A correlated light and electron microscopic study of identified cholinergic basal forebrain neurons that project to the cortex in the rat.

Ingham CA
Bolam JP
Wainer BH
Smith AD
Scientific Abstract

Cholinergic neurons in the basal forebrain which project to the frontal cortex were studied by combining the retrograde transport of a conjugate of horseradish peroxidase and wheat germ agglutinin with choline acetyltransferase immunohistochemistry. Neurons that were both retrogradely labelled and immunoreactive were found on the medial, lateral, and ventral borders of the globus pallidus, within the globus pallidus, as well as in the substantia innominata and ventral pallidum region. The cell bodies averaged 31 by 19 micron in size and had sparsely branching dendrites. Cells which were labelled by both techniques were first characterised in the light microscope and then studied in the electron microscope. The perikarya had large amounts of cytoplasm with abundant organelles. The nuclei were indented, were usually eccentrically placed, and contained prominent nucleoli. The synaptic input onto the cell bodies and their dendrites was studied in serial sections. The synaptic input onto the perikarya and proximal dendrites was sparse but the density increased on more distal regions of the dendrites. Subjunctional bodies were associated with the postsynaptic membrane in 20-30% of the synaptic contacts and these were classified as asymmetrical; the remaining contacts could not be classified because of an association of the immunoreaction product with the postsynaptic membrane. The synaptic input to these cells was distinctly different from that onto typical globus pallidus cells, the perikarya and dendrites of which were characteristically ensheathed in synaptic boutons.

Citation

1985.J. Comp. Neurol., 239(2):176-92.

Related Content
Publication
Levey AI, Bolam JP, Rye DB, Hallanger AE, Demuth RM, Mesulam MM, Wainer BH
J. Histochem. Cytochem.
Publication
West TO, Berthouze L, Halliday DM, Litvak V, Sharott A, Magill PJ, Farmer SF
2018. J. Neurophysiol., 119(5):1608-1628.
Publication
Guerra A, Pogosyan A, Nowak M, Tan H, Ferreri F, Di Lazzaro V, Brown P

2016.Cereb. Cortex, 26(10):3977-90.

Publication
van Swieten MMH, Bogacz R
2020. PLoS Comput. Biol., 16(5):e1007465.