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Abstract

Decision making relies on adequately evaluating the consequences of actions on the basis

of past experience and the current physiological state. A key role in this process is played by

the basal ganglia, where neural activity and plasticity are modulated by dopaminergic input

from the midbrain. Internal physiological factors, such as hunger, scale signals encoded by

dopaminergic neurons and thus they alter the motivation for taking actions and learning.

However, to our knowledge, no formal mathematical formulation exists for how a physiologi-

cal state affects learning and action selection in the basal ganglia. We developed a frame-

work for modelling the effect of motivation on choice and learning. The framework defines

the motivation to obtain a particular resource as the difference between the desired and the

current level of this resource, and proposes how the utility of reinforcements depends on the

motivation. To account for dopaminergic activity previously recorded in different physiologi-

cal states, the paper argues that the prediction error encoded in the dopaminergic activity

needs to be redefined as the difference between utility and expected utility, which depends

on both the objective reinforcement and the motivation. We also demonstrate a possible

mechanism by which the evaluation and learning of utility of actions can be implemented in

the basal ganglia network. The presented theory brings together models of learning in the

basal ganglia with the incentive salience theory in a single simple framework, and it provides

a mechanistic insight into how decision processes and learning in the basal ganglia are

modulated by the motivation. Moreover, this theory is also consistent with data on neural

underpinnings of overeating and obesity, and makes further experimental predictions.

Author summary

Behaviour is made of decisions that are based on the evaluation of costs and benefits of

potential actions in a given situation. Actions are usually generated in response to rein-

forcement cues which are potent triggers of desires that can range from normal appetites

to compulsive addictions. However, learned cues are not constant in their motivating

power. Food cues are more potent when you are hungry than when you have just finished

a meal. These changes in cue-triggered desire produced by a change in biological state

present a challenge to many current computational models of motivation and learning.

Here, we demonstrate concrete examples of how motivation can instantly modulate
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reinforcement values and actions; we propose an overarching framework of learning and

action selection based on maintaining the physiological balance to better capture the

dynamic interaction between learning and physiology that controls the incentive salience

mechanism of motivation for reinforcements. These models provide a unified account of

state-dependent learning of the incentive value of actions and selecting actions according

to the learned positive and negative consequences of those actions and with respect to the

physiological state. We propose a biological implementation of how these processes are

controlled by an area in the brain called the basal ganglia, which is associated with error-

driven learning.

Introduction

Successful interactions with the environment rely on using previous experience to predict

the value of outcomes or consequences of available actions. Human and animal studies have

strongly implicated the neurotransmitter dopamine in these learning processes [1–8], in addi-

tion to its roles in shaping behaviour, including motivation [9], vigour [10] and behavioural

activation [11, 12].

Dopamine seems to have two distinct effects on the networks it modulates. First, it facili-

tates learning by triggering synaptic plasticity [13]. Such dopaminergic teaching signal is

thought to encode a reward prediction error (RPE), which is defined as a difference between a

reinforcement and the expected reinforcement [1]. The overall value of a reinforcement that is

available at a given moment depends on the potential positive and negative consequences asso-

ciated with obtaining it. These consequences can be influenced by internal and external fac-

tors, such as the physiology of the subject and the reinforcement’s availability, respectively.

Information about the external factors is indeed encoded in the dopaminergic responses

which are shown to scale with the magnitude and the probability of a received reinforcement

[14, 15], but also with the delay and effort related costs associated with a reinforcement [16,

17]. Second, the level of dopamine controls the activation of the basal ganglia network by mod-

ulating the excitability of neurons [18–20]. Although dopamine is a critical modulator of both

learning and activation, it is unclear how it is able to do both given that these processes are

conceptually, computationally and behaviourally distinct. For a long time, our understanding

was that tonic (sustained) levels of dopamine encode an activation signal and phasic (transient)

responses convey a teaching signal (i.e. prediction error) [10]. However, recent studies have

shown that this distinction is not as clear as we thought [21, 22] and that other mechanisms

may exist, which allow striatal neurons to correctly decode the two signals from dopaminergic

activity [23]. In this paper, we do not investigate mechanisms by which these different signals

can be accessed, but we assume that striatal neurons can read out both activation and teaching

signals encoded by dopaminergic neurons.

In addition to the external factors explained above, internal physiological factors, such as

hunger, can also alter the reinforcement value of an action and drive decision making based

on the usefulness of that action and the outcome at that given time. For example, searching for

food when hungry is more valuable than when sated and actions have to be evaluated accord-

ingly. In other words, the current physiological state affects the motivation to obtain a particu-

lar resource. The physiological state has indeed been observed to modulate dopamine levels

and dopamine responses encoding reward prediction error [24–26], thus it is likely that the

physiological state influences both the activation and teaching signals carried by dopamine.

Strikingly, the physiological state can sometimes even reverse the value of a reinforcement (e.g.
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salt) from being rewarding in a depleted state to aversive in a sated state [27]. Moreover, the

physiological state during learning may affect subsequent choices, for example, animals may

still have a preference for actions that were previously associated with hunger even when they

are sated [28]. Recently, it has been proposed how a physiological state can be introduced into

reinforcement learning theory to refine the definition of a reinforcement [29]. However,

despite the importance of the physiological state for describing behaviour and dopaminergic

activity, we are not aware of theoretical work that integrates the physiological state into a the-

ory of dopaminergic responses.

Another important line of work describing subjective preferences is the utility theory. It is

based on the assumption that people can consistently rank their choices depending upon their

preferences. The utility theory has been used extensively in economics [30], and it has been

shown that dopaminergic responses depend on the subjective utility of the obtained reward

magnitude, rather than its objective magnitude [31]. As described above, there is a need to

extend the general utility function with a motivational component that describes the bias in

the evaluation of positive and negative consequences of decisions as a result of changes in the

physiological state of a subject. Evidence for this bias comes from devaluation studies in which

reinforcements are specifically devalued by pre-feeding or taste aversion. The concept of state-

dependent valuation has been studied in various contexts [25, 32, 33] and in different species,

including starlings [34, 35], locusts [36] and fish [28]. These studies suggest that the utility of

outcomes depends on both the (learned) reinforcement value and the physiological state. One

of the earliest attempts to capture this relationship between incentive value and internal moti-

vational state is the incentive salience theory [12].

In this paper we aim to provide an explanation for the above effects of physiological state

on behaviour and dopaminergic activity with a simple framework that combines incentive

learning theory [37, 38] with models of learning in the basal ganglia. By integrating key con-

cepts from these theories we define a utility function for actions that can be modulated by

internal and external factors. In our framework, the utility is defined as the change in the desir-

ability of physiological state resulting from taking an action and obtaining a reinforcement.

Following previous theoretic work [29], the motivation for a particular resource is defined as

the difference between the desired and the current level of this resource.

In the proposed framework, motivation affects both teaching and activation signals

encoded by dopaminergic neurons. Relying on experimental data, we argue that the dopami-

nergic teaching signal encodes the difference between utility and expected utility, which

depends on motivation. Moreover, we propose how motivation can influence the dopaminer-

gic activation signal to appropriately drive action selection behaviour. We also highlight that

the resulting consequences of an action can be positive or negative depending on how far the

current and new physiological state are from the desired state. Building on existing theories we

illustrate how the neurons in the striatum could learn these consequences through plasticity

rules. Finally, we use the resulting models to explain experimental data. Together, this paper

discusses a modelling framework that describes how the internal physiological state affects

learning and action selection in the basal ganglia and provides novel interpretations of existing

experimental data. To provide a rationale for our framework the remainder of the introduction

reviews the data on effects of physiological state on dopaminergic teaching signal.

Effects of motivation on dopaminergic responses

We first review a classical reinforcement learning theory and then discuss data that challenges

it. As postulated by reinforcement learning theories, expectations of outcomes are updated on

the basis of experiences. This updating process may be guided by prediction errors, which are
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computed by subtracting the cached reinforcement expectation (Vt) from the received rein-

forcement (r). In classical conditioning and after extensive training, the dopamine response to

the conditioned stimulus (CS) is observed to reflect the expected future reinforcement,

whereas the response to the unconditioned stimulus (US) represents the difference between

the obtained reinforcement and the expectation [1]. To account for these responses, the reward

prediction error in a temporal difference model (δTD) is classically defined as [1]:

dTD ¼ rt þ Vtþ1 � Vt: ð1Þ

The above equation defines the prediction error as the difference between total reinforce-

ment (including both reinforcement actually received rt and reinforcement expected in the

future Vt+1) and the expected reinforcement (Vt).

We now review how the above equation captures the dopamine responses at the time of the

CS and the US, which change over the course of learning. At the start of learning, the animal

has not formed any expectation yet, which means that at the time of the CS, Vt is 0. Given that

no reinforcement is provided at the time of CS presentation, rt is also 0. Thus, the prediction

error at the time of the CS is equal to the expected value of the reinforcement (δTD = Vt+1). The

response to the CS is zero in naive animals. By contrast, the response to the CS in fully trained

animals reflects the expected upcoming reinforcement, as extensive training allowed animals

to update their expectations to predict upcoming reinforcements better. At the time of the US,

no future reinforcements are expected so Vt+1 is 0, thus the reward prediction error at the time

of US is equal to δTD = rt − Vt. Unpredicted rewards (i.e. positive reinforcements) evoke posi-

tive prediction errors, while predicted reinforcements do not. This definition of the prediction

error captures observed patterns of dopaminergic responses; where naive animals, which are

unable to predict reinforcements, show large positive responses at the time of the US, and fully

trained animals, which can predict reinforcements perfectly, show no response at all.

