

2023. Neural Comput, 35(9):1481-1528.

Publication
Baaske MK, Kormann E, Holt AB, Gulberti A, McNamara CG, Pötter-Nerger M, Westphal M, Engel AK, Hamel W, Brown P, Moll CK, Sharott A
2020. Neurobiol. Dis., 146:105119.