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Making accurate decisions often involves the integration of current and past evidence. Here, we examine the neural correlates of con-
flict and evidence integration during sequential decision-making. Female and male human patients implanted with deep-brain stimula-
tion (DBS) electrodes and age-matched and gender-matched healthy controls performed an expanded judgment task, in which they
were free to choose how many cues to sample. Behaviorally, we found that while patients sampled numerically more cues, they were
less able to integrate evidence and showed suboptimal performance. Using recordings of magnetoencephalography (MEG) and local
field potentials (LFPs; in patients) in the subthalamic nucleus (STN), we found that b oscillations signaled conflict between cues
within a sequence. Following cues that differed from previous cues, b power in the STN and cortex first decreased and then
increased. Importantly, the conflict signal in the STN outlasted the cortical one, carrying over to the next cue in the sequence.
Furthermore, after a conflict, there was an increase in coherence between the dorsal premotor cortex and STN in the b band. These
results extend our understanding of cortico-subcortical dynamics of conflict processing, and do so in a context where evidence must
be accumulated in discrete steps, much like in real life. Thus, the present work leads to a more nuanced picture of conflict monitor-
ing systems in the brain and potential changes because of disease.
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Significance Statement

Decision-making often involves the integration of multiple pieces of information over time to make accurate predictions. We simulta-
neously recorded whole-head magnetoencephalography (MEG) and local field potentials (LFPs) from the human subthalamic nucleus
(STN) in a novel task which required integrating sequentially presented pieces of evidence. Our key finding is prolonged b oscilla-
tions in the STN, with a concurrent increase in communication with frontal cortex, when presented with conflicting information.
These neural effects reflect the behavioral profile of reduced tendency to respond after conflict, as well as relate to suboptimal cue
integration in patients, which may be directly linked to clinically reported side-effects of deep-brain stimulation (DBS) such as
impaired decision-making and impulsivity.
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Introduction
Whether it is deciding which method of transportation to take to
get to work most efficiently or which horse to bet on to maximize
monetary gain, humans are constantly integrating noisy evidence
from their environment and past experience, to optimize their
decisions. Often the information comes at intervals, thus necessi-
tating a system that can track incoming signals over time and
only commit to making a choice after sufficient evidence has
been integrated (Ratcliff, 1978; Busemeyer and Townsend, 1993;
Usher and McClelland, 2001), a process that has been proposed
to rely on the cortico-basal-ganglia circuit (Bogacz et al., 2010).
Research in human patients with implanted electrodes for clinical
deep-brain stimulation (DBS) treatment has pointed to the role of
the subthalamic nucleus (STN) of the basal ganglia as a decision
gate-keeper. The STN is postulated to set the decision threshold in
the face of conflicting information by postponing action initiation
until the conflict is resolved (Frank, 2006). As predicted by the
model, STN activity is increased for high conflict trials and STN-
DBS affects decision-making in the face of conflicting evidence
(Frank et al., 2007; Coulthard et al., 2012; Green et al., 2013).
Furthermore, the decision threshold correlated specifically with
changes in STN u oscillatory power (Cavanagh et al., 2011; Herz
et al., 2016). Recent evidence has also pointed to the role of b
oscillations during conflict (Zavala et al., 2018). Thus, oscillatory
activity, primarily in the u and b bands, in the basal ganglia,
reflects immediate inhibition to motor output during situations
involving conflict (Frank, 2006), whether it is the response, sen-
sory, or cognitive uncertainty (Bonnevie and Zaghloul, 2019).

The majority of previous studies in the STN employed para-
digms in which the putative processes of conflict detection and
setting of decision threshold happened in close temporal proxim-
ity. For example, in previously used paradigms such as the
flanker task (Zavala et al., 2015), go-no-go (Alegre et al., 2013;
Benis et al., 2014), and Stroop task (Brittain et al., 2012) evidence
was presented simultaneously. Although STN activity was also
studied in random dot motion paradigm that required evidence
accumulation over time (Herz et al., 2018), it was unknown
exactly what sensory evidence was presented when, on individual
trials, because of the noisy nature of stimuli. As a result, previous
studies do not allow us to fully disentangle the neural correlates
of ongoing evidence accumulation and conflict during decision-
making. In particular, it is not clear what kind of conflicting in-
formation during evidence accumulation the STN responds to:
does it respond to a local conflict, when a new piece of informa-
tion does not match single previous piece in the sequence, or
global conflict, when a new piece of information does not match
overall evidence from the entire trial?

An important role in shaping the STN activity is played by
the interaction between the cortical circuits and the STN.
However, the nature and cortical locus of this interaction has
only been examined in a handful of studies. Resting-state coher-
ence between the STN and ipsilateral frontal cortex has shown a
peak in the b band in human patients (Litvak et al., 2011a; West
et al., 2020) as well as rodent models of Parkinson’s disease
(Magill et al., 2004; West et al., 2018). Additionally, coherence in
the u band from frontal sites (as measured with electroencepha-
lography) to the STN increased during a conflict detection task
(Zavala et al., 2014, 2016).

To precisely characterize how the neural activity in cortex
and the STN changes during the process of evidence accumula-
tion, we recorded STN local field potential (STN-LFP) simultane-
ously with whole-head magnetoencephalography (MEG) while
Parkinson’s disease patients performed an expanded judgment

task (Leimbach et al., 2018). Here, cues are presented at discrete
intervals, and evidence for the correct answer develops as the par-
ticipant samples and integrates multiple cues over the course of
the trial (Fig. 1). This paradigm allowed us to investigate how be-
havioral and neural responses depend on the continual unfolding
of evidence extended in time, determine what kind of conflicting
information the STN responds to, and test predictions of compu-
tational models.