Recently, the above definition of reward prediction error has been experimentally chal-

lenged by Cone et al. [26]. They show that the internal state of an animal modulates the teach-

ing signals encoded by dopamine neurons in the midbrain after conditioning (Fig 1). In this

study, animals were trained and tested in either a sodium depleted or sodium balanced state.

The dopaminergic responses predicted by the classical reinforcement learning theory shown

Fig 1. State-dependent modulation of dopaminergic responses. Experimental data by Cone et al. [26] shows

dynamic changes in dopaminergic responses based on the state of the animal. The two graphs within the figure

correspond to dopaminergic responses in animals trained in a balanced and depleted state, respectively, re-plotted

from figures 2 and 4 in the paper by Cone et al. [26]. Within each graph, the left and right halves show the responses of

animals tested in balanced and depleted states, respectively. The horizontal dashed lines indicate baseline levels.

https://doi.org/10.1371/journal.pcbi.1007465.g001
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by Schultz et al. [1] were only observed in animals that were both trained and tested in the

depleted state. In all other conditions the dopaminergic responses followed different patterns.

When animals were trained in the balanced state but tested in the depleted state, increased

dopaminergic responses to the US (i.e. salt infusion) rather than the CS were observed, which

is similar to dopaminergic responses observed in untrained animals in the study of Schultz

et al. [1], suggesting that learning did not occur in the balanced state. When animals were

trained and tested in the balanced state, there was no dopaminergic response to either CS or

US. Interestingly, the same pattern was observed in animals trained in the depleted state and

tested in the balanced state, suggesting that the learned values were modulated by the state at

testing. In the Results section below we will demonstrate how these patterns of activity can be

captured by appropriately modifying a definition of prediction error.

Results

In this section, we present our framework and its possible implementation in the basal ganglia

circuit, and illustrate how it can account for the effects of motivation on neural activity and

behaviour.

Normative theory of state-dependent utility

To gain intuition for how actions can be taken based on a state-dependent utility, we first

develop a normative theory. The utility and consequences of actions are dependent on the

usefulness of the reinforcement (r) with respect to the current state. Taking actions and

obtaining reinforcements allows us to maintain our physiological balance by minimising the

distance between the current state S and the desired state S�. We assume that the desirability

function of a physiological state has a concave, quadratic shape (Fig 2A), because it is more

important to act when you are in a very low physiological state, compared to when you are in

a near optimal state. Thus, we define the desirability of a state in the following way (a con-

stant of 1/2 is added for mathematical convenience, as it will cancel in subsequent deriva-

tions):

YðSÞ ¼ �
1

2
ðS � S�Þ2: ð2Þ

Fig 2. The utility of an action depends on the reinforcement size and physiological state. A) The same reinforcement

can yield a positive or negative utility depending on whether the difference between the current and new physiological

state is positive or negative. B) A large reinforcement may have an utility of zero even if the animal was initially in a

depleted state. U = utility, m = motivation. S� = the desired state and S1 = state before action, S2 = state after action.

Arrow length indicates the size of the reinforcement (r). Changes in state resulting in an increase and decrease in

desirability are indicated with green and red arrows, respectively.

https://doi.org/10.1371/journal.pcbi.1007465.g002
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We define the motivation at a given physiological state as the difference between the desired

and the current physiological state:

m ¼ S� � S: ð3Þ

For the quadratic desirability function defined in Eq (2), the motivation at any state S is also

equal to the slope of the desirability function at this state Y0(S) = m. We define the utility U of

an action that changes the state of the animal from S1 to S2 as the difference between the

desirability at state 2, Y(S2) and state 1, Y(S1). A simple approximation for the utility can be

obtained through a first order Taylor expansion of Eq (2):

U ¼ YðS2Þ � YðS1Þ ð4Þ

� Y 0ðS1ÞðS2 � S1Þ ð5Þ

¼ mr: ð6Þ

This approximation of the utility clearly shows that the utility of an action, defined as the

change in physiological state, depends on both the motivation m (Eq (3)) and the reinforce-

ment r, where r = S2 − S1.

Moreover, according to the above definition, the same reinforcement could yield a positive

or negative utility of an action, depending on whether the difference between the current phys-

iological state and the desired state (i.e. the motivation m) is positive or negative (Fig 2A). This

parallels an observation that nutrients such as salt may be appetitive or aversive depending on

the level of an animal’s reserves [27]. Although not discussed in this paper, please note that this

definition of the utility also can be extended to the utility of an external state, such as a particu-

lar location in space. The utility of such an external state can be defined as a utility of the best

available action in this state.

In order to select actions on the basis of their utility, animals need to maintain an estimate

of the utility Û of an action. There are several ways such an estimate can be learned. Here we

discuss a particular learning algorithm, which results in prediction errors that resemble those

observed by Cone et al. [26]. This learning algorithm assumes that animals minimise the abso-

lute error in the prediction of the utility of the chosen action. We can therefore define this pre-

diction error as:

d ¼ U � Û : ð7Þ

The above expression for the prediction error (Eq (7)) provides a general definition of the

prediction error as the difference between the observed and expected utility. In this paper we

claim that this expression better describes the dopaminergic teaching signal observed in exper-

imental data, which we will demonstrate in more detail in the next section.

Assuming that the animal’s estimate of expected reinforcement is encoded in a parameter

V, the animal’s estimate of the utility is Û ¼ mV. Combining Eq (6) with Eq (7), we obtain the

following expression for the reward prediction error:

d ¼ mr � mV: ð8Þ

A common technique to obtain better predictions is to minimise the absolute error, where

the error is defined as the difference between the actual and the predicted utility as described

in the above equation. For this optimisation method we use a gradient ascent and define an
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objective function F that we will maximise:

F ¼ �
1

2
d

2
: ð9Þ

To increase this objective function, the estimate of the expected reinforcement, V, is

changed in the direction of the gradient (i.e. the direction that most increases F), which results

in an update proportional to the prediction error:

DV �
@F
@V
¼ md: ð10Þ

Simulating state-dependent dopaminergic responses

This section serves to illustrate that the pattern of dopaminergic activity seen in the study by

Cone et al. [26] is not consistent with the classical theory and can be better explained with a

state-dependent utility as described above. We first simulated the classical model in which

reward prediction error is described in Eq (1). In the simulation, the CS was presented at time

step 1, while the US was presented at time step 2. The model learned a single parameter V that

estimates the expected reinforcement on the time step following the CS. Thus, on each trial the

prediction error to the CS was equal to δTD = V, while the prediction error to the US was equal

to δTD = r −V. The value estimate was updated proportionally to the prediction error, i.e. ΔV = α
(r − V), where α is a learning rate parameter. On every trial, the model received a reinforcement

r = 0.5. Once training was completed, the expected values were fixed to the values they converged

to during training, and testing occurred without allowing the model to update its beliefs.

The classical reward prediction error Eq (1) does not depend on the physiological state,

therefore each experimental condition was simulated in exactly the same way. The dopaminer-

gic teaching signals, predicted by the classical theory, are thus identical in all conditions (Fig

3A). As described above, the response to the CS is equal to the estimate of the reinforcement

and the response to the US is equal to the difference between the received and the predicted

reinforcement, which is close to zero when reinforcements are fully predicted.

Please note that the classical reward prediction error employed in the simulations shown in

Fig 3A is identical to that in Eq (8) with m = 1. To achieve a state-dependent modulation we

use the state-dependent prediction error (Eq (8)) to simulate the data by Cone et al. following

the same protocol as in the classical case. For these simulations, the parameter describing moti-

vation was set to m = 0.2 for a state close to balanced and m = 2 for a depleted state. During

training in the depleted state, the reward prediction error to the US (Eq (8)) is high on the

initial trials to facilitate learning of a reward estimate. By contrast, during training in the near-

balanced state, the prediction errors are close to 0, and consequently the estimate of reinforce-

ment is only minimally adjusted. In other words, the learned CS value is higher for the animals

trained in the depleted state than the CS value of animals trained in the balanced state. During

testing, these learned CS values were no longer modified. The dopaminergic teaching signal

at the time of the US was computed from Eq (8) using the value m of the testing state. The

response to the CS was taken as mV, i.e. motivation m of testing times the CS value learned

during training.

In simulated animals that are trained in the near-balanced state little learning is triggered

and the response to the CS is close to zero (Fig 3B). However, when these simulated animals

are then tested in the depleted state, the scaled utility is greater than zero and consequently

evokes a positive reward prediction error. In contrast, simulated animals trained in the

depleted state learn the estimate of the expected value of the reinforcement. There is an
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increase in the dopaminergic teaching signal in these simulated animals at the time of the CS

since the expected value is transferred to the CS. When these simulated animals are tested in

the near-balanced state, with a motivation close to zero, a very small reward prediction error is

evoked, because both the reinforcement and expected value are scaled by a number close to

zero.

In line with the theory in the previous section in which we formally defined both the utility

and motivation, the above simulations shows that in order to account for the experimental

data by Cone et al., (2016), the prediction error needs to be redefined as a difference between

the utility of a reinforcement and the expected utility of that reinforcement, which depends on

both the objective reinforcement magnitude and the motivation.

