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Abstract

Synchronization of neural oscillations is thought to facilitate communication in the brain.

Neurodegenerative pathologies such as Parkinson’s disease (PD) can result in synaptic

reorganization of the motor circuit, leading to altered neuronal dynamics and impaired neural

communication. Treatments for PD aim to restore network function via pharmacological

means such as dopamine replacement, or by suppressing pathological oscillations with

deep brain stimulation. We tested the hypothesis that brain stimulation can operate beyond

a simple “reversible lesion” effect to augment network communication. Specifically, we

examined the modulation of beta band (14–30 Hz) activity, a known biomarker of motor defi-

cits and potential control signal for stimulation in Parkinson’s. To do this we setup a neural

mass model of population activity within the cortico-basal ganglia-thalamic (CBGT) circuit

with parameters that were constrained to yield spectral features comparable to those in

experimental Parkinsonism. We modulated the connectivity of two major pathways known

to be disrupted in PD and constructed statistical summaries of the spectra and functional

connectivity of the resulting spontaneous activity. These were then used to assess the net-

work-wide outcomes of closed-loop stimulation delivered to motor cortex and phase locked

to subthalamic beta activity. Our results demonstrate that the spatial pattern of beta syn-

chrony is dependent upon the strength of inputs to the STN. Precisely timed stimulation has

the capacity to recover network states, with stimulation phase inducing activity with distinct

spectral and spatial properties. These results provide a theoretical basis for the design of

the next-generation brain stimulators that aim to restore neural communication in disease.

Author summary

Diseases of the brain lead to a wide range of disabling symptoms for patients, by affecting

their ability to move or think properly. These symptoms arise from disruption to both the
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organization of networks in the brain, but also the timing of neural activity that propa-

gates around it. Treatments for disease with drugs can restore the organization of these

networks to some extent, yet it is very difficult to deliver drugs with good spatial or tempo-

ral selectivity. Brain stimulation provides one way in which to improve the spatial specific-

ity of treatment, yet understanding how to stimulate at the right time to achieve the best

outcome for patients, remains an outstanding question. In this work we use simulations

of an important circuit involved in Parkinson’s disease that has parameters chosen to

reflect recordings made in animal models of the disease. Using this computer model, we

show how brain rhythms can act as signatures of underlying changes in networks. Further,

we simulate intervention with temporally precise stimulation to show how future

approaches to brain stimulation can act to restore or even augment neural networks fol-

lowing their degeneration in disease.

Introduction

Current theories of communication in the brain hypothesise that phase synchronization [1]

binds populations of neurons into transient assemblies [2] that facilitate the segregation and

gating of information transfer [3]. Factors determining the efficacy of synchronous communi-

cation comprise: (A) the effective density of spikes received at the target- determined by the

network of axonal tracts as well as the synaptic ultrastructure responsible for neural transmis-

sion, and (B) the receptivity of the target population determined by the temporal coordination

of neuronal activity between the sender and receiver [4].

Neurodegeneration in diseases such as Parkinson’s (PD) cause widespread changes in neu-

ral activity of the cortical-basal ganglia-thalamic (CBGT) circuit [5,6] leading to the motor

impairments seen in patients. In terms of factor A (described above), degeneration of nigros-

triatal dopaminergic neurons leads to the synaptic reorganization of the CBGT circuit [7].

Two important consequences are: i) the weakening of the cortico-subthalamic hyperdirect

(HD) pathway [8–10]; and ii) the strengthening of the pallidal-subthalamic (PS) pathway

[11,12]. Altered connectivity is hypothesized to disrupt temporal dynamics [13] (factor B;

described above) such as the over-expression of beta frequency (β: 14–30 Hz) rhythms and

synchrony, observed in patients [14] and animal models of disease [15]. Notably, these

rhythms comprise transient intermittencies in amplitude (i.e., beta bursts) that become elon-

gated and more frequent in Parkinsonism [16,17].