Materials and Methods
Participants
We tested 15 patients with a clinical diagnosis of Parkinson’s disease (14
male, mean age: 59, range 47–71, two left-handers), following electrode
implantation for DBS treatment, before full closure of the scalp, thus
allowing for intracranial recordings of the STN (all bilateral recordings,
except 1 patient right unilateral and 1 patient with three contacts in the
left STN and only two on the right, this patient was also subsequently
diagnosed with multiple systems atrophy). Among tested patients, 11
had medtronic 3389 electrodes, while four had Boston Vercise direc-
tional leads. The surgical procedures are described in detail in (Foltynie
et al., 2011). All patients were assessed on medication (mean levodopa
equivalent dosage 1272mg, range: 500–1727.5mg). Unified Parkinson’s
Disease Rating Scale (UPDRS) part 3 scores were 39.66 14 (mean 6
SD, range: 18–61) when OFF medication, and 15.46 6.5 (range: 7–30)
when ON medication. None of the patients had cognitive impairment
[Mini–Mental State Examination (MMSE) scores: mean 28.8, range: 26–
30, one patient score missing], clinical depression, or apathy. Two
patients were excluded from the analysis because of poor performance of
the task (see below, Task). We recruited 13 age and gender matched con-
trols (12 male, mean age: 57, range 44–70, two left-handers). The patient
study was approved by the United Kingdom National Research Ethics
Service Committee for South Central Oxford and the control study was
covered by University College London Ethics Committee approval for
minimum risk MEG studies of healthy human cognition. All partici-
pants gave written informed consent. Patients did not receive financial
compensation and the controls were compensated for their time accord-
ing to our center’s standard hourly rate.

Surgical procedure
Bilateral DBS implantation was performed under general anesthesia
using a stereotactic (Leksell frame G, Elekta Solutions AB, Stockholm,
Sweden) MRI-guided and MRI-verified approach without microelec-
trode recording as detailed in previous publications (Holl et al., 2010;
Foltynie et al., 2011). Two stereotactic, preimplantation scans were
acquired, as part of the surgical procedure, to guide lead implantation; a
T2-weighted axial scan (partial brain coverage around the STN) with
voxel size of 1.0� 1.0 mm2 (slice thickness = 2 mm) and a T1-weighted
3D-MPRAGE scan with a (1.5 mm)3 voxel size on a 1.5T Siemens
Espree interventional MRI scanner. Three-dimensional distortion cor-
rection was conducted using the scanner’s built-in module. Target for
the deepest contact was selected at the level of maximal rubral diameter
(;5 mm below the AC-PC line). To maximize DBS trace within the
STN, the target was often chosen 1.5–2 mm posterolateral to that
described by Bejjani (Bejjani et al., 2000). Stereotactic imaging was
repeated following lead implantation to confirm placement.

Task
To investigate the neural basis of evidence accumulation over time, we
used the expanded judgment task (Fig. 1; similar to the task previously
used by Leimbach et al., 2018). Participants were shown a series of
images of a mouse facing either left or right. Cues were presented for
200ms, with an interstimulus interval (ISI) of 600ms, so there was
800ms interval from one onset to another, to which we refer as stimulus
onset asynchrony (SOA). Participants were required to judge in which
direction the mouse “would run”, based on the probabilities extracted
from a series of sequential cue images, and then respond accordingly.
The validity of the cues was 70%, such that each cue (left or right mouse)
represented the correct choice 70% of the time. The two directions were
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equally likely across trials, thus the chance level in the task was 50%. If
the participants responded based on one of the cues only, without accu-
mulating information over time, then their expected success rate would
be 70%. Responses were made by pressing a button with the thumb of
the congruent hand after a self-chosen number of cues, when the partici-
pant felt they had enough evidence to make a decision. Before the record-
ing, the participants underwent a short training session where they were
first asked to respond only after seeing a set number of stimuli (between
two and ten) and then told that for the main experiment they will decide
themselves how many stimuli to observe. This was to ensure that partici-
pants chose to respond based on accumulating evidence from a sequence
of images rather than just the first stimulus. Participants performed up to
200 trials (patients: 1686 11; controls: 200 each, except one control who
completed 150 trials). Two patients were excluded from the analysis
because of poor performance of the task (accuracy at chance level).

Recording and analysis
Participants performed the task while seated in a whole-head MEG
system (CTF-VSM 275-channel scanner, Coquitlam, Canada). For
patients, STN-LFP, electrooculography (EOG), and electromyography
(EMG) recordings were also obtained using a battery-powered and opti-
cally isolated EEG amplifier (BrainAmp MR, Brain Products GmbH,
Gilching, Germany). STN-LFP signals were recorded referenced to a
common cephalic reference (right mastoid).

All preprocessing was performed in SPM12 (v. 7771, http://www.fil.
ion.ucl.ac.uk/spm/; Litvak et al., 2011b), and spectral analysis and statis-
tical tests were performed in Fieldtrip (http://www.ru.nl/neuroimaging/
fieldtrip/; Oostenveld et al., 2011) using the version included in SPM12.

STN-LFP recordings were converted offline to a bipolar montage
between adjacent contacts (three bipolar channels per hemisphere; 01,
12, and 23) to limit the effects of volume conduction from distant sour-
ces (for more details, see Litvak et al., 2010; Oswal et al., 2016b). Four of
the patients had segmented DBS leads (Vercise DBS directional lead,
Boston Scientific). In these cases, we averaged offline the signals from
the three segments of each ring and treated them as a single ring contact.
Thus, for each participant, we had a total of three STN EEG channels
in each hemisphere (except for two participants: one with right
side electrodes only, thus three channels, and one with one contact
on the right excluded because of extensive noise, thus five chan-
nels). The LFP data were downsampled to 300 Hz and high-pass fil-
tered at 1 Hz (Butterworth fifth order, zero phase filter).

