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Abstract 

Background  During non-rapid eye movement sleep (NREM), alternating periods of synchronised high (ON period) 
and low (OFF period) neuronal activity are associated with high amplitude delta band (0.5–4 Hz) oscillations in neo‑
cortical electrophysiological signals termed slow waves. As this oscillation is dependent crucially on hyperpolarisation 
of cortical cells, there is an interest in understanding how neuronal silencing during OFF periods leads to the genera‑
tion of slow waves and whether this relationship changes between cortical layers. A formal, widely adopted definition 
of OFF periods is absent, complicating their detection. Here, we grouped segments of high frequency neural activity 
containing spikes, recorded as multiunit activity from the neocortex of freely behaving mice, on the basis of ampli‑
tude and asked whether the population of low amplitude (LA) segments displayed the expected characteristics of 
OFF periods.

Results  Average LA segment length was comparable to previous reports for OFF periods but varied considerably, 
from as short as 8 ms to > 1 s. LA segments were longer and occurred more frequently in NREM but shorter LA seg‑
ments also occurred in half of rapid eye movement sleep (REM) epochs and occasionally during wakefulness. LA 
segments in all states were associated with a local field potential (LFP) slow wave that increased in amplitude with 
LA segment duration. We found that LA segments > 50 ms displayed a homeostatic rebound in incidence following 
sleep deprivation whereas short LA segments (< 50 ms) did not. The temporal organisation of LA segments was more 
coherent between channels located at a similar cortical depth.

Conclusion  We corroborate previous studies showing neural activity signals contain uniquely identifiable periods of 
low amplitude with distinct characteristics from the surrounding signal known as OFF periods and attribute the new 
characteristics of vigilance-state-dependent duration and duration-dependent homeostatic response to this phe‑
nomenon. This suggests that ON/OFF periods are currently underdefined and that their appearance is less binary than 
previously considered, instead representing a continuum.
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Introduction
Slow waves, high amplitude oscillations  in the delta fre-
quency range (0.5–4 Hz) observed in electrophysiological 
signals are a characteristic of non-rapid eye movement 
sleep (NREM). A role of slow waves has been suggested 
in processes that are dependent on NREM sleep time, 
such as immune function and restoration of cognitive 
function [1]. Slow wave activity (SWA, spectral power 
in the delta frequency range) is a reliable index of sleep 
homeostasis [2] and local SWA homeostasis is correlated 
with improved motor learning task performance follow-
ing sleep [3]. To help clarify the proposed involvement 
of slow waves in restorative processes and memory func-
tion, and to understand whether they are causally linked 
to these functions or rather simply a measurable out-
put of an underlying process, it is vitally important that 
methods are developed which improve our understand-
ing of the neurophysiology of slow waves.

Early studies, pioneered by Steriade et  al. [4], showed 
that cortical slow waves during sleep depend on the syn-
chronous hyperpolarization of cortical cells. The result-
ing periods of reduced neuronal activity, often referred 
to as OFF periods, are associated with depth positive/
surface negative potentials in electrophysiological signals 
and alternate with periods of enhanced neuronal activ-
ity referred to as ON periods which are associated with 
depth negative/surface positive potentials [5]. Each slow 
wave cycle therefore corresponds to a single ON/OFF 
period alternation. It has been hypothesised that some 
of the functions ascribed to NREM sleep are in fact the 
result of neuronal inactivity during OFF periods [6]. For 
example, increases in neuronal activity resulting from 
sensory and optogenetic stimulation cause DNA double-
strand breaks in neurons of mice [7]. These are repaired 
more rapidly during sleep than wakefulness, suggesting 
neuronal inactivity in NREM OFF periods may provide 
an opportunity for housekeeping functions such as repair 
of minor cellular damage [6, 9].

If it is indeed the dynamics of the synchronised neu-
ronal activity that we are primarily interested in under-
standing, ON/OFF periods in local neuronal networks 
may provide a more direct measure of this behaviour 
than the slow waves it gives rise to. Despite this, far 
more attention has been given to detecting slow waves 
than ON/OFF periods. Slow wave detection methods 
have been developed based on amplitude and dura-
tion thresholds [10, 11], spectral frequency [12, 13] and 
using a neural network approach [14]. Whilst the num-
ber and quality of events detected as slow waves vary 
with method and implementation [15], these can at least 
be validated against a ‘gold standard’ manual scoring by 
experienced observers using tried and test criteria. Auto-
mated slow wave detection facilitates rapid processing 

of large data sets. Additionally, such methods have ena-
bled the development of real time slow wave modulation, 
the therapeutic applications of which are currently being 
explored [16, 17].

Similarly, a range of methods have been devised to 
solve the problem of detecting ON/OFF period transi-
tions. The simplest method is to apply amplitude and 
duration thresholds to spike trains: binary traces of 
high amplitude deflections (spikes) in single or multiu-
nit activity signals [5, 18–21]. Though widely used both 
for offline and online detection of ON/OFF periods, this 
method is sensitive to the threshold used to define spikes 
which is often set using visual inspection and binariza-
tion results in the loss of a large amount of data. More 
sophisticated methods for detecting ON/OFF periods in 
continuous neuronal activity signals can broadly be clas-
sified as ‘threshold-crossing’ or ‘predictive’ algorithms. 
‘Threshold-crossing’ algorithms work by processing the 
data until a bimodal distribution is obtained upon which 
a threshold is applied to separate data between ON and 
OFF periods [13, 22, 23]. ‘Predictive’ algorithms assume 
bimodality and assign data to one of either state based 
on the probability of a predictive model fitted to the data 
[24–26].

A common trend observed in the design of these detec-
tion algorithms is that they are built and tested upon a 
subset of data displaying clear slow waves [13] or ON/
OFF oscillations [26] or acquired from anaesthetised ani-
mals where slow wave activity is generally more regular 
than during sleep [13, 22, 23, 25, 26]. Whilst it is likely 
that these methods will generalise to the case of sleep 
recordings, there may be advantages to designing a detec-
tion method on ‘noisy’ data characteristic of in vivo free-
moving sleep recordings and that can be applied to the 
entire duration of chronic recordings used to study sleep 
behaviour. Another trend is to judge the performance of a 
detection method by comparing the output when applied 
to different signals recording the same neural activity 
(e.g. intra- vs extra- cellular, [13]) or with the output of 
other methods [25, 26]. As no method can yet be called 
the ‘gold standard’, this makes it challenging to judge the 
relative merit of methods and to assess the effect of opti-
misation steps within the pipeline (e.g. to remove short 
duration state transitions/interruptions).