By modulating factor A, via synaptic reorganisation; or factor B, by altering the temporal

relationship of activity between the sender and receiver, the efficacy of synchronous communi-

cation may be enhanced [4]. Importantly, either factor may be changed to compensate for a

deficit in the other. Current pharmacological interventions in PD (e.g., Levodopa) principally

target factor A- by restoring dopamine availability at the synapses. This has the secondary

effect of altering neural activity (i.e. factor B) as evidenced by the reduction in beta power [18],

attributable to a decrease in the rate and length of beta bursts [17]. Importantly, these changes

may restore physiological transmission [19] yet pharmacological treatments are spatially non-

specific and can induce side effects such as dyskinesias [20].

These two factors of neural communication can also provide targets for the improved

design of therapeutic brain stimulation (e.g., deep brain stimulation- DBS). Conventional DBS

reduces motor symptoms which are correlated with the suppression of beta band activity (i.e.

factor B) [21] attributable to a shortening of beta bursts [22]. DBS and Levodopa both achieve

similar therapeutic effects, but ostensibly in different ways: stimulation modulates neural

PLOS COMPUTATIONAL BIOLOGY Stimulating at the right time to recover network states

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009887 March 4, 2022 2 / 32

version controlled repository accessible at https://

doi.org/10.5281/zenodo.5971846.

Funding: This work was supported by Medical

Research Council UK Awards MR/R020418/1 (to

H.C.), U138197109, MC_UU_12020/5,

MC_UU_12024/2 and MC_UU_00003/5 (to P.J.

M.), and MC_UU_12024/1 and MC_UU_00003/6

(to A.S.); Parkinson’s UK Grant G-0806 (to P.J.M.);

The Wellcome Centre for Human Neuroimaging is

supported by core funding from the Wellcome

203147/Z/16/Z (V.L.). S.F.F. acknowledges funding

support from the UCLH Biomedical Research

Centre. The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1009887
https://doi.org/10.5281/zenodo.5971846
https://doi.org/10.5281/zenodo.5971846


activity directly (particularly on the shorter time scale); whilst dopamine replacement causes

changes in activity via the modulation of synaptic transmission. Nonetheless, current usage of

DBS leads to effects similar to a surgical lesion [23]. Recent work suggests by refining the pat-

tern of stimulation to target bursts of high amplitude beta activity [22,24] or altering its timing

to match specific phases of the oscillation [25,26], it is possible to improve the specificity of

therapy.

Unlike conventional DBS, phase specific stimulation can directly target oscillatory bio-

markers of disease with the goal of improving neural communication [27–29] and atten-

dant behavioural effects [30]. In Parkinsonism specifically, stimulation of the basal ganglia

(such as the subthalamic nucleus STN, or internal globus pallidus GPi) has been shown to

both amplify or suppress pathological beta oscillations, dependent on the specific phase

targeted in both primate disease models [26] and patients [25]. Furthermore, the feasibility

of multi-site control policies [31,32] has expanded the potential for phase specific stimula-

tion to manipulate whole networks—with the possibility of delivering stimulation to one

region of the brain (e.g., the STN) in closed-loop with that recorded at another (e.g., in the

cortex).

We hypothesised that deficiencies in communication arising from synaptic reorganization

in PD (i.e., factor A), may be compensated for by altering the timing of neural activity (i.e., fac-
tor B) through phase specific stimulation. To test this hypothesis, we used a neural mass model

of the CBGT circuit constrained to spectral features of recordings made in a rodent model of

PD. We summarise the changes in neural population activity (i.e., change to spectra and func-

tional connectivity) associated with different network states (i.e., changes to structural connec-

tivity) using statistical summaries that we term spectral fingerprints [33]. These summaries

were estimated within transient bursts of activity that are significantly altered in PD [16,17].

We then used a model of on-line, phase-specific stimulation to establish how exogenous inputs

can compensate for synaptic reorganization (i.e., factor A), by modulating the timing of neural

activity (i.e., factor B) to selectively restore circuit wide patterns of synchronization. Specifi-

cally, following experimental work establishing dual-site stimulation and sensing [32,34], we

explored both STN and motor cortex as potential sites for stimulation control and delivery.

The results described here can inform the development of next-generation brain stimulation

approaches that aim to recover and augment states of synchronous communication impaired

in neurodegenerative disorders.