Accounting for positive and negative consequences of actions

Let us now reconsider the dependence of utility on motivation and consider how this could be

expressed more accurately. Since Eq (4) comes from Taylor expansion, it only provides a close

Fig 3. Simulation of data by Cone et al. [26] with different reward prediction errors. A) Simulation with classical

reward prediction error using Eq (1). B) Simulation with state-dependent prediction error described in Eq (8). Within

each graph, the left and right halves show the reward prediction error (RPE) of simulated animals tested in balanced

and depleted states, respectively. CS = conditioned stimulus, US = unconditioned stimulus. Each simulation consisted

of 50 training trials, 1 test trial and was repeated 5 times, similar to the number of animals in each group in the study

by Cone et al. [26]. Error bars are equal to zero as there is no noise added to the simulation and all simulations

converged to the same value.

https://doi.org/10.1371/journal.pcbi.1007465.g003

PLOS COMPUTATIONAL BIOLOGY Effects of motivation on choice and learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007465 May 26, 2020 8 / 33

https://doi.org/10.1371/journal.pcbi.1007465.g003
https://doi.org/10.1371/journal.pcbi.1007465


approximation if r is small. This approximation may fail when the reinforcement is greater

than the distance to the optimum. In the example in Fig 2B, if we use a linear approximation

with a positive motivation, the utility is approximated as greater than zero, even though the

actual utility is not as this action will exceed the desired state. Eq (4) also suggests that any

action with r> 0 will have positive utility if m> 0, regardless of possible negative conse-

quences (i.e. reaching a new state further away from the desired state). Moreover, if the dis-

tance of the current state to the desired state is equal to the distance of the new state to the

desired state, the utility of an action would be zero (Fig 2B). Using Eq (4) it is impossible to

capture these effects and account for both positive and negative consequences of this action.

One classical example in which the utility of an action switches sign depending on the prox-

imity to the desired physiological state is salt appetite. When animals are depleted of sodium,

salt consumption is rewarding. However, when animals are physiologically balanced, salt con-

sumption is extremely aversive [27]. To avoid using multiple equations to explain the switch

from positive to negative utilities and vice versa [38], we need to formulate an equation that

can account for negative consequences of actions when the m� 0 or m< 0 and is able to

account for positive consequences when the motivation changes, i.e. m> 0.

Therefore we use a second order Taylor expansion which includes the first and second

order derivatives of the desirability function (Eq 2) and gives an exact expression for the utility:

U ¼ YðS2Þ � YðS1Þ ð11Þ

¼ Y 0ðS1ÞðS2 � S1Þ þ Y @ðS1ÞðS2 � S1Þ
2
=2 ð12Þ

¼ mr � r2=2: ð13Þ

In the above equation mr could be seen as the positive and r2/2 as the negative conse-

quences of the action, respectively. The first term plays a greater role when deprived and

promotes taking actions, whereas the second term plays a greater role when balanced and dis-

courages taking actions.

During action selection it is imperative to choose actions to maximise future utility. For

competing actions, the utility of all available actions needs to be computed. The action with

the highest utility is most beneficial to select, but this action should only be chosen when its

utility is positive. If the utility of all actions is negative, no actions should be taken. From a fit-

ness point of view, not making an action is more advantageous than incurring a high cost.

In the next section we will elaborate on how Eq (13) can be evaluated in the basal ganglia

and provide an example of a biologically plausible implementation. For simplicity we will only

consider a single physiological dimension (e.g. nutrient reserve), but we recognise that the the-

ory needs to be extended in the future to multiple dimensions (e.g. water reserve, fatigue) that

animals needs to optimise. Furthermore, taking an action aimed to restore one dimension (e.g.

nutrient reserve) may also include negative consequences that are independent of the consid-

ered dimension (e.g. fatigue). We will elaborate on these issues in the Discussion.

Neural implementation

In the previous sections we discussed how the utility of actions or stimuli change in a state-

dependent manner. In this section we will focus on the neural implementation of these con-

cepts. More specifically, we will address how the utility of previously chosen actions can be

computed in the basal ganglia and how this circuit could learn the utility of actions.

Evaluation of utility in the basal ganglia circuit. The basal ganglia is a group of subcorti-

cal nuclei that play a key role in action selection and reinforcement learning. It is organised

into two main pathways shown schematically in Fig 4. The Go or direct pathway is associated
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with the initiation of movements, while the Nogo or indirect pathway is associated with the

inhibition of movements [39]. These two pathways include two separate populations of striatal

neurons expressing different dopaminergic receptors [40]. The striatal Go neurons mainly

express D1 receptors which are excited by dopamine, while the striatal Nogo neurons mainly

express D2 receptors which are inhibited by dopamine [41]. Thus, dopaminergic activation

signal controls the competition between these two pathways during action selection and pro-

motes action initiation over inhibition.

Given the architecture of the basal ganglia, we hypothesise that this circuitry is well suited

for the computation of the utility of actions in decision making. In particular, we note the

similarities between the utility function in Eq (13) consisting of two terms that are differently

affected by motivation (i.e. in the first term r is scaled by m, while in the second −r2/2 is not),

and the basal ganglia consisting of two main pathways that are differently modulated by dopa-

mine. Accordingly, in the presented model the Go and Nogo neurons represent the estimates

for these two terms and the dopaminergic activation signal encodes motivation and controls

the relative influence of Go and Nogo neurons in an appropriate manner. Moreover, we pro-

pose that encoding r and −r2/2 separately in the synaptic weights of Go and Nogo neurons,

respectively, is beneficial as it allows for asymmetric weighting of the relative contributions

of these terms by the dopaminergic activation signal. At first sight, this mapping may seem

counter-intuitive because the second term of the utility equation is not modulated by motiva-

tion, while the Nogo neurons are suppressed by dopaminergic activity. However, in the next

few paragraphs we show that the basal ganglia output encodes a quantity proportional to the

utility when dopamine scales the relative effects of the two striatal populations on the output.

Furthermore, separating the quantities that are scaled and are not scaled by motivation pro-

vides an additional benefit when considering a multi-dimensional space. As we highlight in

Fig 4. Schematic of utility computation in the basal ganglia network. Dopaminergic activation signal encodes the

motivation. The thalamic activity represents the utility of actions. Arrows and lines with circles denote excitatory and

inhibitory connections, respectively. DA = dopamine, D1 = dopamine receptor 1 medium spiny neurons,

D2 = dopamine receptor 2 medium spiny neurons, SNr = substantia nigra pars reticulata, STN = subthalamic nucleus,

GPe = globus pallidus external segment.

https://doi.org/10.1371/journal.pcbi.1007465.g004
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the discussion, some other factors that affect the utility of an action, e.g. related to effort, may

be encoded in Nogo neurons but not in Go neurons.

Let us now consider the computation of the utility at the output of the basal ganglia. We

refer to this output as the thalamic activity, denoted by T. T depends on the cortico-striatal

weights of Go neurons (G) and Nogo neurons (N), and the dopaminergic activation signal

denoted by D.

Although admittedly more complex, we can capture the signs of the influences of the dopa-

minergic activation signal, Go and Nogo neurons in a linear approximation [42]:

T ¼ DG � ð1 � DÞN: ð14Þ

In the above equation, the contribution of Go neurons to the thalamic activity is described

by the first term DG, reflecting facilitatory effect of dopamine on Go neurons. The inhibitory

effect of Nogo neurons to the thalamic activity results in a negative contribution to the tha-

lamic activity and is described by the second term −(1 − D)N. We assume that D 2 [0, 1], and

that tonically active dopaminergic neurons give rise to a baseline level of the dopaminergic

activation signal of D = 0.5 for which both striatal populations equally contribute to the tha-

lamic activity.

In Eq (14) we make three assumptions about the contribution of Go and Nogo neurons to

the thalamic activity and how they are modulated by the level of dopamine. For each of the

assumptions we discuss how they relate to experimental data. 1) At baseline dopamine level

D = 0.5, striatal Go neurons have a positive effect on the thalamic activity of the same magni-

tude as the negative effect striatal Nogo neurons have on the thalamic activity. This assumption

is consistent with an observation that optogenetic activations of Go and Nogo neurons modu-

late the thalamic activity to the same extent but in opposite direction (see Figure 4 in [43]). 2)

The dopaminergic activation signal increases the gain of Go neurons, and reduces the gain of

Nogo neurons. This assumption is based on the observation of an increased slope of firing-

input relationship of neurons expressing D1 receptors in the presence of dopamine [18], and

decreased slope of neurons expressing D2 receptors in the presence of dopamine [19, 20]. 3)

Changes in the level of dopamine affect the gain of Go and Nogo neurons to the same extent.

This assumption differs from many models of dopaminergic modulation in which there is an

unequal modulation of the Go and Nogo neurons based on their low and high receptor affin-

ity, respectively, suggesting that Go neurons mainly respond phasic dopamine signals, whereas

Nogo neurons mainly respond to tonic dopamine signals [44]. However, it is consistent with

recent findings showing that Nogo receptors also responds to phasic changes in dopamine,

something that is incompatible with the original models [45, 46]. Moreover, computational

models that include both receptor affinity and receptor occupancy show that the effect of

dopamine could be similar on Go and Nogo populations [47], which further supports our

assumption.

We now show that the thalamic activity defined in Eq (14) is proportional to the utility of

an action if G and N are fully learned and therefore provide correct estimates of the positive

and negative terms in utility equation (Eq (13)), respectively (G = r and N = r2/2). Then, we

can rewrite Eq (14) as:

T ¼ Dr � ð1 � DÞr2=2 ð15Þ

which can then be rewritten in the following way:

T ¼ ð1 � DÞ
D

ð1 � DÞ
r � r2=2

� �

: ð16Þ
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Comparing this to Eq (13), we observe that the thalamic activity is proportional to the utility

(T = (1 − D)U) when the motivation is encoded by dopaminergic activation signal:

m ¼
D

1 � D
: ð17Þ

We can rewrite Eq (17) in the following way to express the level of dopamine for a given

motivation:

D ¼
m

1þm
: ð18Þ

In summary, when the striatal weights encode the positive and negative consequences and

the dopaminergic activation signal is described by Eq (18), then the thalamic activity is propor-

tional to the utility.