A possibly problematic but unavoidable feature of our task was that
the stimuli were presented at relatively short SOA not allowing for the
power to return to baseline before the next stimulus was presented.
Furthermore, the SOA was fixed making entrainment and anticipation
possible. These were deliberate design choices to be able to collect a large
number of trials for model-based analyses. Any jittering of the SOAs
(which would have to go in the direction of increasing their duration)
would have led to far fewer trials being collected. The total duration of
the recording had to be kept short as the patients were unable to tolerate
extended periods of testing. Furthermore, having a very long SOA would
make it more likely that the participants would resort to explicit count-
ing, which was something we aimed to avoid.

To account for these design issues, we developed an unconven-
tional way of performing time-frequency analysis on these data in
the absence of a baseline. We first ran time frequency analysis on
continuous LFP data [multitaper method (Thomson, 1982) 400-ms
sliding window, in steps of 50 ms] on a priori defined b power
(13–30 Hz average = 21.5 Hz; note that when looking at individual
participant b power around the response period, we found a simi-
lar band as defined a priori: individual mean range: 16.6–28.4 Hz;
overall min: 11 Hz, max: 31 Hz). Separately we also estimated the
power in the u band (2–8 Hz average = 5 Hz; Herz et al., 2016). The
resulting power time series were log-transformed and high-pass
filtered at 0.5 Hz (Butterworth fifth order, zero phase filter) to
remove fluctuations in power that were slower than our SOA.
Afterwards, the power time series were epoched around the pre-
sentation of each cue stimulus (�500–800ms). We averaged power
across contacts within each hemisphere, resulting in 1 left and 1
right STN channel, and we also calculated the mean STN signal by
combining hemispheres. We used a permutation cluster-based
non-parametric test to correct for multiple comparisons across
time (the duration of the whole cue epoch (0–800 ms) and report
effects that survive correction only [p, 0.05 family-wise error
(FWE) corrected at the cluster level].

Similarly to LFP, MEG data were downsampled to 300Hz, and high-
pass filtered at 1Hz (Butterworth fifth order, zero phase filter). For sen-
sor-level analysis, we used only the control group data, as in the patients
the sensor signals were contaminated by ferromagnetic wire artefacts
(Litvak et al., 2010).

For the MEG sensor-level time-frequency analysis, we used all chan-
nels and a frequency range of 1–45 Hz. All other analyses were identical
to the LFP pipeline reported above except we corrected for multiple
comparisons across all MEG channels, timepoints (0–800 ms) and fre-
quencies (1–45 Hz), and only report effects that survived that correction
(p, 0.05 FWE corrected at the cluster level).

For source-level analysis, the continuous MEG data were projected
to source space with linearly constrained maximum variance (LCMV)
beamformer (Veen et al., 1997) using a 10-fold reduced version of the
SPM canonical cortical mesh (Mattout et al., 2007) as the source space
(resulting in 818 vertices and the same number of source channels). The
source orientation was set in the direction of maximum power. See
Litvak et al. (2012) for details on beamforming and Litvak et al. (2010)
for details on issues regarding beamformer use for removing artefacts
from simultaneous MEG and intracranial recordings. Next, time-fre-
quency analysis was performed on continuous source data the same way
as for STN-LFP except the frequencies of interest were informed by the
sensor-level analysis. This biased the statistical test for discovery of an
effect (cf. double dipping; Kriegeskorte et al., 2009) but our aim in this
analysis was post hoc interrogation of the effects established at the sensor
level in terms of their location in the cortex rather than hypothesis test-
ing (Gross et al., 2013). To limit our search space for the coherence anal-
ysis (below), we only investigated sources that survived p, 0.05 FWE
correction.

Time-resolved coherence was then computed between the identified
cortical sources and STN contacts by going back to raw source time se-
ries. The data were epoched (�1000–1000ms to increase the window for

Figure 1. Expanded judgement task. Participants performed a version of an evidence integration task, with two key elements: (1) the cues were presented sequentially within the trial
rather than simultaneously, which allowed us to examine evidence accumulation over time; and (2) the trial duration, i.e., number of cues sampled, was up to the participants, who responded
when they felt they had received enough information to make a decision. Participants were required to guess the likely direction (left or right) the mouse “would run” in. Each cue was 70%
valid, i.e., they represented the correct direction 70% of the time if they were to be treated in isolation.
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analysis), and time-frequency analysis was performed as described above
with coherence between the sources and the left and right STN also com-
puted from the cross-spectrum. Non-parametric permutation testing
between conditions was corrected for multiple comparisons across chan-
nels (source vertices), time (0–1600 ms to cover both cue “i” and cue
“i1 1”), and frequencies (1–30 Hz), and we only report effects that sur-
vive correction (p, 0.05 FWE corrected at the cluster level). For com-
pleteness, we also ran an alternative connectivity measure, debiased
weighted phase lag index, which is less sensitive to unequal trial numbers
across conditions and volume conduction effects.

Reconstruction of electrode locations
We used the Lead-DBS toolbox (http://www.lead-dbs.org/; Horn and
Kühn, 2015) to reconstruct the contact locations. Postoperative T2 and T1
images were co-registered to preoperative T1 scan using linear registration
in SPM12 (Friston et al., 2007). Preoperative (and postoperative) acquisi-
tions were spatially normalized into MNI_ICBM_2009b_NLIN_ASYM
space based on preoperative T1 using the Unified Segmentation Approach
as implemented in SPM12 (Ashburner and Friston, 2005). DBS electrode
localizations were corrected for brain shift in postoperative acquisitions by
applying a refined affine transform calculated between preoperative and
postoperative acquisitions that was restricted to a subcortical area of interest
as implemented in the brain shift correction module of Lead-DBS software.
The electrodes were thenmanually localized based on postoperative acquisi-
tions using a tool in Lead-DBS specifically designed for this task. The result-
ing locations were verified by an expert neurosurgeon.