An alternative design approach is to detect OFF peri-
ods that match the established characteristics of slow 
waves during spontaneous sleep and then infer ON 
periods retrospectively. OFF periods should occur pre-
dominantly, but not exclusively, in NREM sleep. SWA 
is highest and neuronal firing rate lowest in NREM 
sleep compared to wakefulness and rapid eye move-
ment sleep (REM), which suggests that OFF periods 
are more likely to occur in this state [5]. However, slow 
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waves are known to occur regularly during REM sleep 
[27] and occasionally during both inactive and active 
wakefulness [28–30]. By definition, OFF periods should 
be consistently associated with depth positive/sur-
face negative deflections in the electroencephalogram 
(EEG) corresponding to the initiation of slow waves 
[5], and their duration should be positively correlated 
with slow wave amplitude [5]. Changes in the recruit-
ment and decruitment of cortical neurons to ON/OFF 
periods respectively are associated with homeostatic 
dynamics and infraslow fluctuations of SWA, which 
may be a mechanism for synchronising neuronal activ-
ity across the cortex [5, 31]. Synchronization of OFF 
periods between brain regions should therefore be vari-
able with widespread (global) OFF periods reflecting 
high decruitment of neurons and localised OFF peri-
ods reflecting low decruitment of neurons [32]. Finally, 
OFF periods should respond to changes in sleep pres-
sure and circadian drive as a result of their homeostatic 
regulation [2].

The aim of this study was to determine if low activity 
is sufficient as a criterion to detect OFF periods in neu-
ronal signals from freely behaving mice. To achieve this 
we designed a simple ‘threshold-crossing’ algorithm to 
identify a population of low amplitude (LA) segments 
in multiunit activity (MUA) recordings from freely 
behaving mice informed by the distribution of spiking 
amplitudes during NREM sleep and assessed whether 
these segments recapitulated the characteristics of OFF 
periods expected from the latter’s association with slow 
waves.

Results
Temporal features and state dependency
LA segments were detected in all vigilance states in 
different cortical layers (Fig.  1). To characterise the 
temporal features of LA segments and compare their 
properties across vigilance states, we detected LA seg-
ments in MUA recordings from a representative layer 
5 channel of motor cortex on the baseline (BL) day. We 
first looked at whether LA segments are more com-
mon in NREM sleep than other vigilance states. The 
majority of LA segments were detected in NREM sleep 
(72547.00 ± 9164.22, 91.70 ± 1.44%) and REM sleep 
(5675.43 ± 1405.64, 7.11 ± 1.46%) with a small propor-
tion detected in WAKE (1130.29 ± 437.50, 1.20 ± 0.34%) 
(Fig.  2A). LA segment onset in all states is associated 
with a characteristic sharp drop in MUA amplitude 
(Fig.  2A). There was a significant effect of state on LA 
segment incidence (Fig. 2B, one-way repeated measures 
ANOVA, F(2,12) = 68.92, p < 0.05) with LA segments 
occurring most frequently in NREM sleep and least fre-
quently in WAKE. There was also a significant effect of 
state on the proportion of 4-s epochs containing at least 
one LA segment (Fig.  2C, one-way repeated measures 
ANOVA, F(1.02,6.11) = 286.79, p < 0.05) with the vast 
majority of NREM epochs (97.37 ± 0.56%), the occasional 
WAKE epoch (3.20 ± 0.87%) and over half of REM epochs 
(61.19 ± 5.35%) containing an LA segment. These find-
ings show that LA segments are preferentially, but not 
exclusively, associated with NREM sleep as has previ-
ously been reported for OFF periods [5, 27–30]. We then 
looked at the duration of LA segments to see how this 

Fig. 1  LA segments detected in all vigilance states. (top panel) 24-h hypnogram of vigilance states in a freely behaving mouse on a baseline 
recording day. Black = NREM sleep, green = REM sleep, blue = wakefulness. (bottom panels) Extracts of multiunit activity (MUA, vertical blue bars) 
and local field potential (LFP, horizontal orange line) from each vigilance state in four adjacent channels along a laminar probe implanted in motor 
cortex. Detected LA segments denoted in red. The top two channels are located in layer 3 whilst the bottom two channels are located in layer 5



Page 4 of 15Harding et al. BMC Neuroscience           (2023) 24:13 

compared with previously reported OFF period descrip-
tions. LA segment durations ranged from 8 ms to greater 
than 1  s but on average lasted 116.26 ± 2.16  ms. This is 
slightly shorter than a previous description of OFF peri-
ods in mice of a comparable age (134 ms, [18]), however 
this was not unexpected considering the comparison is 
with a detection method targeting the long duration OFF 
periods. Thus, this finding does not preclude the possibil-
ity that LA segments are OFF periods. The distribution 
of LA segments was strongly positively skewed during 
all states (1.54 ± 0.18, Fig.  2D). The distributions were 
leptokurtic for WAKE (kurtosis = 5.16) and REM (3.68) 
LA segments, such that long LA segments occurred 
more frequently than in a standard Gaussian distribu-
tion, but there was no excess kurtosis in the NREM 
sleep distribution (3.00). LA segments were longer in 
NREM sleep (116.89 ± 6.11  ms) than either REM sleep 
(102.46 ± 6.06  ms) or WAKE (99.18 ± 4.77  ms) states in 
which LA segment durations were similar (Fig. 2E, one-
way repeated measures ANOVA, F(2,12) = 34.48, p < 0.05) 
though the absolute difference was small (ca. 15  ms). 

Whilst the relative duration of OFF periods in different 
states has not been reported, this does mirror the find-
ing that REM sleep slow waves are described as smaller 
than those occurring in NREM sleep in reference to their 
lower amplitude, which is correlated with OFF period 
duration [5, 27].