Results

Overview of results

We simulated a neural mass model of population activity propagating across the CBGT circuit

to test four main hypotheses: (1) how can changes in “network state” (e.g. the strengthening or

weakening of synaptic input to the STN) alter the spectral features of population activity; (2)

on a wider scale, how do these same changes impact network wide phase synchronization; (3)

how can phase specific stimulation compensate for synaptic changes, by mimicking spectral

fingerprints associated with different network states; and finally, (4) how are the effects of

stimulation dependent upon spontaneous alterations in the circuit’s connectivity (e.g. due to

further pathological or activity dependent synaptic reorganization). We frame our results in

terms of Parkinsonian high amplitude beta oscillations that are known to be electrophysiologi-

cal correlates of bradykinesia [14,35]. This gives focus to our central goal of informing the

design of novel control algorithms to manipulate synchronous network activity associated

with disease.
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A data constrained model of the cortico-basal ganglia-thalamic circuit

exhibits synchronized beta band activity

We constrained the parameters of a neural mass model of the CBGT circuit to best fit the spec-

tra and directed functional connectivity of data recorded from a 6-OHDA rodent model of PD

[35]. A schematic of the model architecture, examples of time series and spectra from the

recordings and simulations are presented in Fig 1. For the full set of data features (including

the directed functional connectivity) and model fits, see supplementary S1 Fig. Properties of

the nodes for which no empirical data were available (i.e., the GPi and Thal.), were inferred by

the model fitting procedure (Fig 1B inset spectra; indicated with black solid lines).

Several qualitative features of the experimental data (reported in [36]) were well repro-

duced: 1) a beta peak was found across all spectra in the network (Fig 1B; inset spectra); 2) sig-

nificant STN!M2 directed functional connectivity indicating feedback of beta oscillations

Fig 1. Schematic of the cortico-basal ganglia-thalamic model and fit to empirical data from Parkinsonian rodents. A model

describing the population activity in this circuit was fit to data features (power spectra and directed functional connectivity) of (A)

electrophysiological recordings: electrocorticography from motor cortex M2 (blue) as well as local field potentials from striatum (STR;

red) external segment of the globus pallidus (GPe; green) and the subthalamic nucleus (STN; yellow) made in a 6-OHDA-lesioned

rodent model of Parkinsonism. Data were normalized and band-passed at 4–100 Hz before being transformed to the data features used

to estimate parameters. (B) Schematic of model architecture, detailing excitatory/glutamatergic projections (triangular nodes with

arrows) and inhibitory/GABAergic projections (circular nodes with ball ended arrows). The motor cortex microcircuit comprises three

layers: superficial pyramidal cells (SP; supragranular); middle pyramidal (MP; granular); and deep pyramidal cells (DP; infragranular),

plus an inhibitory interneuron population (II). The basal ganglia model comprises four populations: STR, GPe, STN, and internal

segment of the pallidus (GPi). The GPi forms the output of the basal ganglia and acts to inhibit relay cells of the ventrolateral thalamus

(REL). GPi and REL were treated as hidden nodes and their respective neural activities were inferred from the dynamics of the

empirically recorded brain regions. The main subcortical pathways include the direct, indirect, hyperdirect, and cortico-thalamic

interactions. The inset graphs indicate the empirical and simulated power spectra in bold and dashed lines, respectively. For the full set

of empirical and fitted data features please see S1 Fig. (C) Simulations of this circuit yields time series with transient, burst like behaviour

similar to that seen in vivo (A).

https://doi.org/10.1371/journal.pcbi.1009887.g001
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from subcortex to cortex (supplementary S1 Fig); 3) stochastic “bursting” behaviour qualita-

tively similar to that in vivo (Fig 1A and 1C). Note that feature (2) is pronounced in the origi-

nal 6-OHDA rodent data but has not been found in human data where functional connectivity

is predominantly lead by cortical activity [37,38].

Nonetheless, model fits did not well reproduce the broadband high frequency activity (30–

60 Hz) present in the data (Fig 1B; inset spectra). The model also produced activity at two sub-

peaks at lower (β1: 14–21 Hz) and upper (β2: 21–30 Hz) beta frequencies, reflecting the

bimodal structure of directed functional connectivity (see analysis of multiple Gaussian fits to

features from individual animals; S2 Fig), and in line with experimental reports of a function-

ally related subdivision of the beta band [39,40].