Choice strategy
In order to analyze the strategy used by the participants during choice,
we investigated which factors influence commitment to a choice on a
given trial. We considered two factors: the first of them is the evidence
integrated for the chosen option. Such accumulated evidence was com-
puted from Equation 1 that continuously updates the evidence (decision
variable, DV) for a choice at time t based on the existing DV from the
previous stimuli and the new incoming stimulus St , where St ¼ �1 for
the left stimulus, and St ¼ 1 for the right stimulus. At the start of each
trial, the DV was initialized toDV0 ¼ 0.

DVt ¼ DVt�1 1 St: (1)

The second factor we considered was whether the stimulus was the
same as the previously presented one, i.e., SAt ¼ 1 if St ¼ St�1 and
SAt ¼ 0 otherwise. For all stimuli excluding the first stimulus on each trial
(for which it is not possible to define SAt) we performed a logistic regression
predicting if the choice has been made after this stimulus, i.e., we tried to
predict a variable Dt ¼ 1 if choice made after stimulus t and Dt ¼ 0 other-
wise. For each participant, we looked at the significance of the two factors.

Estimating accumulated evidence using computational models
In order to analyze whether STN activity reflects the amount of available
evidence for each response based on the stimuli presented so far, we
employed computational models that can estimate this quantity at each
point in time. We compared how well different models of evidence accu-
mulation could capture the behavior of different patients, and then gen-
erated regressors for each patient based on the best model for that
patient. In addition to the model assuming evidence is integrated accord-
ing to Equation 1, we also considered three extended models which
included a forgetting term (l ), a bonus term (v ), or both (Eqs. 2–4).

DVt ¼ 1� lð ÞDVt�1 1 St (2)

DVt ¼ DVt�1 1 11vSAtð ÞSt (3)

DVt ¼ 1� lð ÞDVt�1 1 11vSAtð ÞSt: (4)

The forgetting term was used to model the decay of memory over the
course of the trial and the bonus term is a weighting of “same” pairs, i.e.,

the stimuli which match the directly preceding one (e.g., in a “left-left-
right” sequence the second left stimulus would be weighted extra as it is
the same as the first one).

To estimate the parameters (l ;v ), we assumed that the ratio of making
a right choice to making a left choice is related toDV according to:

ln
P Rð Þ
P Lð Þ ¼ b 0 1 b tDVt:

For each participant, we looked for parameters that maximized the
likelihood of participant’s behavior after all stimuli shown to that
participant.

We found the winning model (based on Bayesian information
criterion) to be variable across participants (number of partici-
pants in patients/control group indicated): M1 = 1/2; M2 = 0/0;
M3 = 4/9; M4 = 8/2, although the models that included bonus terms
were most common.

Estimating Bayesian normalization term
We investigated whether the STN activity follows a pattern pre-
dicted by a computational model of the basal ganglia (Bogacz and
Gurney, 2007; Bogacz and Larsen, 2011). This model suggests that
the basal ganglia compute the reward probabilities for selecting
different actions according to Bayesian decision theory. These
probabilities are updated after each stimulus and the updated in-
formation is fed back to the cortex via the thalamus. An action is
initiated when the expected reward under a particular action
exceeds a certain threshold. The model attributes a very specific
function to the STN: ensuring that if the probability of one action
goes up, the probabilities of the others go down at the same time
by normalizing all probabilities so that they add up to one.

In order to create regressors for neural activity recorded from
the STN, we used the original proposal that the STN computes the
normalization term of the Bayesian equation during the evidence
integration process (Bogacz and Gurney, 2007). We defined two
cortical integrators YL and YR, which integrate evidence for the left
and right stimulus respectively, as described above. Additionally,
we subtracted the STN normalization term from the cortical inte-
grators after each stimulus input in a sequence (Bogacz et al.,
2016). For each participant, we assumed the integration follows
one of the models described by Equations 1–4, which best
describes given participants (see above, Estimating accumulated
evidence using computational models). So, for example, for partic-
ipants best described by Equation 1, the integrators were updated
as follows:

YL;t ¼ YL;t�1 1 Lt � STNt�1 (5)

YR;t ¼ YR;t�1 1Rt � STNt�1 (6)

STNt ¼ ln expYL;t 1 expYR;tð Þ: (7)

In the above equations, Lt ¼ 1, Rt ¼ 0 if cue t is left, and Lt ¼ 0,
Rt ¼ 1, otherwise. However, for models 2–4, we added decay to the cort-
ical integrators and bonus terms to Equations 5, 6 analogously to
Equations 2–4, i.e., we ensured that DVt ¼ YR;t � YL;t . At the start of
each trial, the integrators were initialized to YL;0 ¼ YR;0 ¼ ln 0:5 (corre-
sponding to equal prior probabilities of the two responses). The value
computed from Equation 7 was used as Bayesian normalization regres-
sor in Figure 2.