Association with LFP
Evidence suggests that OFF periods coincide with local 
field potential (LFP) slow waves [4, 5]. If LA segments 
represent OFF periods, we would expect a similar asso-
ciation. We first extracted a 400  ms window of LFP for 
each LA segment in a representative layer 5 channel dur-
ing baseline sleep from onset -100 ms to onset + 300 ms 
and calculated the average LFP signal during LA seg-
ments during each vigilance state (Fig. 3A). In each state, 
LA segments were associated with a positive deflection 
of the LFP which coincides with segment onset. This 
deflection lasts around 150  ms, which if considered a 
half wave suggests a frequency of ~ 3  Hz, within the 
delta frequency range. This deflection was bounded by 

Fig. 2  Temporal features of LA segments. A Global distribution of LA segments between vigilance states across study with examples of MUA 
amplitude during LA segments displayed for each state. Each figure shows 400 randomly selected LA segments sorted by duration. Segment time 
range = onset -100 ms to onset + 300 ms. Colour of each segment scaled to MUA amplitude (dark = low, colour = high). B The effect of vigilance 
state on the incidence of LA segments. Incidence values reported as number per minute of vigilance state. C The effect of vigilance state on 
the proportion of 4-s epochs containing an LA segment. D Frequency of LA segments as a function of duration for each vigilance state. Inset 
y-axis scaled to increase resolution of REM and WAKE states. E The effect of vigilance state on the duration of LA segments. Black/grey = NREM, 
green = REM, blue = WAKE. N = 7. Mean ± SEM. Significance of effects assessed using one-way repeated measures ANOVA followed by post-hoc 
pairwise t-tests with Bonferroni correction (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001)
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slight negative deflections. These features are consist-
ent with LA segments being time locked to LFP slow 
waves. To confirm this, we performed a phase analysis 
to determine the preferred phase of LA segment onset 
and end in the delta frequency range of the LFP (Fig. 3B, 
C). LA segment onset preferentially occurred at ~ 310° 
(NREM: 306.26 ± 1.49°, REM: 315.31 ± 1.60°, WAKE: 
316.84 ± 1.52°), coinciding with the rising limb of delta 
oscillations. LA segment end preferentially occurred 
at ~ 50° (NREM: 53.50 ± 0.97°, REM: 50.60 ± 1.24°, 
WAKE: 42.17 ± 1.43°), coinciding with the falling limb of 
delta oscillations. In all states, onset and end phase distri-
butions were significantly different (NREM: Watson-Wil-
liams, F(1,12) = 487.39, p < 0.05, REM: Watson-Williams, 
F(1,12) = 286.79, p < 0.05, WAKE: Watson-Williams, 
F(1,12) = 238.83, p < 0.05).

Finally, we looked at how time locked peak LFP 
amplitude changed with vigilance state or LA segment 

duration. We found a significant effect of vigilance state 
on peak LFP amplitude (F(2,12) = 3.97, p = 0.047) how-
ever post-hoc pairwise t-tests did not reveal a significant 
difference in mean LFP amplitude between any states 
(Fig.  3D). This suggests that LA segments in all states 
were associated with similar amplitude slow waves. It has 
been reported that slow wave amplitude increases as a 
function of OFF period duration [32]. In agreement with 
this, we found that LA segment duration was positively 
correlated with peak LFP amplitude (Fig.  3E, r = 0.52, 
p < 0.05).

Homeostatic regulation
The build up and subsequent release of sleep pressure 
resulting from homeostatic regulation has two expected 
outcomes on slow waves and presumably OFF peri-
ods: slow wave activity should decrease over the course 
of the inactive period and slow wave activity should be 

Fig. 3  MUA LA segments associated with slow-wave activity in LFP. A Layer 5 LFP corresponding with LA segments in each vigilance state. 
Composite image of LFP traces converted to heatmap (higher colour saturation = higher density) overlaid with mean ± SEM. Segment time 
range = onset -100 ms to onset + 300 ms. B Global distributions of the LFP (2–6 Hz) phase corresponding to LA segment ONSET (bottom) and END 
(top) in each vigilance state. Example of a sinusoid wave overlaid for visualization purposes only. C Distribution of preferred LFP (2–6 Hz) phase 
corresponding to LA segment ONSET and END in each vigilance state (proportion) with mean resultant vector. D Effect of state on peak amplitude 
in LFP corresponding to LA segments. E Relationship between LA segment duration and peak amplitude of corresponding LFP. Least-squares 
regression line and significant Pearson correlation coefficient shown. Black/grey = NREM, green = REM, blue = WAKE. N = 7. Mean ± SEM. Significance 
of effects assessed using one-way repeated measures ANOVA followed by post-hoc pairwise t-tests with Bonferroni correction (*P < 0.05; **P < 0.01; 
***P < 0.001; ****P < 0.0001)
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higher during sleep after sleep deprivation [2]. To assess 
whether these features apply to LA segments, we ana-
lysed 6 h of spontaneous activity during the second half 
of the light phase (ZT6–ZT12) prior to which animals 
were undisturbed (baseline spontaneous activity, BL) or 
were kept awake by providing novel objects to explore 
(sleep deprivation, SD) for 6  h between ZT0–ZT6 on 
consecutive days. As in the previous sections, a single 
layer 5 channel was used to represent each animal. There 

was a significant effect of prior sleep–wake history on 
occupancy time (Fig.  4A, two-way repeated measures 
ANOVA, F(1,5) = 27.60, p < 0.05) and duration (Fig.  4B, 
two-way repeated measures ANOVA, F(1,4) = 48.14, 
p < 0.05) of LA segments with post-hoc pairwise t-tests 
confirming a significant increase in the both metrics 
between ZT6-ZT8.5 after SD. There was a significant 
effect of zeitgeber time on occupancy time (Fig.  4A, 
two-way repeated measures ANOVA, F(11,55) = 11.80, 

Fig. 4  LA segments are homeostatically regulated. A Relationship between LA segment occupancy and time during NREM sleep between ZT6 and 
ZT12 on baseline (BL) and sleep deprivation (SD) days (30 min bins). Occupancy values reported as seconds of LA segments per minute of NREM. B 
Change in LA segment duration during NREM sleep between ZT6 and ZT12 on BL and SD days (30 min bins). C Relationship between LA segment 
duration and the change in LA segment incidence between BL and SD days during the 1st hour after sleep deprivation. A change > 0 describes an 
increase in incidence with the sleep deprivation treatment. D Relationship between LA segment incidence and time during NREM sleep between 
ZT6 and ZT12 on the sleep deprivation day as a function of LA segment duration. Circles denote mean incidence and lines show least-square 
regression for each duration category. N = 7i. Mean ± SEM. Significance of effects assessed using two-way repeated measures ANOVA followed 
by post-hoc pairwise t-tests with Bonferroni correction (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001). Only significant Pearson correlation 
coefficients shown. i One animal lacked LA segments < 50 ms for at least one time bin so was not included in the analysis for this group of segments 
in D
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p < 0.05) and duration (Fig. 4B, two-way repeated meas-
ures ANOVA, F(11,44) = 7.04, p < 0.05) of LA segments 
with both metrics decreasing as a function of time. 
Finally, there was a significant interaction between prior 
sleep–wake history and zeitgeber time on occupancy 
time (Fig.  4A, two-way repeated measures ANOVA, 
F(11,55) = 3.73, p < 0.05) and duration (Fig.  4B, two-way 
repeated measures ANOVA, F(1,44) = 6.85, p < 0.05). To 
understand this further we performed post-hoc linear 
regressions for each condition separately. The regression 
of zeitgeber time against LA segment occupancy time was 
significant for the SD condition (linear regression model, 
F(1,82) = 71.756, p < 0.05) but not for the BL condition 
(linear regression model, F(1,81) = 3.74, p > 0.05). Simi-
larly the regression of zeitgeber time against LA segment 
duration was significant for the SD condition (regression 
model, F(1,82) = 23.91, p < 0.05) but not for the BL condi-
tion (linear regression model, F(1,80) = 2.54, p > 0.05). To 
establish whether the absence of a homeostatic decrease 
in LA segment metrics for the BL condition was simply 
due to the animals having already paid the majority of 
their sleep debt by ZT6, we repeated regression analysis 
on data from the entire light period (ZT0-12) and indeed 
found significant regressions of zeitgeber time against LA 
segment occupancy (Additional file 1: Figure S1A, linear 
regression model, F(1165) = 14.28, p < 0.05) and duration 
(Additional file  1: Figure S1B, linear regression model, 
F(1164) = 10.97, p < 0.05).