Let us now consider how this utility can be used to guide action selection. Computational

models of action selection typically assume that all basal ganglia nuclei and thalamus include

neurons selective for different actions [48]. Therefore, the activity of thalamic neurons selec-

tive for specific actions can be determined on the basis of their individual positive and negative

consequences and the common dopaminergic activation signal. Given that the proportionality

coefficient (1 − D) in Eq (16) is the same for all actions, the utilities of different actions repre-

sented by thalamic activity are scaled by the same constant. This means that the most active

thalamic neurons are the ones selective for the action with the highest utility, and hence this

action may be chosen through competition. Furthermore, if we assume that actions are only

selected when thalamic activity is above a threshold, then no action will be selected if all actions

have insufficient utility. The utility of actions has to be sufficiently high to increase neural fir-

ing in the thalamus above the threshold and trigger action initiation. It is important to note

that even though the proportionality coefficient (1 − D) in Eq (16) approaches 0 when D
approaches 1, this does not mean that the thalamic activity also approaches 0 and no action

will be selected. When D approaches 1, the proportionality factor and the utility change con-

currently, which means that the thalamic activity either stays the same or increases. More

formally, the thalamic activity defined in Eq (14) is non-decreasing with respect to the dopami-

nergic activation signal, because dT/dD = G + N which is non-negative (as synaptic weights G
and N cannot be negative).

Furthermore, it may seem counter-intuitive that dopaminergic neurons modulate both Go

and Nogo neurons, while the motivation m only scales the first term in the definition of the

utility function of Eq (13). The benefit of such double modulation is that it allows for repre-

senting an unbounded range of the motivation, m 2 [0,1], while expressing the dopaminer-

gic activation signal within a bounded range D 2 [0, 1]. This is useful as biological neurons can

only produce finite firing rates. Thus, if an animal is very hungry, setting the dopaminergic

activation signal to a value close to a maximum value, denoted here by 1, allows for ignoring

any negative consequences of an action. Consequently, the thalamic activity will be positive for

any action associated with a positive reinforcement, facilitating the execution of these actions.

Models of learning. In the previous section, we showed that the basal ganglia network

can estimate the utility once the striatal weights have acquired the appropriate values. In this

section we address the question of how these values are learned. Earlier, we proposed a general

framework for describing learning process assuming that the brain minimises a prediction

error during this process and we redefined the prediction error as the difference between util-

ity and expected utility. In the previous section we described a model in which the thalamic

activity encodes a scaled version of the estimated utility (Û ¼ T=ð1 � DÞ (see Eqs 16 and 17).

This estimate of the utility can be substituted into Eq (7) giving the following the state-
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dependent reward prediction error:

d ¼ U �
T

ð1 � DÞ
: ð19Þ

In this RPE, U is the utility of an action (Eq (13)), and T/(1 − D) is the expected utility of an

action. In line with the general definition of Eq (7), the above equation shows that the RPE

depends on a reinforcement and the expected reinforcement in a state-dependent manner,

which is here instantiated in a specific model for estimating utility. Please note that at baseline

levels of the dopaminergic activation signal (D = 0.5), the above expression for prediction

error reduces to δ = U − (G − N) and such prediction error has been used previously [49].

We will now describe two models for learning the synaptic weights of G and N. The first

model is a normative model, developed for the purpose of this learning, while the second

model corresponds to a previously proposed model of striatal plasticity, which provides a

more biologically realistic approximation of the first model. We have chosen this model as it is

able to extract payoffs and costs. Other existing computational models fail to do so and thus

we do not expect them to perform optimally (for reference see [42]).

Gradient model. The first model we used to describe learning of synaptic weights under

changing conditions, directly minimises the error in prediction of the utility of action. It

changes the weights proportionally to the gradient of the objective function:

ΔG = α@F/@G and ΔN = α@F/@N, respectively. For the prediction error described in Eq

(19), this gives us the following learning rules for G and N:

DG ¼ ad
D

1 � D
; ð20Þ

DN ¼ � ad: ð21Þ

Synaptic weights of Go and Nogo neurons are updated using the dopaminergic teaching signal

scaled by the learning rate constant α. The update rule for Go weights has an additional term

involving the dopaminergic activation signal encoding the motivation as described in Eq (17).

Only the update rule for G, but not for N, includes scaling by motivation, because in the defini-

tion of utility of Eq (13), the motivational level only scales the positive consequences of an

action and not the negative.

Payoff-cost model. The second model has been previously proposed to describe how Go

and Nogo neurons learn about payoffs and costs of actions. It has been shown to account for a

variety of data ranging from properties of dopaminergic receptors on different striatal neurons

to changes in risk preference when dopamine levels are low or high [49]. We expected this

model to provide an approximation for the gradient model because it has been shown to be

able to extract positive and negative consequences of actions. More specifically, if a reinforce-

ment takes a positive value rp half of the times and a negative value −rn the other half of times,

then the Go weights converge to G = rp and Nogo weights to N = rn, for certain parameters

[42]. Therefore, we expected this learning model to be able to extract positive and negative

terms of the utility in Eq (13) if motivation could vary between trials, so the positive term dom-

inates utility on some trials while the negative term on other trials.

In our simulations we used the same update rules as previously described [42, 49], but we

use a state-dependent prediction error (Eq (19)) to account for decision making under differ-

ent physiological states.

DG ¼ af�ðdÞ � lG; ð22Þ
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DN ¼ af�ð� dÞ � lN; ð23Þ

where

f�ðdÞ ¼

(
d; if d > 0;

�d; if d � 0:

The update rules in the above equations consist of two terms. The first term is the change

depending on the dopaminergic teaching signal scaled by a learning rate constant α. It

increases the weights of Go neurons when δ> 0, and slightly decreases when δ< 0, so that

changes in the Go weights mostly depend on positive prediction errors. The constant � con-

trols the magnitude by which the weights are decreased, and takes values within a range

� 2 [0, 1], meaning that for � = 0 the negative prediction error does not drive any decrease in

Go weights. The details on the values of � required for learning positive and negative conse-

quences are provided in [42]. Nogo weights will be updated in a analogous way, but these

changes mostly depend on negative prediction errors. The second term in the update rules is a

decay term, scaled by a decay rate constant λ. This term is necessary to ensure that the synaptic

weights stop growing when they are sufficiently high and allows weights to adapt more rapidly

when conditions change. In case an updated weight becomes negative, it is set to zero.

Simulations of learning. In this section, we investigate under what conditions the learn-

ing rules described above can yield synaptic weights of Go and Nogo neurons that allow for

the estimation of utility. Recall that the network will correctly estimate the utility, if G = r and

N = r2/2.

In the simulations we make the following assumptions: 1) The simulated animal knows its

motivational level m, which influences both dopaminergic signals accordingly (Eqs (18) and

(19)). 2) The simulated animal computes the utility of obtained reinforcement as a change in

the desirability of the physiological state. As described above, the desirability depends on the

objective value of the reinforcement r and the current motivational state m according to Eq

(13), which was used to compute the reward prediction error according to Eq (19).

We simulated scenarios in which the simulated animal repeatedly chooses a single

action and experiences a particular reinforcement r under different levels of motivation

m 2 {mlow, mbaseline, mhigh}. Note that the mlow = 0 correspond to a dopaminergic activation

signal of D = 0, mbaseline = 1 gives a dopaminergic activation signal of D = 0.5, which means

that Go and Nogo neurons are equally weighted, and mhigh = 2 corresponds to a dopaminergic

activation signal above baseline levels.

We first simulated a condition in which the motivation changed on each trial, and took a

randomly chosen value from a set {mlow, mbaseline, mhigh} (Fig 5A). The gradient model was

able to learn the desired values of Go and Nogo weights as Go weights converged to r, while

Nogo weights converged to r2/2, which allowed the network to correctly estimate the utility.

Although the subjective reinforcing value changed as a function of physiological state, the

model was able to learn the actual reinforcement of an action. Encoding of such objective esti-

mates allows the agent to dynamically modulate behaviour based on metabolic reserves. In

contrast, the payoff-cost model converged to lower weights than desired. Although it learned

the synaptic weights based on the state-dependent prediction error, the weight decay present

in the model resulted in a lower asymptotic value.

To test robustness of the learning rules and because the motivational state is fixed during

the experimental paradigms simulated in this paper, we also simulated conditions in which the

motivation was kept constant (Fig 5B–5D). In these cases both leaning rules converged to very
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similar values of synaptic weights: low levels of motivation emphasised negative consequences

and therefore facilitated Nogo learning (Fig 5B), while high levels of motivation emphasised

positive consequences and therefore facilitated Go learning (Fig 5D). This shows that when the

motivation is equal to the reward size (m = r), meaning that this action brings the subject to

exactly the desired state S�, the synaptic weights of Go neurons are higher than Nogo neurons

G> N. Whenever the action exceeds the desired state, r>m, the Nogo weights increase as this

action is not favourable N> G.

In summary, the simulations indicate that for the models to learn appropriate values of syn-

aptic weights, the reinforcements need to be experienced under varying levels of motivation.

In this case, the gradient model provides a precise estimation, while the payoff-cost model pro-

vides an approximation of the utility. In cases when the motivational state is fixed during train-

ing, both models learn very similar values of the weights.

The basal ganglia architecture allows for efficient learning. In the previous sections we

presented models and analysed how utilities can be computed and learned in the basal ganglia

network. One could ask, why would the brain employ such complicated mechanisms if a sim-

ple model could give you the same results? In particular, one could consider a standard Q-

learning model, in which the state is augmented by motivation. Such model would also be able

to learn to estimate the utility. However, such a model does not incorporate any prior knowl-

edge about the form of the utility function and its dependence on motivation. By contrast, the

Fig 5. Learning Go and Nogo weights for different reinforcements and different levels of motivation. Performance

of models under variable (A), low (B), baseline (C), high (D) levels motivation. Simulations were performed using the

state-dependent prediction error (Eq (19)). Solid lines show simulations of the gradient model using the plasticity rules

described in Eqs (20) and (21). Dashed lines show simulations of the payoff-cost model using the plasticity rules

described in Eqs (22) and (23). Black lines correspond to Nogo neurons and grey lines to Go neurons. Each simulation

had 150 trials and was repeated 100 times.

https://doi.org/10.1371/journal.pcbi.1007465.g005
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model grounded in basal ganglia architecture, assumes a particular form of the utility function

to be learned. In machine learning, such prior assumptions are known as ‘inductive bias’, and

they facilitate learning [50].