Data availability
The full MEG dataset for controls is available in BIDS format on https://
openneuro.org/datasets/ds002908 and LFP and source data for patients
is available on https://data.mrc.ox.ac.uk/data-set/human-lfp-recordings-
stn-during-sequential-conflict-task. Code and analysis pipeline at
https://github.com/zits69/MOUSE_LFPMEG.
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Results
Patients are able to accumulate evidence
over time
Patients waited on average 6.6 stimuli
before making a response (6.596 0.52
SEM), and their accuracy was signifi-
cantly above the 70% level expected if
they only based their decision on a single
cue (806 0.03 SEM, t= 3.6, p= 0.004).
Controls waited on average 6.3 stimuli
before making a response (6.296 0.46
SEM) and were similarly above 70% in
their accuracy (88.66 0.01 SEM, t= 18.4,
p, 0.001). There was no significant dif-
ference between groups in the number of
stimuli viewed before making a choice
(t=0.42, p=0.68), but patients had lower
accuracy (t = �2.99, p=0.0009) and slower
reaction time (RT, as measured from the
onset of the last cue before a response was
made, t=2.16, p=0.041). See Table 1 for
summary of behavioral measures.

To explore potential strategies partici-
pants could have used in the task, we com-
pared performance in both groups to an
agent that would have been an optimal ob-
server, and would choose to respond left if
the number of left cues was higher than
the number of right cues, to respond right
for a larger number of right cues, and
would choose randomly if the numbers
were equal. In other words, for each partic-
ipant, we calculated the accuracy they
would have achieved had they integrated
evidence optimally, having seen the stimuli
sampled by the participant on each trial.
We found that controls and patients
had significantly lower accuracy (con-
trols: p= 0.019, patients: p= 0.0076) than
an ideal observer would have, based on
the same cue sampling (89% for controls
and 87% for patients).

Next, we asked whether participants
were just solving the task by responding
after they spotted two of the same stimuli
in a row (i.e., after the first “same” pair).
To address this question, we investigated
to what extent participants’ response after
stimulus was predicted by accumulated
evidence, and by same stimuli in a row
(for details, see Materials and Methods).
Most participants had responses best pre-
dicted either by accumulated evidence
alone (six patients and six controls), or by
both accumulated evidence and stimulus
repetition (five patients and seven con-
trols). For remaining two patients none
of these factors was predicting their
response. Hence, there was no partici-
pant who exclusively relied of making a
choice after seeing the “same” stimulus,
without considering evidence integrated
so far.

Figure 2. STN activity encodes local conflict and variables related to accumulation of evidence via b oscillations. A,
Example sequence of cues, with each regressor value shown below. For example, evidence for the “right” facing mouse goes
up during the first two cues, but then the appearance of a “left” mouse reduces the evidence for a right response. B, Results
of the combined General Linear Model (GLM). A linear regression of b power in the STN revealed that a clear signal was
related to the identity of the cue (“same” or “different,” shaded in gray), absolute integrated evidence, and sample number
in the sequence of cues in a trial (or “urgency,” i.e., the number of stimuli presented so far that could influence a general
tendency to make a choice or working-memory load). Horizontal lines represent significant times after cluster correction for
multiple comparisons. There was no encoding of Bayesian normalization in the STN signal, as proposed previously (Bogacz
and Gurney, 2007; Bogacz et al., 2016). Note that although the regressors are presented separately for easier visualization,
they were included in a combined GLM. All regressors were z-scored before entering the model. We did not find any effects
when regressing u band activity in the STN with the above regressors. C, Raw b power plotted as a function of binned evi-
dence (left) or cue number (right), as well as for cue identity (D), note this latter panel is identical to part of Figure 3B. See
Extended Data Table 2-1 and Extended Data Figure 2-1 for correlations performed to relate neural effects to behavior.
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STN b power reflects multiple variables related to ongoing
decision-making
In order to understand the impact of different variables related
to the decision-making process on activity in the STN, we cre-
ated a combined General Linear Model (GLM), including four
regressors: cue identity, normalization model, accumulated evi-
dence, and sample number. These are described in detail below.

Cue identity was taken as a measure of “local conflict,” by tak-
ing all cues (excluding the first and last cues in a sequence) and
categorizing them as the “same” or “different” from the previous
cue (Fig. 2A,D). We found that b power carried information
about the similarity of the stimulus to the previous one (“cue
identity,” 200–350 and 650–800 ms, p= 0.024 and p= 0.032; see
Fig. 2B,D).

In addition to local conflict, we analyzed whether other varia-
bles occurring in theoretical models of decision-making were
reflected in neural activity. We explored whether STN represents
the normalization term in Bayes theorem as proposed in a previ-
ously suggested computational model (Bogacz and Gurney,
2007). This model predicts that the activity in the STN is propor-
tional to a logarithm of the normalization term in Bayes theorem
ln P(cue i). This probability is computed on the basis of all previ-
ous cues {cue 1, ..., cue i – 1} so it expresses how expected the
current cue is given all cues seen before. The negative of this
regressor, -ln P(cue i), is equal to Shannon’s surprise, so it
expresses how much cue i disagrees with overall information in
all previous cues, and hence it could be viewed as a measure of
global conflict. Therefore, a possible correlation between the nor-
malization term ln P(cue i) and LFP activity could be explained
by either of two hypotheses. A computational model (Bogacz
and Gurney, 2007) predicts a positive correlation, whereas a hy-
pothesis that STN responds to global conflict predicts a negative
correlation. We tested whether the normalization term affects
power of b oscillations in the STN and did not find evidence
supporting any of these two hypotheses in our data (Fig. 2B).

We also explored whether there was a signal reflecting the
magnitude of accumulated evidence in the STN, observed in a
similar task (Gould et al., 2012). Additionally, we included a
regressor on b power equal to the serial position of the cue stim-
ulus within a trial. Including this regressor was motivated by two
observations: reports of decreasing b power as a result of
increasing working memory load (Zavala et al., 2017), and pres-
ence of “urgency signals” in the basal ganglia that increase within
a trial and reflect the growing urgency to making a choice
(Thura and Cisek, 2017). We found a significant effect in both
regressors (absolute evidence: 550–700 ms, p= 0.008; cue num-
ber or urgency: 0–250 and 500–650 ms, p= 0.01 and p= 0.02).