OFF periods are usually portrayed as an all or none 
phenomenon. Thus OFF period duration would not be 
expected to have a significant effect on a feature such as 
homeostatic regulation. To assess whether this is true for 
LA segments, we binned segments in 5 groups based on 
duration and looked at incidence as a marker of homeo-
static regulation. We found that there was a significant 
increase in LA segment incidence during the first hour 
after sleep deprivation as compared to spontaneous 
activity for segments of 100-150 ms (Fig. 4C, Bonferroni 
adjusted paired T-test, t(6) = − 2.81, p < 0.05), 150-200 ms 
(Fig. 4C, Bonferroni adjusted paired T-test, t(6) = − 6.67, 
p < 0.05), 200-250 ms (Fig. 4C, Bonferroni adjusted paired 
T-test, t(6) = − 8.06, p < 0.05) and 250 + ms (Fig. 4C, Bon-
ferroni adjusted paired T-test, t(6) = −  6.69, p < 0.05) 
in duration. There was no significant change in inci-
dence for LA segments < 50  ms or 50-100  ms in dura-
tion, though incidence of 50–100 ms LA segments varied 
considerably between subjects with 5/7 animals showing 
an increase of > 5 segments per minute following sleep 
deprivation. Furthermore, whilst the incidence of LA 
segments > 50  ms in duration was negatively correlated 
with time (Fig. 4D) in the 6 h following sleep deprivation, 
there was no correlation for segments < 50 ms. We noted 
that the magnitude of relative decrease in incidence over 

time appeared to increase with LA segment duration 
(Fig. 4D). To confirm this, we fit a linear regression model 
to the distribution of relative LA segment incidence to 
zeitgeber time for each LA segment duration category. 
Except for segments < 50  ms in duration, the regression 
of zeitgeber time against LA segment incidence was sig-
nificant across all time bins (see Additional file 1: Figure 
S2). Furthermore, the estimate for the predictor vari-
able (i.e. zeitgeber time) became increasingly negative 
with increasing LA segment duration (β = −  3.11 (50–
100  ms) < −  3.99 (100–150  ms) < −  7.33 (150–200  ms), 
− 13.41 (200–250 ms) < − 19.75 (250 + ms)). Overall, the 
homeostatic response of LA segments does appear to 
depend on their duration, contrary to the expectation of 
OFF periods being an all or none phenomenon.

Interchannel coherence
OFF periods are both a global and a local phenomenon. 
To investigate whether this was also true of our LA seg-
ments, we determined the temporal coherence between 
channels separated by different distances along the lami-
nar probe (i.e. different depths within motor cortex) and 
compared coherence at different interchannel distances 
(Fig.  5A, Additional file  1: Figures  S3, S4). Coherence 
was calculated between all LA segments detected on the 
baseline day. Coherence was generally highest along the 
diagonal, that is, between adjacent channels. Although 
only channels with neural activity (i.e. spikes) as deter-
mined by visual inspection were retained, OFF periods 
in superficial channels were not always coherent with 
other channels (Fig.  5A, Ch1). Thus whilst our method 
still detects OFF periods, reliability may be lower for 
superficial channels. To determine whether any coher-
ence found was greater than chance, we generated sur-
rogate channels by randomly shuffling LA and non-LA 
segments from the original channels (see Methods). To 
avoid vigilance state-dependent effects we only used data 
from NREM sleep for coherence analysis and shuffling. 
There was a significant effect of channel type (Fig.  5B, 
two-way repeated measures ANOVA, F(1,6) = 109.51, 
p < 0.05), which suggests the LA segments in original 
channels, which have a higher mean coherence across all 
interchannel distances, are more synchronous than LA 
segments in surrogate channels. This finding highlights 
the generalised synchronicity of OFF periods across lam-
inar layers. Furthermore, there were significant effects of 
interchannel distance (Fig.  5B, two-way repeated meas-
ures ANOVA, F(9,54) = 26.75, p < 0.05) and interchannel 
distance * type interaction (Fig.  5B, two-way repeated 
measures ANOVA, F(9,54) = 31.01, p < 0.05). We used 
Pearson correlation to interrogate the interaction term 
further and found that coherence was negatively cor-
related with original interchannel distance (Fig.  5B, 
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r = −  0.49, p < 0.05) but was not correlated with surro-
gate interchannel distance. This suggests that in terms of 
LA segment incidence, neighbouring channels are more 
synchronous than distant channels for original chan-
nels but not for surrogate channels where channel pairs 
are equally synchronous across the range of interchannel 
distances. This is consistent with global neocortical OFF 
periods displaying subtle layer dependent effects (i.e. 
localised dynamics).

Discussion
Previous attempts to identify OFF periods in high fre-
quency neural activity have used methods of varying 
complexity and levels of processing to fit their results to 
co-occur with slow waves. Here we show that a popula-
tion of low amplitude segments can be extracted from 
high frequency neural activity without prior knowledge 
of concomitant LFP activity which fit the expected char-
acteristics of OFF periods.