We now illustrate that thanks to the correct inductive bias, the gradient model learns to esti-

mate the utility faster than standard Q-learning, which does not make any prior assumptions

about the form of the utility function. In our implementation of Q-learning, the range of values

the motivation can take was divided into a number of bins, and the model estimated the utility

for each bin. In the simulations on each trial reinforcement r = 1 was received and its utility

was computed using Eq (13), which relied on the current motivation. The Q-value for the cur-

rent motivation bin was updated by: ΔQm = α(U − Qm). In Fig 6 we compare a Q-learning

approach, in which the motivational state was discretised, with the gradient model in our

framework, which does not require discretisation of the motivational state. As can be seen in

in Fig 6, both models are able to approximate the utility well. However, Q-learning takes sig-

nificantly more trials to do so. Moreover, the more bins are used for the discretisation, the

slower the learning occurs.

Relationship to experimental data

We already demonstrated how a model employing an approximation of utility can explain

data on the effect of physiological state on dopaminergic responses. In this section, we demon-

strate how we can use models grounded in basal ganglia architecture to describe these dopami-

nergic responses and goal-directed action selection in different experimental paradigms.

We first show that the new, more complex and biological relevant learning rules can also be

used to explain the data by Cone et al. [26]. In these simulations, the dopaminergic teaching

signal at the time of the CS took on the value of the expected utility (T/(1 − D)) and at the time

of the US represented the reward prediction error described by (Eq (19)). Simulated values of

the dopaminergic teaching signal (Fig 7) show similar behaviour to the experimental data by

Cone et al. [26]. Both the gradient and the payoff-cost model produce a similar dopaminergic

teaching signal. This could be expected from simulations in the previous sections, which

Fig 6. Reward prediction error as a function of learning iteration. A) The gradient model uses the state-dependent

prediction error (Eq (19)) and the plasticity rules described in Eqs (20) and (21). B) Discretised Q-learning model.

Motivational values were randomly chosen on each trial from a uniform distribution between 0 and 2. For Q-learning,

motivational values were binned in either 4 or 10 bins. The y-axis corresponds to reward prediction error equal to the

difference between the estimated and expected utility.

https://doi.org/10.1371/journal.pcbi.1007465.g006
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showed that both models converge to similar weights if the motivation is kept constant during

training.

Influence of physiological state on action selection. In the presented framework natural

appetites, such as hunger or thirst, can drive action selection into the direction of the relevant

reinforcement. Generally speaking, most food items are considered appetitive even when an

animal is in the near-optimal state. Nevertheless, overconsumption could have negative conse-

quence as you can experience discomfort after eating too much. Therefore some of these nega-

tive consequences might have to be accounted for as well. As discussed above, a good example

of a natural appetite that can be both appetitive and aversive dependent on the physiological

state of the animal is salt appetite. Salt is considered very aversive or appetitive when the

sodium physiology is balanced or depleted, respectively. Accordingly, rats reduce their intake

of sodium or salt-associated instrumental responding when balanced and vice versa when

depleted [27, 51]. This even occurs when animals have never experienced the deprived state

before and have not had the chance to relearn the incentive value of a salt reinforcement under

a high motivational state [51]. This example fits very well with the incentive salience theory

which states that the learned association can be dynamically modulated by the physiological

state of the animal. Modulation of incentive salience adaptively guides motivated behaviour to

appropriate reinforcements.

To demonstrate that the simple utility function (Eq (13)) proposed in this paper can

account for the transition of aversive to appetitive reinforcements, and vice versa, in action

selection, we use the study by Berridge and Schulkin [27]. In this study, animals learned the

value of two different conditioned stimuli, one associated with salt intake (CS+) and one with

fructose intake (CS-). The animals were trained in a balanced state of sodium. Once the appro-

priate associations had been learned, the animals were tested in a sodium balanced and sodium

depleted state. As can be seen in Fig 8A the intake of the CS+ was significantly increased in the

sodium depleted state compared to the balanced state and the CS- intake. If we assume that

positive and negative consequences are encoded by the Go or Nogo pathway, respectively, the

synaptic weights of these pathways will acquire positive or negative values depending on the

Fig 7. Simulated dopaminergic teaching signal in the paradigm of Cone et al. [26] according to models grounded

in basal ganglia architecture. For all simulations, the state-dependent prediction error (Eq (19)) was used. The

gradient model, depicted in grey, uses the plasticity rules described in Eqs (20) and (21). Payoff-cost model, depicted in

black, uses the plasticity rules described in Eqs (22) and (23). Left and right panels show the data tested in the balanced

state or depleted state, respectively. CS = conditioned stimulus, US = unconditioned stimulus, RPE = reward

prediction error. Each simulation consisted of 50 training trials, 1 test trial and was repeated 5 times, similar to the

number of animals in each group.

https://doi.org/10.1371/journal.pcbi.1007465.g007

PLOS COMPUTATIONAL BIOLOGY Effects of motivation on choice and learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007465 May 26, 2020 17 / 33

https://doi.org/10.1371/journal.pcbi.1007465.g007
https://doi.org/10.1371/journal.pcbi.1007465


situation. Again, the dopaminergic activation signal can control to what extent these positive

and negative consequences affect the basal ganglia output as Go and Nogo neurons are modu-

lated in an opposing manner.

Once the appropriate associations between the conditioned stimuli and the outcomes are

acquired, the outcomes can be dynamically modulated by the relevant state only (i.e. the level

of sodium depletion). The fact that the responses to the CS- are unaffected by the physiological

state of sodium suggests that salt and fructose are modulated by separate appetitive systems

and that the physiological state of the animal modulates the intake proportional to the depriva-

tional level of the animal. The phenomenon that different reward types act on different appeti-

tive system has been also observed by other experimental studies [25].

In our simulation, we assumed that the synaptic weights for Go and Nogo neurons were

learned in a near-balanced state of sodium since the animals had never experienced a sodium

depleted state before. During training, the motivation was low (m = 0.2), resulting in low level

of dopaminergic activation signal following Eq (18). During the testing phase, the motivation

for the CS+ was low (m = 0.2) for sodium in the near-balanced state and high (m = 2) for the

sodium depleted state. Given that experimental data suggests that multiple appetitive systems

may be involved we used separate motivational signals for the CS+ and CS-. Therefore, the

motivation for the CS- were kept low (m = 0.1), but were non-negative, for both sodium near-

balanced and sodium depleted states since fructose has no effect on the physiological state of

sodium and we assumed that the animals were not deprived of other nutrients. The thalamic

activity was computed using Eq (14), and additional Gaussian noise was added to allow explo-

ration. Actions were made when the thalamic activity was positive, otherwise no action was

made. The model received a reinforcement of r = 0.5 for each action made and the utility

was computed using Eq (13). During training, Go and Nogo weights were updated using the

update equations presented above for the different models. For the testing phase, the Go and

Nogo values were kept constant based on the learned values and were not allowed to be (re-)

learned. Again, the thalamic activity was computed and actions were taken when this was posi-

tive. Please note that the main difference between near-balanced and depleted states, is the

level of dopaminergic activation signal. As can be seen in Fig 8B both models show dynamic

scaling of the CS+ dependent on the relevant motivational state similar to the experimental

data in Fig 8A.

State-dependent valuation. There is a number of experimental studies that have investi-

gated the influence of physiological state at the time of learning on the preference during sub-

sequent encounters (e.g. [28, 35, 36, 52]). In the study by Aw et al. [28], animals were trained

in both a near-balanced and deprived state. One action was associated with food in the near-

balanced state and another action was associated with food in the deprived state. Animals were

tested in both states. In both cases, animals preferred the action associated with the deprived

state during learning and the proportions of trials with these actions is above chance level (Fig

9A). These results resemble the data on dopaminergic responses (Fig 1), which also demon-

strated higher response to reward-predicting stimuli (CS) that had been experienced in a

depleted state. In this section we show that such preferences can also be produced by the pro-

posed models.