We did not find a clear relationship between behavior on the
task and these neural effects (see Extended Data Table 2-1).
However, cue identity (early peak) showed a relationship with
both RT (r=0.62, p=0.024; note that if an outlier of the STN
data is taken out, then the correlation is no longer significant,

p= 0.12; outlier detected as .1.5 interquartile range above the
upper quartile or below the lower quartile, which is appropriate
when data are not normally distributed), as well as a trend for
the number of cues sampled (r= 0.53, p= 0.064).

STN b power shows persistent activity to local conflict
during evidence accumulation
Complementing, and extending on the above regression analy-
ses, to further investigate how the STN represents the inconsis-
tencies when faced with conflicting evidence over time, we
separated all cues into two categories: “same” or “different” to
the one immediately before it (we term this “cue i”; Fig. 3A). In
our analyses of neural responses to cues, we excluded the first
cues in a sequence, because it is not possible to classify them as
“same” or “different,” and last cues seen as they overlapped with
the response period. Thus, if a participant experienced this
sequence of mouse images: “left-right-left-left-right,” the ana-
lyzed conditions would be “different-different-same.”

We found that b oscillations (i.e., raw b power) responded
to local conflict, generating a significant difference between “same”
and “different” cues (cue “i” in Fig. 3B, left panel) starting around
100ms after cue onset. b also showed a significant difference in
the subsequent cue (i1 1), with “different” cues showing an
increase in b power, thus conflicting information on cue i results
in increased b power on cue i1 1 (see Fig. 3C), a pattern of activ-
ity that is consistent with response inhibition. Significant time clus-
ters: 100–450 ms (p=0.022, d=1.74), 750–1100 ms (p=0.014,
d=1.73), 1300–1600 ms (p=0.012, d=2.40). These effects were
greatly reduced in the u band, with an effect of condition only
briefly detectable during cue “i1 1” (Fig. 3B,C, right panel).

Cortical activity reflects rapid but nonpersistent local
conflict detection
We investigated sensor-level MEG signals from controls in
response to local conflict detection within the sequence. As with
the STN, widespread activity over central sensors was found to
signal local conflict, with an initial dip followed by an increase in
b power on “different” trials (Fig. 4A). The dip and increase in
b power were associated with different clusters of electrodes.
The first cluster showed a significant decrease to different cues in
the b band across central, and predominantly right occipital, pa-
rietal and temporal sensors (Fig. 4A, inset; 0–450 ms, 8–35 Hz,
p= 0.002, Cohen’s d=1.22). A subsequent second cluster, more
restricted to central sensors, showed an increase in b power
to different cues (550–800 ms, 9–25 Hz, p = 0.008, Cohen’s
d=1.35).

Interestingly, the time course of the cortical effect was quicker
than that of the STN (Figs. 4B vs 3B), with conflicting informa-
tion only lasting until the onset of the next cue in the sequence.

Coherence is increased between STN and frontal cortex
during local conflict
We used beamforming in a combined sample of patients and con-
trols to localize the source of the “same-different” effect [cluster 1:
averaged over: 200–400 ms (to exclude the time the stimulus was
displayed on the screen), 10–30 Hz; cluster 2: averaged over 600–
800 ms, 10–20 Hz]. In cluster 1, we found three right-hemisphere
lateralized peaks (Fig. 4C): occipital pole (two peaks: Montreal
Neurological Institute (MNI) coordinates 19, �98, �14; 35, �89,
�16), ventral temporal cortex (two peaks: MNI 59, �53, �21; 52,
�51, �21), and lateral premotor cortex (Brodmann Area (BA) 6,
two peaks: MNI 52, �7, 44; 51, 3, 40). Cluster 2 was localized to
left superior parietal lobe (SPL/BA7, MNI �23, �61, 52), left

Table 1. Behavioral results showing mean and SDs for each group

# Stimuli seen Accuracy RT (ms)
Fraction of responses
after “same” at end

Patients mean 6.59 0.80 536.52 0.73
Patients SD 1.88 0.10 29.48 0.11
Controls mean 6.29 0.89 502.74 0.81
Controls SD 1.65 0.04 48.81 0.09

RT, reaction time; SD, standard deviation. The analytical probability of a “same” pair at the end of the
sequence would be 58% if participants chose the moment of response randomly. Both patients and controls
responded significantly more often after a “same” pair (both groups p, 0.001).
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posterior cingulate cortex (PCC/BA23, MNI �14, �47, 31), right
dorsal premotor area (dorsal/medial BA6, MNI 7, 2, 69), and right
primary somatosensory cortex (BA1, MNI 61, �18, 31). Note, at
an uncorrected threshold (p, 0.001) we also found the lateral pre-
motor cortex, occipital pole and temporal cortex as in cluster 1,
which is expected given the overlapping topography of sensors in
the two clusters.

Next, we measured in patients the coherence between these
cortical vertices and both the left and right STN-LFPs, separately.