LA segments present as brief reductions in MUA 
amplitude, primarily during NREM sleep but also 
appear in REM sleep and WAKE. LA segments usually 
last approximately 100  ms but duration is variable with 
many segments upwards of 1  s occurring. LA segments 
are associated with a positive deflection in deep neocor-
tical LFP (layer 5) characteristic of slow wave initiation. 
Furthermore, LA segment onset and end times are phase 
locked to the LFP in the delta range where slow waves 

occur. The duration and total occupancy time per min-
ute of NREM sleep of LA segments decreases throughout 
the inactive period of mice during spontaneous activity 
(Additional file 1: Figure S1) and after sleep deprivation 
(Fig. 4) whilst the absolute magnitude of both metrics is 
increased by sleep deprivation, consistent with expecta-
tions of a phenomenon regulated by sleep homeostasis 
[33]. Finally, LA segments are temporally synchronised 
across neocortical laminar layers at both a global and 
local scale. Together, these findings strongly suggest that 
LA segments represent OFF periods.

This finding is important for two key reasons. First, we 
extend the work of previous studies showing that OFF 
periods can be detected based on high frequency neural 
activity amplitude alone without reference to slow waves 
(e.g. [23]) by applying this methodology to recordings 
from freely behaving mice and by showing that it can be 
leveraged to detect OFF periods in all vigilance states. 
This permits detection of OFF periods in cases where the 
LFP is uninformative and opens up the possibility of stud-
ying LFP slow waves and MUA OFF periods as separate 
measures of the phenomenon of synchronised neuronal 
silencing events, each providing unique information at 
different scales of integration across brain regions. The 
MUA-based local assessment of OFF periods will be of 
particular importance for advancing the understanding 
of layer-specific dynamics in neocortex because LFP sig-
nals are influenced by volume conductance from adjacent 

Fig. 5  LA segments have both local and global dynamics. A Example temporal coherence matrix between 12 channels arranged by depth for 
one animal (green = low coherence, yellow = high coherence). Temporal coherence reported as the average proportion of time spent in the low 
amplitude state during which both channels are synchronously in a low amplitude state (see Methods). B Relationship between the temporal 
coherence of LA segments in pairs of channels and the distance between those channels along the laminar probe for both original and surrogate 
channels. N = 7. Mean ± SEM. Least-squares regression lines and significant Pearson correlation coefficients shown. There were insufficient data 
points to include the maximum interchannel distance (11)
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layers and neighbouring brain regions. Second, we pro-
vide a simple method for detecting OFF periods that can 
be implemented as part of an easily accessible toolbox. 
This will allow for greater accessibility of OFF period 
analyses in electrophysiological sleep research and will 
help foster the growing interest in ‘local sleep’ effects in 
behavioural neuroscience.

Homeostatic regulation of LA segments depends 
on segment duration
Unexpectedly, we found that the duration of LA seg-
ments had an effect on their homeostatic response. LA 
segments < 100 ms in duration showed a different home-
ostatic response to segments > 100  ms in duration. LA 
segments of 50–100 ms occurred more frequently imme-
diately following sleep deprivation than after a few hours 
of recovery sleep, consistent with homeostatic regulation. 
However, they showed no increase in incidence after 
sleep deprivation compared with the same subjective 
hour on a day without prior sleep deprivation. LA seg-
ments < 50  ms showed neither a homeostatic decrease 
in incidence after sleep nor an increase after sleep dep-
rivation. Most importantly, longer segments showed a 
steeper decrease in incidence following sleep deprivation 
than shorter segments, evidence of a greater response to 
a build-up of sleep pressure.

One explanation of these results is that short LA seg-
ments do not represent OFF periods as they are classi-
cally described. This may best explain the absence of a 
clear homeostatic response in the shortest LA segments 
(< 50  ms). Therefore, we suggest that these short LA seg-
ments are not consistent with current descriptions of 
OFF periods and that, as others have done previously 
[24], a minimum duration of 50 ms should be introduced 
to remove brief decreases in MUA amplitude that do not 
behave in a similar way to longer decreases commonly 
identified as OFF periods. However, this explanation does 
not account for the mixed results for 50–100 ms LA seg-
ments and the graded intra-day homeostatic response of 
LA segments by duration. Two hypotheses would explain 
this result. First, the proportion of LA segments that rep-
resent functionally relevant OFF periods as opposed to 
transient decreases in MUA amplitude may increase with 
OFF period duration. As such, the longest LA segments 
may show the strongest homeostatic response as the effect 
is less diluted by non-homeostatically regulated noise. Sec-
ond, our findings are evidence that OFF periods and their 
associated dynamics lie on a continuum depending on the 
strength of neuronal recruitment and therefore duration. 
Greater recruitment leads to longer OFF periods which 
display a stronger homeostatic response to sleep pres-
sure, either spontaneously generated or via sleep depriva-
tion. We recognise that both hypotheses may fit the data, 

however we suggest that the latter may be more likely con-
sidering the abundant evidence of other OFF period-like 
behaviour for LA segments.

LA segment characteristics show state dependency
As part of our validation of LA segments as OFF periods, 
we chose to differentiate between LA segments occurring 
in different vigilance states. As expected, LA segments 
occurred most frequently in NREM sleep but also occurred 
in the majority of REM sleep epochs and occasionally dur-
ing wakefulness. Furthermore, LA segments had a similar 
LFP profile independent of vigilance states suggesting all 
were associated with slow waves. Less expected was the 
finding that LA segments during NREM sleep were longer 
than LA segments in REM sleep and wakefulness. This 
could suggest that OFF periods during wakefulness and 
REM sleep do not achieve the same recruitment of neurons 
to the OFF state than in NREM sleep. Wakefulness and 
REM OFF periods may be more localised as wakefulness 
and REM sleep are more ‘active’ states and as such the neu-
romodulatory milieu disrupts the formation of synchro-
nous activity.

Conclusion
We provide strong evidence that OFF periods can be 
detected by clustering together cortical multiunit activ-
ity segments of similarly low amplitude of extracellularly 
recorded neuronal spiking. These low amplitude segments 
show many characteristics expected of OFF periods, 
including NREM predominance, a strong association with 
LFP slow waves, sleep homeostasis and temporal coher-
ence across cortical layers. Furthermore, we find that the 
incidence of longer LA segments respond more strongly 
to sleep pressure than short LA segments and that LA seg-
ments are longer in NREM sleep than REM sleep or wake-
fulness. These vigilance-state- and duration-dependent 
effects were not previously described for OFF periods but 
these findings may represent additional OFF period fea-
tures that have either been overlooked or are only revealed 
with multiunit activity amplitude-only detection methods.

Methods
All experiments were carried out in accordance with the 
UK Animals (Scientific Procedures) Act of 1986 and in 
compliance with the Animal Research: Reporting In Vivo 
Experiments (ARRIVE) guidelines.