We simulated learning of the synaptic weights of Go and Nogo neurons when the motiva-

tion was high (i.e. hungry) and when the motivation was low (i.e. sated). In the experiment by

Aw and colleagues, the training phase consisted of forced choice trials in which the reinforce-

ment was only available in one arm of a Y-maze while the other arm was blocked. For example,

the left arm was associated with a food reinforcement during hunger and the right arm was

associated with a food reinforcement during the sated condition. In the experiment, 11 ani-

mals were used, which were trained for 65 trials on average to reach the required performance.
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In line with this, our simulations were repeated 11 times, and in each iteration we trained the

model for varying trial numbers with a mean of 65. Motivation was set to m = 2 for hungry

and m = 0.2 for sated. The dopaminergic activation signal was fixed to values that correspond

to the motivation described by Eq (18). For each correct action, the model received a

Fig 8. Salt appetite: increased approach behaviour for salt when salt-deprived. A) Re-plotted data of Berridge and

Schulkin [27] showing that the intake of sodium (CS+), but not fructose (CS-), is increased when salt-deprived. B)

Simulated data of number of actions made using the state-dependent prediction error (Eq (19)). The gradient model,

depicted in grey, uses the plasticity rules described in Eqs (20) and (21). The payoff-cost model, depicted in black, uses

the plasticity rules described in Eqs (22) and (23). Within the graph, the left and right halves show the responses of

animals tested in depleted and balanced states, respectively. CS+ = relevant conditioned stimulus for sodium, CS- =

irrelevant conditioned stimulus for fructose.

https://doi.org/10.1371/journal.pcbi.1007465.g008

Fig 9. Valuation based on state at training, not testing, predicts preference in choice behaviour. A) Re-plotted

experimental data by Aw et al. [28] showing that the option associated with hunger during training is always preferred

regardless of the state at testing. B) Simulated data using the state-dependent prediction error (Eq (19)). Gradient

model, depicted in grey, uses the plasticity rules described in Eqs (20) and (21). Payoff-cost model, depicted in black,

uses the plasticity rules described in Eqs (22) and (23). Hungry and sated refer to the physiological state at testing. The

proportion of actions for the arm associated with the hunger condition during training is depicted on the y-axis. For

the simulated data this is counted as the number of times the thalamic activity was positive during the test for either the

option associated with hunger or sated condition during training.

https://doi.org/10.1371/journal.pcbi.1007465.g009
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reinforcement of r = 0.2 and the utility was calculated using Eq (13). At the start of each simu-

lated forced trial, the model computed the thalamic activity (using Eq (14)) of the available

action and some independent noise was added. The thalamic activity for the unavailable action

was zero. The action with the highest positive thalamic activity was chosen. If the thalamic

activity of all actions was negative, no action was made and the reinforcement was zero. Each

time an action was made the synaptic weights of Go and Nogo neurons were updated using

the state-dependent reward prediction error and the update rules described in the section

Models of learning. The learning rate for all of these models was set to α = 0.1. Once learning

was completed, the synaptic weights were fixed and were not updated during the testing phase.

During the testing phase, both arms were available and the animals could freely choose an

arm to obtain a reinforcement in. All 11 animals were tested for 24 trials. The simulated tests

were run for 24 trials for both conditions and repeated 11 times using the individual learned

Go and Nogo weights for the sated and hungry condition. Again, the model computed the tha-

lamic activity for both options simultaneously (in parallel) plus some independent noise. The

action with the highest thalamic activity was chosen. The proportion of actions associated with

the hungry option are depicted in Fig 9B. This experiment was simulated for both physiologi-

cal states during testing phase. The proportion of actions for the arm associated with hunger

were calculated for both states. Both the experimental and simulated data show that the ani-

mals chose the action associated with the hungry state more often, regardless of the current

state.

To gain some intuition for why the models preferred the option that was associated with

hungry state during training, let us look back at the simulations presented in Fig 5B–5D.

These show that when the models were trained with a fixed motivation, Go weights took

higher values when the motivation was high during training, and Nogo weights were larger

when motivation was low. Analogously, in the simulations of the study of Aw and colleagues,

the Go weights took larger values for the option associated with hunger during training (Fig

10), and this option was therefore preferred during testing. These biases arise in the models

when they are unable to experience multiple levels of motivation during training. Only after

Fig 10. Learning Go weights as function of physiological state. Go weights were updated using Eqs (20) and (22) for

the gradient (A) and payoff-cost model (B), respectively. Learning at high motivation is depicted in green and learning

at low motivation is depicted in purple. Number of trials used for the simulation was 1000. Go weights were initialised

at 0.1.

https://doi.org/10.1371/journal.pcbi.1007465.g010
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training in multiple physiological states the utility can be flexibly estimated in different phys-

iological states.

Comparison to an existing incentive salience model

In this section we formally compare the proposed framework with existing models for incen-

tive salience [38, 53]. Zhang et al., [38] developed mathematical models that describe how the

values of reinforcement are modulated by changes in a physiological state. In these models the

learned value of a reinforcement, which we denote by R, takes positive values for appetitive

reinforcements and negative values for aversive reinforcements. A change in the physiological

state of the animals from training to testing is captured by a gating parameter κ, which is

always non-negative, κ 2 [0,1). An up-shift in physiological state (i.e. when an animal

becomes more deprived) is represented by κ> 1, while a down-shift in physiological state

(i.e. when an animal becomes less deprived) is represented by κ< 1. Up-shifts increase the

reward value whereas down-shifts decrease the reward value. Two mechanisms are considered

through which a shift in physiological state, κ, modulates the reinforcement, R [38]. According

to the first, multiplicative mechanism, a subjective utility of reinforcement is equal to Rκ. This

multiplicative mechanism is similar to the first order approximation of the utility (Eq (4)).

However, as the model of Zhang et al. assumes that κ> 0 for all states of the animal, it strug-

gles to explain a phenomenon such as salt appetite where aversive reinforcements can become

appetitive depending on the physiological state of the animal, because multiplying a negative

reinforcement with a positive factor does not change the sign of the reward value. To account

for this phenomenon, Zhang et al. developed a second, additive mechanism, where the subjec-

tive utility is equal to:

UðCSÞ ¼ Rþ logðkÞ ð24Þ

For sufficiently large or small κ, this mechanism is able to change the polarity of the utility.

As the models of Zhang et al. do not describe learning, it is not possible to compare them

explicitly in the simulations of the learning tasks presented in this paper. Furthermore, these

models do not define reward prediction error, so it also not possible to compare their predic-

tions with dopaminergic responses to rewarding stimuli. Nevertheless, we compare the utilities

computed according to the additive model with the dopaminergic responses to conditioned

stimuli in the study of Cone et al., as such responses are thought to reflect the learned values of

the stimuli. Fig 11 shows utilities for the four experimental conditions computed according to

Eq (24). The value of reinforcement parameter was set to R = −1 in the balanced state as salt is

aversive in that state, and to R = 1 in the depleted state because it is then apetitive. The incen-

tive salience gating parameter was set to κ = 1 when there was no change between the trained

state and the tested state. It was set to κ> 1 when there is an increase in the reward value in

the tested state compared to reward value in the trained state and to κ< 1 when there was a

devaluation of the reward value of the tested state compared to reward value in the trained

state. The particular values of κ were chosen in such a way that make the utilities qualitatively

resemble the dopaminergic responses observed by Cone et al.

Although the model can account for the dependence of dopaminergic responses on the test-

ing state when animals were trained in the depleted state, the values of conditioned stimuli in

the model do not correspond to the dopaminergic responses Cone et al. observed when ani-

mals were trained in the balanced state. The dopaminergic responses to the CS are both close

to baseline for animals trained in the balanced state regardless of the state at testing. The addi-

tive model does not produce similar responses because different values of log κ are added in

the two testing states. Please note that this qualitative difference between the utilities computed
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by the additive model and the dopaminergic responses following training in the balanced state

remain present, irrespective of the choice of the value of R: Even if we set R = 0 to capture that

no learning occurred in the balanced state, the utilities of the stimuli remain different (both

shifted upwards), as different values of log κ are added.

In conclusion, the most obvious difference between our model and the models by Zhang

et al. is the form of the utility function. We developed one mechanism to describe all types of

behaviours, whereas Zhang et al. rely on two mechanisms to account for different scenarios.

Furthermore, our model is able to describe the learning process by which the estimates of a

reward value can be learned. It is important to note that Zhang et al. uses a “gating” parameter

which describes the direction and the size of the shift between the previous state and the new

state, whereas the incentive salience in our models is captured by the parameter for motivation

m which describes the current state of an animal. The transition itself and the effect it has on

action selection and learning is captured by the state-dependent reward prediction error and

the thalamic activity.

Discussion

In this paper, we have presented a novel framework for action selection under motivational

control of internal physiological factors. The novel contribution of this paper is that the

framework brings together models of direct and indirect pathways of the basal ganglia with

the incentive learning theory, and proposes mechanistically how the physiological state can

affect learning and valuation in the basal ganglia circuit. We proposed two models that learn

about positive and negative aspects of actions utilising a prediction error that is influenced

by the current physiological state. In this section, we will discuss the experimental predic-

tions, the relationship to experimental data and other computational models and other

implications.

Fig 11. The additive incentive salience model by Zhang et al. [38] predicts different patterns in dopaminergic

teaching signals. Utility of conditioned stimuli in a study by Cone et al. [26] was computed according to Eq (24). The

reward value was set to R = −1 for the animals trained in the balanced state and R = 1 for animals trained in the

depleted state. The gating parameter κ = 1 was when the training state is equal to the testing state. An up-shift in state

is represented by κ = 3 and a down-shift in state is represented by κ = 1/3.

https://doi.org/10.1371/journal.pcbi.1007465.g011

PLOS COMPUTATIONAL BIOLOGY Effects of motivation on choice and learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007465 May 26, 2020 22 / 33

https://doi.org/10.1371/journal.pcbi.1007465.g011
https://doi.org/10.1371/journal.pcbi.1007465


Experimental predictions

In this section, we outline the predictions the models make. In our model we hypothesise that

the synaptic weights of Go neurons and Nogo neurons are equal to r and r2/2, respectively.

Although a relationship between reward and Go/Nogo neuron activity has been demonstrated

[54], the effects are heterogeneous which makes an exact mapping of G and N difficult. The

mapping chosen in this paper may seem arbitrary, however, from a biological point of view it

captures the effects of the sum of Go and Nogo neurons with respect to reward, and the rela-

tionship between the thalamic activity and utility with respect to the motivation and the

reward that matches the experimental data. Alternative mappings with the same overall effect

may be plausible as well and will need to be tested in experimental studies as suggested below.

The neural implementation of the framework assumes that Nogo neurons prevent selecting

actions with large reinforcements when the motivation is low. Thus, it predicts that pharmaco-

logical manipulations of striatal Nogo neurons through D2 agonist (or antagonist) should

increase (or decrease) the animal’s tendency to consume large portions of food or other rein-

forcers to a larger extent when it is close to satiation, than when it is deprived.