The coherence spectra were averaged over adjacent vertices
resulting in three cortical sources for cluster 1 and four sources
for cluster 2. We found a significant increase in coherence
between the right dorsal premotor cortex and the right STN
(510–900 ms, 10–13 Hz, p= 0.03, Cohen’s d=1.71; 900–1240 ms,
18–24 Hz, p=0.01, Cohen’s d=1.44; see Fig. 5), suggesting that
ipsilateral cortico-subthalamic coherence is increased in the face
of local conflict in the right hemisphere. Furthermore, it seems
there are two separate points of coherence over the course of the

Figure 3. b signaled local conflict, and carried this effect over to the next cue in a sequence. A, Notation used in the paper. Let us consider an arbitrary cue i in a sequence, where i. 1: If
cue i – 1 is the same as cue i, then we would call this the “same” condition, and “different” otherwise. We also plot the subsequent cues (i1 1, i1 2) for carry-over effects, but these are col-
lapsed across cue type, left or right. See Extended Data Figure 3-1 for more details. B, Left panel, b carried information locally as well as over to the next cue, with increased b power for
the “different” condition. Right panel, u only carried mismatch information at the next cue in the sequence. Significant time periods are highlighted with shaded gray bars. Vertical lines show
onset of cues in the sequence. The shaded error bars show standard error of the mean. C, Difference waves of conditions (“different” minus “same”) with 95% confidence intervals (CI) shown
by the dotted lines. After an initial dip there is a clear increase in b power following the conflicting cue (i) starting just before the onset of cue i1 1. Significant time periods are highlighted
with shaded gray bars copied from panel B for comparison. Note that the apparent onset of the effect before zero is because of limited time resolution of the time-frequency decomposition.
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cue, one after the onset of the conflict cue and one that extends
into the processing of the next cue in the sequence, this latter
effect is in the mid-high b band, possibly reflecting response in-
hibition. No other sources, nor the left STN showed any signifi-
cant effects. For completeness based on previous reports, we also
investigated coherence with the inferior frontal gyrus (IFG;
which was present as a source in patients at an uncorrected
threshold), and found that it did not show any significant coher-
ence with the STN. We also used debiased weighted phase lag
index as an alternative measure and found the same effects, albeit
with reduced significance (cluster 1: 690–910 ms,10–13 Hz,
p=0.043; cluster 2: 860–1150 ms, 20–24 Hz p=0.056).

Discussion
In this experiment, we present novel evidence pertaining to the
role of the STN and cortico-subthalamic communication during
sequential decision-making, using a task in which participants
had to integrate evidence over discrete time periods, with no
constraints on how many samples they could observe before
making a decision. We find evidence for persistent local conflict
representation in the STN via b oscillations, and increased co-
herence with frontal cortex. We also observed modulation of b
power in STN by evidence accumulation and number of cues
presented so far in a trial.

Representation of conflict in the STN
We found that activity in the b band carried information about
local conflict, i.e., a difference between the current cue and the
preceding one, but not about global conflict i.e., a surprise by the
current cue given all previous cues. Although we established that
b power varies depending on whether the current cue differs
from a previous one in a sequence, an event to which we refer as
a local conflict, it is less clear from our data what the function of
this activity is, and what fundamental variable it encodes.

It is possible that the observed changes in b power are con-
nected with motor inhibition. b power was initially lower for
cues that were “different” to the one immediately before and
continued to increase across the next cue in the sequence.
Activity in the b band has been shown to carry conflict infor-
mation across trials (Zavala et al., 2018), but we also show this
effect within a trial, as conflict arises within the sequence of evi-
dence. Hence, one can interpret the increase of b power as a
stop signal, or a break on motor output (Alegre et al., 2013) in-
hibiting a response after an inconsistent cue. Moreover, the ma-
jority of trials ended on a “same” cue (Table 1), which is in line
with an overall increase in b synchronization after “different”
cues and lower probability of responding.

The response to different cues could also be interpreted as
encoding of expectancy valuation, uncertainty or surprise. b
Power increases have been reported when a “surprise” stimulus
is presented (Wessel et al., 2016), and STN activity measured
with fMRI has been shown to increase when there is increased
uncertainty which option is correct arising because of too much
choice (Keuken et al., 2015). However, in our study we found
no evidence that the STN encodes the Shannon’s surprise term.

Interaction between STN and cortex
Interestingly, the “same”-“different” effect on average peaked
earlier in the cortex, and also did not carry over to the next cue
in the sequence (Fig. 4A). A possible interpretation is that the
cortex signaled the immediate local conflict to STN, dovetailing
with recent evidence suggesting the cortical conflict signal pre-
cedes the STN (Chen et al., 2020), which then maintains a more
persistent activity to inhibit responses (Brittain et al., 2012; Fife
et al., 2017).

When we localized the sources of the “same”-“different”
effect, we found the local conflict signal in widespread areas of
the cortex. Only one frontal source, located in dorsal premotor
cortex/supplementary motor area (dPM/BA6) showed a sig-
nificant coherence modulation with the ipsilateral STN only,
namely an increase in a/low-b coherence shortly after the off-
set of a “different,” or conflict, cue, and an increase in b coher-
ence that carried over to the next cue in the sequence (Fig. 5).
The right BA6, specifically dorsal BA6 (Mattia et al., 2012;
Mirabella, 2014), is well established as a cortical region involved

Figure 4. Cortical activity to local conflict parallels STN but peaks earlier on average and
has a shorter time course. A, Time-frequency plot showing significant times and frequencies
when contrasting “different” versus “same” cues, averaged over all significant sensors.
Significant sensors are shown as an inset, separately for the two clusters (cluster 1: 0–450
ms, 8–35 Hz; cluster 2: 550–800 ms, 9–25 Hz). B, Difference wave for the b effects over
clusters (13–30 Hz) band, as represented in Figure 3B. The dotted lines indicate 95% confi-
dence intervals (CI). C, Left, Source localization in a combined sample of patients and controls
revealed the source of cluster 1 in three right-lateralized areas: occipital pole, ventral tempo-
ral cortex and lateral premotor cortex (BA6). Right, Cluster 2 showed left lateralized superior
parietal lobe (BA7), left posterior cingulate cortex (BA23), right primary sensory cortex and
right dorsal premotor cortex/presupplementary motor area (dPM/BA6).
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in response-inhibition/initiation and cognitive control (Chambers
et al., 2007; Simmonds et al., 2008; Aron, 2011).