Surgery and electrode implantation
Adult male wild type C57BL/6 mice (n = 7, internally 
sourced from Biomedical Services at the University of 
Oxford, 125 ± 8 d old at baseline recording) underwent 
cranial surgery to record electroencephalography (EEG), 
electromyography (EMG), local field potential (LFP) and 
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multiunit activity (MUA) as previously described [18]. 
Briefly, under ~ 2–3% isoflurane anaesthesia and asep-
tic conditions, stainless steel screws were implanted 
epidurally over frontal and occipital cortical areas and 
referenced to a third screw implanted over the cerebel-
lum. Stainless steel wires were implanted into the nuchal 
muscle to record EMG. A 16-channel laminar probe 
(NeuroNexus Technologies Inc., Ann Arbor, MI, USA; 
model: A1 × 16–3  mm-100-703-Z16) was implanted in 
left primary motor cortex (AP + 1.1 mm; ML − 1.75 mm; 
rotated 15° in the AP axis towards the side of the implant) 
to perform intracortical recordings (LFP and MUA as 
described in [19]). The entire 3 mm length was inserted 
gradually into the tissue under both stereotactic and 
microscopic control until the most superficial electrode 
was approximately 50  µm under the cortical surface. 
The implantation site was then sealed with the silicone 
elastomer Kwik-Sil® (World Precision Instruments Inc., 
Sarasota, FL, USA) and the probe was referenced to the 
cerebellar skull screw. Depth and cortical layer of chan-
nels were subsequently determined by histology assess-
ment (for histological methodology see [19]). Briefly, the 
position of the laminar implant was determined using a 
DiL (Thermo Fisher Scientific) fluorescence membrane 
stain and the depth of the laminar implant was assessed 
by measuring the distance between the cortical surface 
and tissue microlesions generated by applying 10 mA of 
direct current for 25  s to each respective channel using 
a NanoZ device (White Matter LLC). Each animal was 
also implanted with a bipolar concentric electrode (Plas-
ticsOne Inc., Roanoke, VA, USA) in the right primary 
motor cortex, anterior to the frontal EEG screw in rela-
tion to a separate study (as described in [20]). Screw 
electrodes were attached to an 8-pin surface mount con-
nector (8415-SM, Pinnacle Technology Inc, KS) whilst 
the laminar probe was attached to a ZIF-Clip® 16 chan-
nel headstage (Tucker-Davis Technologies Inc., Alachua, 
FL, USA) and both affixed to the skull with dental cement 
(Associated Dental Products Ltd, Swindon, UK).

Electrophysiological signal acquisition
All signals were first passed to  a PZ-5 pre-amplifier 
(Tucker-Davis Technologies Inc., Alachua, FL, USA). 
A 128-channel RZ-2 Neurophysiological Recording 
System (Tucker-Davis Technologies Inc., Alachua, FL, 
USA) was then used to acquire tethered electrophysio-
logical recordings. EEG and EMG signals were continu-
ously sampled at 305 Hz and bandpass filtered between 
0.1–100  Hz. Signals were then downsampled offline to 
256  Hz via spline interpolation. Laminar probe chan-
nel signals were sampled at 25  kHz. Two signals were 
extracted from the laminar probe channels: decimated 
multiunit activity (MUA) and local field potential (LFP). 

Multiunit activity is the high frequency component of 
neural activity that contains the spiking of multiple neu-
rons within the vicinity of an electrode. Decimation is 
a process for downsampling the MUA whilst retaining 
spiking activity by storing only the highest amplitude 
value, either negative or positive, recorded during a set 
time period. This means that if multiple neurons spike 
during that period, only the largest is stored, thus the 
majority of spikes in the decimated signal will originate 
from nearby neurons. The resulting signal will therefore 
have a high amplitude when nearby neurons are spik-
ing and a low amplitude during periods of quiescence 
or when distant neurons are spiking. MUA was gener-
ated by bandpass filtering the laminar signals between 
300 Hz and 5 kHz then decimating to 498 Hz by split-
ting the signal into segments of ~ 50 samples and stor-
ing the maximum/minimum amplitude of alternating 
segments as integers. LFP was generated by zero-phase 
distortion bandpass filtering the laminar signal between 
0.1 and 100 Hz and downsampling to 256 Hz via spline 
interpolation. All offline manipulations and analyses 
were performed using MATLAB (version R2020a; The 
MathWorks Inc, Natick, MA, USA). Prior to vigilance 
state scoring, signals were transformed into European 
Data Format as previously reported (see [30]).

Experimental design and recording procedure
For sleep recordings, animals were individually housed 
in sound-attenuated and light-controlled Faraday cham-
ber cages (Campden Instruments, Loughborough, UK) 
with ad  libitum food and water. A 12:12  h light/dark 
cycle (lights on at 9 am = ZT0, light levels 120–180  lx) 
was implemented, temperature maintained at around 
22 ± 2  °C, and humidity kept around 50 ± 20%. Animal 
were given at least three days post-surgery to acclima-
tize before two recording days starting at ZT0: a baseline 
day with spontaneous sleep permitted and a sleep dep-
rivation day. On the sleep deprivation day, animals were 
prevented from sleeping from ZT0-ZT6 through gentle 
handling and the presentation of novel objects to encour-
age naturalistic exploration behaviour [34]. Each animal 
served as its own control for the effect of sleep depriva-
tion and therefore the experimental unit in this study is 
an animal per recording day (n = 7).

Vigilance state scoring and channel selection
EEG, LFP and EMG signals were used to score vigilance 
states in the Sleep Sign for Animals scoring environ-
ment (version 3.3.6.1602, SleepSign Kissei Comtec Co., 
Ltd., Nagano, Japan). Four second epochs were scored 
as WAKE, NREM or REM. Epochs with high frequency 
EEG and high amplitude EMG activity were scored as 
WAKE, epochs with a low frequency EEG characterised 
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by delta band (0.5–4 Hz) slow waves and sigma band (11–
15 Hz) spindles and a quiet EMG were scored as NREM 
sleep. Epochs with a wake-like EEG dominated by theta 
band activity and a quiet EMG were scored as REM sleep. 
Epochs with recording artefacts related to movement 
or electrostatic noise were rejected from further analy-
ses in all channels (5.06 ± 0.19% of total recording time). 
Only vigilance states lasting ≥ 3 epochs were retained for 
further analysis to ensure clear differentiation of states. 
Channels with low MUA amplitude variation (i.e. with-
out spiking activity) were rejected by visual inspection 
as were channels located in the corpus callosum (33/112 
channels). For the purpose of inter-animal comparisons, 
each animal was represented by a single layer 5 channel.