The neural implementation of the framework also assumes that the activity in Go and Nogo

pathways is modulated by the dopaminergic activation signal, which depends on motivation.

This assumption could be tested by recording activity of Go and Nogo neurons, for example

using photometry, while an animal decides whether to consume a reinforcement. The frame-

work predicts that deprivation should scale up responses of Go neurons, and scale down the

response of Nogo neurons.

As showed in Fig 5A, the framework predicts that the synaptic weights of Go and Nogo

neurons converge to different values depending on the reinforcement magnitude. These pre-

dictions can be tested in an experiment equivalent to the simulation in Fig 5A in which mice

learn that different cues predict different reinforcement sizes, and experience each cue in vari-

ety of motivational states. The weights of the Go and Nogo neurons are likely to be reflected by

their neural activity (e.g. measured with photometry) while an animal evaluates a cue at base-

line motivation level. We expect both populations to have higher activity for cues predicting

higher reinforcements, and additionally, the gradient model predicts that the Go and NoGo

neurons should scale their activity with reinforcement magnitude linearly and quadratically,

respectively.

Relationship to experimental data and implications

The proposed framework can account for decision making and learning as a function of physi-

ological state, as shown by the simulations of the data by Cone et al., Berridge and Schulkin

and Aw et al. More specifically, we proposed that learning occurs based on the difference

between the utility and expected utility of an action. This is in line with results from a study in

monkeys that also suggested that dopaminergic responses reflects a difference in utility of

obtained reward and expected utility [31]. That study focused on a complementary aspect of

subjective valuation of reward, namely that the utility of different volumes of reward is not

equal to the objective volume, but rather to its nonlinear function. In this paper we addition-

ally point out that the utility of rewards depends on the physiological state in which they are

received.

Furthermore, we know from literature that low levels of dopamine, as seen in Parkinson’s

disease patients, drive learning from errors, whereas normal/high levels dopamine emphasise

positive consequences [3, 5, 55]. We also know from human imaging studies that hungry peo-

ple show an increased BOLD response to high calorie food items, whereas sated people show

an increased BOLD response to low calorie food items [56]. In our simulations we observe this
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as well: a low dopaminergic activation signal favours small rewards and emphasises the nega-

tive consequences of actions encoded in the synaptic weights of Nogo neurons. In contrast, a

high dopaminergic activation signal favours large rewards and emphasises the positive conse-

quences of actions encoded in the synaptic weights of Go neurons. However, there are a couple

considerations that have to be made with respect to the dopaminergic signal in our simula-

tions. First, we assume that striatal neurons can read out both motivational and teaching sig-

nals encoded by dopaminergic neurons [22]. In our theory, we describe two roles of dopamine

neurons, namely activation and teaching signal, however, we do not provide a solution to how

these different signals are accessed. The function of dopamine neurons has been under a cur-

rent debate and its complexity is not well understood [23]. We will leave the details of the

mechanisms by which they can be distinguished to future work. We assume that the models,

particularly the gradient model, has access to multiple dopaminergic signals simultaneously.

Although we recognise that this is a simplified concept of what might be happening in the

brain, it still provides us with new insights in how these different functions affect aspects of

decision making. Further research is necessary to describe the complexity of dopamine neu-

rons in decision making.

Second, it needs to be clarified how the prediction error in our model can be computed.

According to Eq (19), the dopaminergic teaching signal depends on the value of dopaminergic

activation signal (D) which scales thalamic input. One possible way in which such prediction

error could be computed, without the dependence of one dopaminergic signal on another,

could involve scaling the synaptic input from thalamic axons directly by an input encoding

motivational state (m). Indeed, dopamine neurons receive inputs from the hypothalamus

which is under the control of peripheral hormones signalling energy reserves and are also

modulated directly by these hormones. More specifically, the orexigenic hormone ghrelin

increases dopamine release [57], whereas the anorexigenic hormone leptin decreases dopa-

mine release from the midbrain [58].

Third, in this paper we have focused primarily on one dimension, namely nutrient depriva-

tion. However, experimental data suggests that reinforcements are scaled selectively by their

physiological needs [25]. A nutrient specific deprivation alters goal-directed behaviour

towards the relevant reinforcement, but not the irrelevant one. In contrast, other physiological

factors, such as fatigue, may scale only the negative, but not the positive consequences. This

hypothesis is supported by data showing that muscular fatigue alters dopamine levels [59].

Together this suggests that the utility of an action is most likely the sum of all the positive and

negative consequences with respect to their physiological needs or other external factors.

Therefore, extending the current theory to multiple dimensions is an important direction of

future work. In such an extended model, an action which changes the state of multiple physio-

logical dimensions, e.g. hunger, thirst and fatigue, would need to be represented by multiple

populations of Go and Nogo neurons. In this example, the value of food and drink reinforce-

ment, rf and rd respectively, would need to be represented by separate populations of Go and

Nogo neurons that are modulated by different populations of dopaminergic neurons encoding

information about hunger and thirst, while the effort would need to be encoded by a popula-

tion of Nogo neurons modulated by a fatigue signal. It would be interesting to investigate if the

required number of neurons could be somehow reduced by grouping terms in the utility func-

tion scaled in a similar way (e.g. � r2
f =2 � r2

d=2, which are not scaled by any factor in this exam-

ple). As explained in the Results section, such factors are represented in the model by the Nogo

neurons. Future experimental work on the diversity of how individual dopaminergic neurons

are modulated by different physiological states would be very valuable in constraining such an

extended model.
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For simplicity, we used the same framework to model experiments involving both classical

and operant conditioning. However, these learning processes are different as operant condi-

tioning requires an action to be performed, while classical conditioning does not. To capture

the difference between these paradigms, reinforcement learning models assume that operant

conditioning involves learning action values, while classical conditioning involves learning the

values of states, and analysis of neuroimaging data with such models suggests that these pro-

cesses rely on different subregions of the striatum [60]. It would be interesting to investigate in

more detail how the circuits in the ventral striatum could evaluate the utility of states.

Although the current study does not focus on risk preference, there is some evidence for

the existence of a link between risk preference and physiological state [33, 61]. Particularly in

the payoff-cost model, the dopaminergic activation signal controls the tendency to take risky

actions [49], thereby predicting that motivational states such as hunger can increase risk seek-

ing behaviour. The above mentioned studies show that changes in metabolic state systemati-

cally alter economic decision making for water, food and money and correlate with hormone

levels that indicate the current nutrient reserve. Individuals became more risk-averse when

sated whereas people became more risk-seeking when food deprived.

The current study also provides insights into the mechanistic underpinnings of overeating

and obesity. Imaging studies using positron emission tomography showed an important

involvement of dopamine in normal and pathological food intake in humans. In comparison

to healthy controls, pathologically obese subjects show reduced availability of striatal D2 recep-

tors that were inversely associated with the weight of the subject [62–64]. Our theory suggests

that the ability to restrain from taking actions and learn from negative consequences of actions

such as overeating may be diminished when D2 receptors are activated to a lesser extent. The

involvement of the DA system in reward and reinforcement suggests that low engagement of

Nogo neurons in obese subjects predisposes them to excessive use of food.

Relationship to other computational models

In the Results section we have already briefly compared our model to existing computational

models of incentive salience by addressing some similarities and differences and we pointed

out how our models could overcome some of the challenges the other models struggle with.

Here, we relate our framework to several other theories.

One of these theories was proposed by Keramati and Gutkin [29] who developed a theory

that also extended the reinforcement learning theory to incorporate physiological state. They

defined a ‘homeostatic space’ as a multidimensional metric space in which each dimension

represents a physiologically-regulated variable. At each time point the physiological state of an

animal can be represented as a point in this space. They also define motivation (to which they

refer to as ‘drive’) as the distance between the current internal state and the desired set point.

We extended this theory to include how the brain computes the modulation of learned values

by physiology.

In the motivation for the existence of the desired physiological state, Keramati and Gutkin

[29] referred to active inference theory [65]. Our framework also shares a conceptual similarity

with this theory, in that both action selection and learning can be viewed as the minimisation

of surprise. To make this link clearer, let us provide a probabilistic interpretation for action

selection and learning processes in our framework. This interpretation is inspired by a model

of homeostatic control [66]. It assumes that the animal has a prior expectation P(S) of what the

physiological state S should be, which is encoded by a normal distribution with mean equal to

the desired state S�. That model assumes that animals have an estimate of their current bodily

state S (interoception). It proposes that animals avoid states S that are unlikely according to
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the prior distribution with mean S� (thus they minimise their “interoceptive surprise”), and

they wish to find themselves in the states S with high prior probability P(S). Following these

assumptions, we can define the desirability of the state as Y(S) = ln P(S). If we assume for sim-

plicity that P(S) has unit variance and ignore an additive constant, we obtain our definition of

a desirability of a state in Eq (2). In our framework, actions are chosen to minimise the surprise

of ending up in a new physiological state. The closer this state is to the desired state the more

likely it will be and the smaller the surprise. Furthermore, motivation itself could be viewed as

an error in the prediction of the physiological state.

Similar to action selection, animals update the parameters of their internal model (e.g. V,

G, N) during learning in order to be less surprised by the outcome of the chosen action. To

describe this more formally, let us assume that the animal expects the utility to be normally dis-

tributed with mean Û and variance 1 (for simplicity). Furthermore, assume that during learn-

ing the animal minimises the surprise about the observed utility of action U. Therefore, we can

define the negative of this surprise as F = ln P(U). This objective function is equal (ignoring a

constants) to our objective function defined in Eq (9). Thus in summary, similar to the active

inference framework, both action selection and learning could be viewed as processes of mini-

mising prediction errors.