While it is well established that the cortex communicates with
the STN via two anatomically defined pathways, the indirect and
the hyperdirect pathways (Albin et al., 1989; DeLong, 1990;
Nambu et al., 2002), recent evidence suggests the existence of
two separate coherent b oscillatory networks between the cortex
and the STN (Oswal et al., 2016a). Here, we find evidence for
two different bands of oscillatory connectivity between the STN

and dorsal premotor cortex, which may have implications for
understanding the involvement of various pathways in sequential
evidence accumulation. Interestingly, a recent study showed evi-
dence of a hyperdirect pathway from IFG to the STN operating
in the 13- to 30-Hz range (Chen et al., 2020), which points to a
more ventral portion of the frontal cortex than presented here.
In fact, many studies in stop-signal/go-no-go tasks point to the
IFG (Aron et al., 2014); however, in these tasks, conflict is not
part of an evidence accumulation process, hence we may expect

Figure 5. Increased coherence between right frontal cortex and right STN during local conflict. A, Time-frequency plot of coherence between the right STN and the right dorsal premotor cor-
tex (visualized on the left). Two coherent clusters emerged, with an a/low b coherence increase after “different” cues, and a later increase in b coherence carrying over into the next cue in
the sequence. Significant clusters are shown in black outline. Inset on top left shows the source of the cortical effect for reference. B, Time courses of coherence for both a/low and high b
plotted as a difference wave between conditions. The dotted lines indicate 95% confidence intervals (CI). Significant timepoints are highlighted in gray. C, Frequency spectra of “same” (black)
and “different” (blue) trials during the significant time period from A. Gray area highlights significant frequencies:10–13, 18–24 Hz.
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differences depending on the type of decision being made (Erika-
Florence et al., 2014; Hampshire, 2015; Mosley et al., 2020).

Because of the evoked-activity as a result of the ongoing cue
presentation, we were unable to reliably estimate the directional-
ity of coherence, but previous reports on resting-state data have
shown cortex to drive STN activity (Litvak et al., 2011a), which is
in line with the finding here that the “same”-“different” effect
seems to peak earlier in the cortical signal. However, recent
data has also suggested that during processing of incongru-
ent stimuli, STN to primary motor effective connectivity is
increased in the b band (Wessel et al., 2019), suggesting that
the directionality of communication may be different across
task and non-task contexts.

Where is the h conflict signal?
The predominant theory of STN function, and also that of the
cortex during conflict detection, is the involvement of u oscilla-
tions (Cavanagh and Frank, 2014). A large portion of empirical
findings on the STN shows that it carries conflict information via
the u band (Cavanagh et al., 2011; Bastin et al., 2014; Zavala et
al., 2015, 2016, 2017, 2018; Herz et al., 2016). Yet in our task we
only found a weak effect of u modulation, in the cue following a
local conflict (cue i1 1). This effect was present only in the STN,
and no u effects were found in the cortex. Moreover, this mani-
fested as reduced u synchronization to “different” cues, which is
the opposite of the standard reported u increase during conflict.
One explanation may be the task design, as it differs from previ-
ous paradigms: there are no long intervals over which to exam-
ine slow oscillations, such as u . Our results, therefore, though
focused on u power, may be dominated by evoked potentials,
as cues were presented in a fixed, relatively short duration
sequence. Additionally, here conflict is defined over the course
of multiple cues, not on a singular trial in isolation. Thus,
the integration of conflict over time may in fact be driven by
different signals, b may represent a more consistent inhibition.
Nevertheless, others have also reported a lack of u effects in the
STN during a stop-signal task (Bastin et al., 2014).

Updating models of the STN
An influential model of the role of the STN in decision-making
proposed by Frank (2006) suggests that in situations of conflict
between competing responses an increased activity of STN post-
pones action initiation (Frank, 2006). This model proposes that
STN is essential for decision-making since it ensures that an
action is only selected when it has high evidence, relative to the
other options. Another model proposed by Bogacz and Gurney
(2007) suggests that the basal ganglia compute the reward proba-
bilities for selecting different actions according to Bayesian deci-
sion theory (Bogacz and Gurney, 2007; Bogacz and Larsen,
2011). While in our task we did not find conclusive evidence that
the STN is encoding Bayesian normalization (Fig. 2B), it is im-
portant to remember that, despite being on medication, these
experiments were performed in patients whose neural circuitry
has been affected by advanced Parkinson’s disease. Thus, one
cannot rule out the possibility that the Bayesian normalization is
encoded by the STN of healthy individuals, but testing this hy-
pothesis would require a different experimental technique (e.g.,
recording of STN neural activity from animals during an analo-
gous decision-making task, such as in Brunton et al., 2013).
Evidence also suggests that subdivisions within the STN may be
responsible for different types of inhibition, with prepotent
response inhibition to cues (go-no-go task) being more depend-
ent on the ventral portion of the STN (Hershey et al., 2010).

Given that the majority of our recording sites were well within
the dorsal (“motor”) region of the STN, we cannot rule out the
contribution of more ventral sites to these computations.

We conclude that contrary to the emphasis on u signals in
the context of immediate conflict, here we find a prominent role
for b oscillations in signaling local conflict in a sequence of evi-
dence. We find that both frontal cortex and the STN carry this
signal, and show increased coherence in the b band that carries
over to the next cue in the sequence. Thus, we show increased
communication in these areas may reduce the probability of
responding in the face of incoming conflicting information.
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