Low amplitude segment extraction
The concept of distinct ON/OFF states necessitates 
that MUA recorded during NREM should be bimo-
dally distributed. Assuming that OFF periods represent 

protracted periods of synchronised low amplitude activ-
ity (Fig.  6A), we smoothed the absolute values of MUA 
extracted from NREM sleep by convolution with a 62 ms 
Gaussian window (width factor = 2.5, sum of weights = 1) 
and plotted a 1D histogram of amplitudes. This gen-
erated the bimodal distribution upon which previous 
‘threshold-crossing’ algorithms have been based [13, 22, 
23] (Fig. 6B, top row). However, upon comparing differ-
ent channels and recording periods we found it was not 
always clear where the distributions diverged (Fig.  6B, 
bottom row). As MUA amplitude during ON periods is 
more varied as a result of spiking events, we theorised 
that ON periods should be more sensitive to smoothing 
window length and that this property could be leveraged 
to facilitate differentiation of the distributions. We com-
pared MUA amplitude smoothed with a 62  ms Gauss-
ian window (width factor = 2.5, sum of weights = 1) and 
a shorter 22  ms Gaussian window (width factor = 2.5, 
sum of weights = 1) using a 2D histogram. Indeed, we 

A B C

0.5 s

Layer 4

Layer 6

Fig. 6  OFF period detection rationale. Top row depicts data from cortical layer 4, bottom row from layer 6. A MUA and LFP signal from different 
cortical layers from the same NREM sleep interval. OFF periods can be distinguished by a reduced MUA amplitude and often by the presence of 
LFP slow waves. The appearance of OFF periods, in terms of amplitude and duration, differs between and within layers. B 1D Histogram of NREM 
MUA amplitudes after Gaussian smoothing. L = length of smoothing window in ms, width factor = 2.5. The histogram of layer 6 has a bimodal 
distribution with a narrow low amplitude peak (blue arrow), which we call low amplitude (LA) data points, and a broad high amplitude peak (green 
arrow), which we interpret as non-LA period data points. The histogram of layer 4 is also bimodal but the peaks are closer together and have similar 
heights. In both cases, no obvious threshold exists at which to separate the peaks. C 2D histogram of MUA amplitude after Gaussian smoothing 
with two different window lengths. The histogram is unimodal with only the low amplitude peak retained (blue arrow). Rather than setting an 
amplitude threshold, LA data points can now be detected by finding points belonging to this high density region
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consistently observed a dense region of low amplitude 
MUA points which we theorised may be reflecting OFF 
periods (Fig. 6C).

To explore this further, we sought to find the dimen-
sions of this low amplitude region using Gaussian mix-
ture modelling (GMM). A Gaussian mixture model is a 
probabilistic model that assumes all the data points are 
generated from a mixture of a finite number of multi-
variate Gaussian distributions or components. Unlike 
k-means clustering, these components and therefore the 
resulting clusters do not need to be spherical in shape. To 
find the parameters of the Gaussian components which 
maximize the likelihood of the model given the data, the 
two-step iterative Expectation–Maximization (EM) algo-
rithm is employed. In the expectation step, the algorithm 
computes posterior probabilities of component member-
ships for each observation given the current parameter 
estimates. In the maximization step, the posterior prob-
abilities from the previous step are used to re-estimate 
the model parameters by applying maximum likelihood. 
These steps are repeated until the change in loglikelihood 
function is less than the tolerance ( 10−5 ). Once the fitted 
GMM has been obtained, new points can be assigned to 
the component yielding the highest posterior probability 
(hard clustering).

The primary variable that must be input for GMM 
is the number of components (k) to fit from the data. 
When using k = 2 components, we unexpectedly found 
that the solution consistently overestimated the size of 
the low amplitude component. If this is indeed the data 
from OFF periods, this could suggest that the varia-
tion between types of ON period is greater than varia-
tion between OFF and ON periods. To resolve this, we 
decided to allow k to vary then select the resulting con-
figuration that provides the optimal clustering solution. 
First, the smoothed MUA signals (L = 62 ms and 22 ms) 
from a subset of NREM episodes is clustered using 
GMMs with k = 1:8 components. Then, the optimal 
model is selected using a clustering evaluation index. 
Clustering evaluation indices are used to assess cluster-
ing performance when there is no ground truth, as is the 
case for binary OFF/ON period alternation. We investi-
gated two such indices: the Calinsky-Harabasz index and 
the Davies-Bouldin index. The Calinsky-Harabasz index 
compares the dispersion within clusters with the disper-
sion between clusters whereas the Davies-Bouldin index 
compares the distance between clusters with the size of 
the clusters themselves. As expected, we found that the 
optimal clustering solution suggested by both methods 
produced more than 2 clusters. The lowest amplitude 
cluster tended to be much smaller than the equivalent 
with a 2-component model and more closely resembled 

the dense concentration of points in the MUA amplitude 
heatmap previously identified as the likely OFF period 
region (Fig.  6C). In the absence of clear differences in 
performance, we randomly selected the Calinsky-Hara-
basz index as our default.

Although smoothing means that the data used for 
clustering is dependent on surrounding timepoints, 
the clustering step itself is independent of time. This 
contrasts with all existing descriptions of OFF peri-
ods which are understood as a feature observed in a 
linear time course of neuronal activity. To recapitulate 
the time domain, we decided to group low amplitude 
points into consolidated segments (Fig.  7A–E). First, 
we defined a population of time segments with below 
average MUA amplitude. This population was identified 
by taking all time segments in which the standardised 
MUA was below zero (Fig. 7C), where the standardised 
MUA is calculated by taking the absolute values of the 
MUA then subtracting the mean of these absolute val-
ues during WAKE epochs. The waking average was cho-
sen to represent baseline MUA so that it would not be 
dependent on the number and duration of OFF periods 
in the signal. We then isolated those which coincided 
with at least one time point belonging to the low ampli-
tude cluster (Fig. 7D). This final population of segments 
represents the low amplitude (LA) segments used dur-
ing this analysis (Fig. 7E).

LA segment duration will inevitably depend to some 
degree on where the MUA amplitude threshold is set, 
increasing as the threshold is raised. There is a trade-
off between setting the threshold low enough to reg-
ister spiking activity but not so low as to register noise 
fluctuations in the MUA signal during neuronal silence. 
We looked at the sensitivity of LA segment duration to 
changes in this threshold and found that it is most sta-
ble when set at the mean amplitude of the MUA during 
wakefulness (Additional file 1: Figure S5), validating our 
threshold selection.