There are many computational models developed for action selection in either very abstract

or more biological relevant ways. One of the leading models in describing how dopamine con-

trols the competition between the Go and Nogo pathways during action selection is the Oppo-

nent Actor Learning (OpAL) model. This model hypothesises that the Go and Nogo neurons

encode the positive and negative consequences of actions respectively [67] and high dopamine

levels excite Go neurons and low levels of dopamine releases the inhibition of Nogo neurons.

Moreover, existing neurocomputational theories describe how experience modifies striatal

plasticity and excitability of the Go and Nogo neurons as a function of reward prediction

errors [13, 48, 49, 67]. In line with action selection models of the basal ganglia we assumed that

the Go neurons encode positive consequences and Nogo neurons encode negative conse-

quences and that dopaminergic activation signal controls the balance between these neurons.

We extended these concepts by combining them with incentive salience theory.

Other models of action selection suggest that the dopaminergic activation signal is associ-

ated with an increase in the vigour of actions [10]. In the study by Niv et al. [10] the same

assumption is held that the utility of the reinforcement is dependent on the deprivational level,

however, they do not provide a mechanism for how these utilities are computed and are there-

fore set them arbitrarily. Moreover, they rely on average reward reinforcement learning tech-

niques which reveal an optimal policy that leads to an average reward rate per time unit.

Following this line of thinking, actions with higher utility (i.e. actions taken in a deprived

state) cause higher response rates as the opportunity cost of time increases. Although our

model does not describe vigour or response times, it could be related to these output statistics

thanks to recent work investigating the relationship between activity of a basal ganglia model

and the parameters of a diffusion model of response times in a two alternative choice task [68].

This study showed that a drift parameter of a diffusion model is related to the difference in the

activation of Go neurons selective for the two options, while the threshold is related to the total

activity of Nogo neurons. In our framework motivation scales linearly with Go neurons for

both options; it enhances the difference in their activity. Based on the data by Dunovan et al.

[68] motivation is expected to increase the drift rate and reduce the threshold leading to faster

responding.

Our framework considers for simplicity that all physiological dimensions (e.g. hunger,

salt level, body temperature) have unique values with a maximum desirability, and the
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desirability is lower for both smaller and higher values along the physiological dimension.

Although this assumption is realistic for some dimensions, it may not be realistic for the

resources animals store outside their bodies. Indeed, according to the classical economic util-

ity theory, humans always wish to have more monetary resources. Although our framework

also assumes diminishing utility of larger reinforcements, it differs from the classical theory

in that the utility is a non-monotonic function of reinforcement. We also assume that all the

resources are directly consumed, which does not allow for the scenario of storing resources.

It would be interesting to extend the presented model to include dimensions without finite

value maximising desirability.

In conclusion, our modelling framework maps learning of incentive salience onto the basal

ganglia circuitry, a circuitry proven to play an important role in action selection. We used key

concepts from both lines of theoretical work to develop a framework that is biologically rele-

vant and describes action selection and learning in a state-dependent manner.

Methods

Simulating state-dependent dopaminergic responses

Here we give details on the simulations of the state dependent dopaminergic response

observed in the study by Cone et al. [26] using the classical reward prediction error and the

state-dependent reward prediction error. Each simulation consisted of a training phase, in

which the expected reinforcements are learned, and a testing phase. Each training phase con-

sisted of 50 trials and one testing trial. The simulations were repeated 5 times (similar to the

number of animals used in the study by Cone et al.).

In simulations shown in Fig 3, the prediction error at the time of reinforcement was taken

as:

d ¼ mr � mV ð25Þ

where

m ¼

1; if TD;

0:2; if balanced;

2; if depleted:

8
>>><

>>>:

Even though temporal difference learning is not dependent on the motivational state and

therefore does not include the parameter m, we were able to use Eq (25) with m = 1 to simulate

it. Payoff to the model was r = 0.5. During the training phases the expected value of the rein-

forcement was updated using: ΔVt = αδ, where α = 0.1. During testing trials, the prediction

error at the time of unconditioned stimulus was computed from Eq (25), while at the time of

conditioned stimulus was taken as mV.

To illustrate that we can also simulate the state-dependent dopaminergic responses with

models grounded in basal ganglia architecture, we also simulated the data by Cone et al. [26]

with the gradient and payoff-cost models (Fig 7). All the parameters were kept the same as

described above, but the state-dependent prediction error used at the time of reinforcement

was computed from Eq (19). For the gradient model we used the plasticity rules described in

Eqs (20) and (21). For the payoff-cost model we used the plasticity rules described in Eqs (22)

and (23). The parameters used in the simulations were α = 0.1, � = 0.8 and λ = 0.01.
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Simulating learning of Go and Nogo weights for different reinforcements

and levels of motivation

Simulations shown in Fig 5 were run to compare the ability of models to learn the required val-

ues of weights as we differed the level of motivation and reinforcement magnitude. Simula-

tions were performed using the state-dependent prediction error (Eq (19)). The gradient

model used the plasticity rules described in Eqs (20) and (21). The payoff-cost model used the

plasticity rules described in Eqs (22) and (23). We considered 4 different levels of motivation:

variable, low, baseline and high. In the variable motivational condition the model randomly

experienced either a low, baseline or high level of motivation, which changed on each trial.

Motivation for the other conditions was fixed, where low was mlow = 0, baseline was mbaseline =

1 and high was mhigh = 2. For each condition there were four possible reinforcement magni-

tudes r 2 [0.2, 1, 2, 3] which were all simulated independently. Each condition was simulated

independently and each simulation consisted of 150 trials and was repeated 100 times. All syn-

aptic weights were initialised at 0.1. The parameters used in the simulations were α = 0.1, � =

0.8 and λ = 0.01. These parameters allow the model to converge to positive and negative conse-

quences at baseline motivational state [42].

Inductive bias allows for faster learning

Simulations in Fig 6 show that the gradient model learns the estimate of the utility faster than

standard Q-learning as it relies on prior assumption about the form of the utility. The gradient

model was simulated using the state-dependent prediction error (Eq (19)) and the plasticity

rules described in Eqs (20) and (21). In our implementation of Q-learning, the range of values

the motivation can take was divided into a number of bins. We considered equal sized bins in

the range between 0 and 2. To evaluate the influence of discretisation we compared two bin

sizes, namely 4 and 10 bins. The model estimated the utility for each bin Qm. The Q-value for

the current motivation bin was updated by: ΔQm = α(U − Qm). In the simulations on each trial

the model received a reinforcement of r = 1 and its utility was computed using Eq (4), which

relied on the current motivation. The learning rate parameter was also varied across simula-

tions and took values α 2 [0.1, 0.3, 0.5].

Influence of physiological state on action selection

In simulations shown in Fig 8, the relevant and irrelevant conditioned stimuli were learned

independently in a training phase. For the relevant cue (CS+, sodium), the motivation was set

to m = 0.2, and for the irrelevant cue (CS-, fructose) the motivation was set to m = 0.1. The

motivation is encoded in the level of the dopaminergic activation signal following Eq (18). The

training phase consisted of 50 trials and was repeated 5 times. The models used the state-

dependent prediction error described in Eq (19), the plasticity rules described in Eqs (20) and

(21) for the gradient model and the plasticity rules described in Eqs (22) and (23) for the pay-

off-cost model. The thalamic activity was computed using Eq (14), and additional Gaussian

noise (μ = 0 and σ = 0.1) was added to allow exploration. Actions were made when the tha-

lamic activity was positive, otherwise no action was made. The model received a reinforcement

of r = 0.5 for each action made and the utility was computed using Eq (13). Once the training

phase was completed, the Go and Nogo values were fixed to the learned values and not allowed

to be (re-)learned during the testing phase. During the testing phase, the motivation for the

depleted state of salt was set to m = 2, for the balanced state to m = 0.2 and for fructose to

m = 0.1 (independent of salt deprivation). Using the different levels of dopaminergic activation

signal Eq (18) for the different conditions, we computed the thalamic activity and added a
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Gaussian noise with μ = 0 and σ = 0.1. Whenever the activity of an action was positive the

action was taken and added to the total number of actions made as depicted in Fig 8.

State-dependent valuation

The simulation shown in Fig 9 was divided into a training and a testing phase. During the

training phase, the models learned the values for the option associated with being sated or

hungry. These values were learned independently, because only one option was available at the

time (forced choice trials). Motivation when sated was set to m = 0.2, and when hungry was

m = 2. The models used the state-dependent prediction error described in (Eq (19)), the plas-

ticity rules described in Eqs (20) and (21) for the gradient model and the plasticity rules

described in Eqs (22) and (23) for the payoff-cost model. Each model learned two Go weights

and two Nogo weights. The thalamic activity was computed using Eq (14), and additional

Gaussian noise (μ = 0 and σ = 0.1) was added to allow exploration. The number of trials during

training phase for each simulated animals was chosen randomly from a normal distribution

with a mean 65 and standard deviation 5.5 trials, giving similar number of trials to those in the

paper by Aw et al. The animals were tested in either the sated condition or the hungry condi-

tion. Motivation for the sated condition, m = 0.2, and for the hunger condition, m = 2, was

used to calculate the corresponding dopamine level using Eq (18). Testing phase consisted of

24 trials during which the individual Go and Nogo weights of option associated with hunger

and the sated condition were used to compute a thalamic activity. The training condition that

generated the highest thalamic activity was chosen. The proportion of actions for the arm asso-

ciated with the hungry option were calculated. The simulations (including training and test-

ing) were repeated 11 times (corresponding to the number of animals in the study of Aw

et al.), and the average proportions are depicted in Fig 9. The parameters used in the simula-

tions were α = 0.1, � = 0.8 and λ = 0.01.

Fig 10 was generated using the same method and parameters as described above for the

training phase, except the number of trials and repetitions was increased so that the simulation

was run for 1000 trials and was repeated 100 times.
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