Metabotropic glutamate receptor 4-immunopositive terminals of medium-sized spiny neurons selectively form synapses with cholinergic interneurons in the rat neostriatum.

Kuramoto E
Fujiyama F
Unzai T
Nakamura KC
Hioki H
Furuta T
Shigemoto R
Ferraguti F
Kaneko T
Scientific Abstract

Metabotropic glutamate receptor 4 (mGluR4) is localized mainly to presynaptic membranes in the brain. Rat neostriatum has been reported to contain two types of mGluR4-immunoreactive axon varicosities: small, weakly immunoreactive varicosities that were distributed randomly (type 1) and large, intensely immunoreactive ones that were often aligned linearly (type 2). In the present study, most type 1 terminals formed asymmetric synapses on dendritic spines, whereas type 2 terminals made symmetric synapses on dendritic shafts, showing immunoreactivity for GABAergic markers. After depletion of neostriatal neurons, type 2 but not type 1 varicosities were largely decreased in the damaged region. When medium-sized spiny neurons (MSNs) were labeled with Sindbis virus expressing membrane-targeted green fluorescent protein, mGluR4 immunoreactivity was observed on some varicosities of their axon collaterals in immunofluorescence and immunoelectron microscopies. Furthermore, type 2 varicosities were often positive for substance P but mostly negative for striatal interneuron markers and preproenkephalin. Thus, striatonigral/striato-entopeduncular MSNs are likely to be the largest source of type 2 mGluR4-immunopositive axon terminals in the neostriatum. Next, in the double-immunofluorescence study, almost all choline acetyltransferase (ChAT)-immunopositive and 41% of NK1 receptor-positive dendrites were heavily associated with type 2 mGluR4-immunoreactive varicosities. Neuronal nitric oxide synthase (nNOS)-positive dendrites, in contrast, seemed associated with only a few type 2 varicosities. Conversely, almost all type 2 varicosities were closely apposed to NK1 receptor-positive dendrites that were known to be derived from cholinergic and nNOS-producing interneurons. These findings indicate that the mGluR4-positive terminals of MSN axon collaterals selectively form synapses with neostriatal cholinergic interneurons.

Citation

2007.J. Comp. Neurol., 500(5):908-22.

Related Content
Publication
Sharott A, Vinciati F, Nakamura KC, Magill PJ
2017. J. Neurosci., 37(41):9977-9998.
Publication
Blaesse P, Goedecke L, Bazelot M, Capogna M, Pape HC, Jüngling K
2015.J. Neurosci., 35(19):7317-25.
Publication
Garas FN, Kormann E, Shah RS, Vinciati F, Smith Y, Magill PJ, Sharott A
2018. J. Comp. Neurol., 526(5):877-898.
Publication
Kondabolu K, Doig NM, Ayeko O, Khan B, Torres A, Calvigioni D, Meletis K, Koós T, Magill PJ

2023. eNeuro, 10(7).