Due to their independent nature, a unique cluster-
ing solution and mean MUA amplitude was generated 
for each channel in each animal to detect LA segments. 
Where the same channel was measured over multiple 
days, we reapplied the configuration generated from the 
initial day under the assumption that these signals would 
be dependent.

Low amplitude segment extraction pipeline:

1.	 Cluster MUA signal smoothed at two window 
lengths (62 ms and 22 ms, NREM sleep only)

2.	 Detect lowest amplitude component
3.	 Assign smoothed MUA data to low amplitude cluster 

(all states)
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4.	 Find negative zero-crossing half waves across all 
states (all states)

5.	 Re-assign clustered points to negative zero-crossings 
to find low amplitude segments

Temporal, LFP phase and channel coherence analysis
The following temporal parameters of LA segments were 
assessed: incidence, average duration and total occu-
pancy time per minute of each vigilance state (NREM/
REM/WAKE) calculated from whole recordings or 
30 min time bins on each recordings day.

For phase analyses, LFP signal was zero-phase distor-
tion filtered in the delta band (0.5–4 Hz) to extract slow 
wave activity. The complex-valued analytic signal was 

then calculated using the Hilbert transform. The instan-
taneous phase angle in the interval [− π,π] for each ele-
ment of the complex array was calculated by finding the 
inverse tangent and converted from radians to degrees. A 
phase of 0° corresponds to the peak of the oscillation and 
a phase of 180° to the trough of the oscillation. To meas-
ure the temporal coherence of LA segments between 
pairs of channels we generated the following statistic:

Pairwise channel coherence = (intercept(A|B)/
sum(B) + intercept (B|A)/sum(A)) /2.

Where A and B are the time points of MUA signal 
within LA segments for two unique channels. A value of 
0 denotes a situation in which all LA segments in both 
channels occur independently and a value of 1 denotes 
a situation in which all LA segments in both channels 
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D

E

LFP

MUA

Standardised MUA 
(with zero 
crossings)

Standardised MUA 
(with clustered 

points)

MUA                     
(with LA segments)

WAKE NREM

0.5 s

0.3 mV

0.1 mV

50 μV

Fig. 7    LA segment detection pipeline. Example of LA segment detection stages from a 3 s segment of layer 6 baseline day recording. A Local 
field potential (LFP) trace (0.5–100 Hz filtered). Note the appearance of slow waves following the transition from wake to non-REM sleep. B Raw 
decimated multi unit activity (MUA). C Standardised MUA whereby the raw signal is converted to absolute amplitude and then the mean of the 
absolute MUA during clean wake epochs from this 24 h recording is subtracted. The horizontal black line marks the new mean amplitude (0 μV). 
Each contiguous sequence of points below this line has been recoloured alternate shades of pink. These zero crossings represent the population of 
possible LA segments to be investigated. A black dot demarcates the centre of each zero crossing. D Standardised MUA with low amplitude cluster 
points recoloured red. E Raw MUA with final LA segments recoloured red. Final LA segments represent zero crossings which intersect with low 
amplitude cluster points. Black dots represent the centre of each LA segment
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occur simultaneously. To estimate the random chance 
coherence between two channels we generated a ran-
domly shuffled surrogate signal for each channel with an 
identical distribution of LA and non-LA segments. To 
achieve this, we fit a normally smoothed Kernel distribu-
tion to the distribution of LA and non-LA segment dura-
tions for each channel during the first hour of NREM 
sleep. We then randomly sampled these distributions in 
an alternating fashion to generate a shuffled sequence 
of LA and non-LA segments one hour in length. Only 
channels 1 to 12 were used in this analysis as in multiple 
animals the deepest 4 channels extended into the corpus 
callosum. In addition, due to channel rejection the maxi-
mum interchannel distance (11) was not available for all 
animals and was therefore omitted.

Statistics
Statistical analyses were performed in MATLAB and 
R. Values are reported as mean ± standard error (SEM). 
The normality assumption of underlying distributions 
was assessed for each factor level by computing a Shap-
iro-Wilks test. Unless stated otherwise, significance of 
effects was tested using one- or two-way repeated meas-
ure ANOVAs (within-subject factors “Vigilance state 
[NREM, REM, WAKE]”, “Day [baseline, SD]” and/or 
“Time”) with animal ID as a factor followed by post-hoc 
pairwise t-tests with Bonferroni correction. Circular sta-
tistics for phase analysis were performed using the Circ-
Stat toolbox [35]. Non-uniformity of each distribution 
against the von Mises distribution was confirmed using a 
Rayleigh test for circular data. Differences in mean direc-
tion were tested using a parametric Watson-Williams 
multi-sample test for equal means with Bonferroni cor-
rection. Statistical significance in all tests was considered 
as p < 0.05. For box plots, the middle, bottom, and top 
lines correspond to the median, bottom, and top quartile, 
and whiskers to lower and upper extremes minus bottom 
quartile and top quartile, respectively.

GUI design
The LA segment detection algorithm was incorporated 
into a MATLAB program with a user-friendly GUI that 
allows the detection of LA segments in new data sets, 
provides a visual representation of the results and gener-
ates a range of useful summary statistics (https://​github.​
com/​sjoh4​302/​OFFAD). Furthermore, this GUI allows 
for post-processing of LA segments, such as removal of 
brief interruptions, to fit individual user expectations of 
OFF periods.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12868-​023-​00780-w.

Additional file 1: Figure S1. LA segment occupancy (A) and duration (B) 
on baseline day across light period (ZT0-ZT12). N=7. Mean ± SEM. Figure 
S2. Summary statistics for linear regression of LA incidence (relative to ZT 
6) against zeitgeber time for each LA segment duration category. Df = 
degrees of freedom. Figure S3. All original channel coherence matrices 
(N=7). Figure S4. All surrogate channel coherence matrices (N=7). Figure 
S5. Sensitivity of LA segment duration to MUA amplitude threshold. Aver‑
age LA segment duration detected in a layer 5 channel from a baseline 
recording day in a single mouse as a function of MUA amplitude threshold 
at step 4 in the LA segment detection pipeline where 100% (denote with 
a vertical dashed line) corresponds to the average MUA amplitude meas‑
ured during wakefulness (blue). As the threshold is raised, LA segment 
duration increases. The first derivative of this curve is plotted on a separate 
axis (orange). Note that other than when the threshold is set at such a low 
point as to miss most LA segments, the first derivative is lowest at 100%, 
suggesting that LA segment duration is least sensitive when the threshold 
is set to the average MUA amplitude measured during wakefulness.
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