The strength of synaptic inputs to the STN from the pallidum and cortex

leave distinct spectral features in STN/M2 population activity

We tested our first hypothesis that changes in connectivity leave their signature in the spectra

of population activity. We examined how changes in subthalamic inputs from the HD and PS

pathways modulate the spectra and coherence of the STN and M2, with the aim of using these

spectral features to later classify the outcomes of cortical stimulation phase locked to β1

rhythms sensed in the STN (see results section “Phase stimulation can Mimic the Spectral Fea-

tures and Synchronization of Network Activity Relating to Altered Connectivity”).

As introduced, experimental Parkinsonism results in down- or up- regulation of the hyper-

direct (HD) and pallido-subthalamic (PS) pathways, respectively. In Fig 2, we show simula-

tions in which the synaptic strengths of either the PS or HD pathways (panels A and B respec-

tively) were altered to allow the modulation of spectral features between states. We defined an

Up- and Down- state for both HD and PS pathways according to the properties outlined in the

Materials and Methods section “Definition of Discrete Network Estates”.

Since the parameters of the neural mass model were constrained using data from 6-OHDA

lesioned rats, PS-Up (colour coded in figures with purple) andHD-Down (red) states reflect a

hypothetical network associated with disease progression, and worsened symptom severity

(Fig 2C). In contrast PS-Down (green) andHD-Up (blue) states reflect a dopamine intact net-

work accompanying a reduction in disease symptoms and associated electrophysiological sig-

natures of disease.

Simulations revealed that rhythmic activity in beta band was amplified further in the PS-Up
andHD-Down states, whilst there was a marked reduction in STN and M2 beta rhythms in

PS-Down andHD-Up states, as would be expected from the beta biomarker hypothesis of PD

[14]. Fig 2D demonstrates that increasing the strength of the PS pathway (i.e., PS-Up) results

in spectra with broadband amplification of beta (β1 and β2) power in the STN. Changes to cor-

tical (M2) power spectra (Fig 2E) were more complex and exhibited a two-part response: (a) in

the range of 30% to 100% connection strength, β1 showed a higher sensitivity to connection

strength changes than β2, with the former increasing by ~80% from the PS-Down state up to

that observed in the fitted model (i.e., the 6-OHDA lesioned state); (b) however, at connection

strengths greater than 100%, a broadband amplification occurred resulting in spectra similar

to that seen in the STN in PS-Up (described above). This is recapitulated by the response of the

M2/STN coherence (Fig 2F) which follows changes in M2 power.

Examination of the spectra in the intermediate states linkingHD-Down toHD-Up showed

that strengthening this pathway above 160% exposes a transition in STN peak frequency from

β1 to β2 (Fig 2G). This effect was also present in cortical (M2) activity (Fig 2H), but with the

switch occurring at weaker connection strengths (~100% HD weight). Similarly, cortico-sub-

thalamic coherence followed increases in M2 power (Fig 2I) with β2 synchrony most
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Fig 2. Modulating the strength of inputs to the subthalamic nucleus (STN) from both hyperdirect (HD) and pallidosubthalamic (PS)

pathways leaves distinct spectral features in the oscillatory activity and synchronization of cortex (M2) and STN. Two discrete

network states were defined for each pathway: a Down-regulated state fixed at 10% connectivity, as well as an Up-regulated state set at the

connection strength eliciting ~200% increase in STN beta power. The fitted model (i.e., the 6-OHDA lesioned state, represented at 100%

connectivity) is given in black. (A) Schematic of PS-Up (purple, 145% connection strength) and PS-Down (green, 30% connection

strength). (B) Schematic ofHD-Down (red, 30% connection strength) andHD-Up (blue, 350% connection strength). (C) Legend to the

network states placed on a hypothetical scale from a dopamine intact state associated with a reduction in motor symptoms (far left), to the

fitted model (with parameters constrained by data from 6-OHDA rat model of Parkinsonism; middle), to states indicating further

progression of the pathology and worsening of motor symptoms (far right). (D) PS network states leave distinct spectral features in the

power spectra of STN, with modulation occurring between lower (β1) and upper beta (β2) bands. (E) Similar responses can be seen in the

M2 power spectra; as well as in (F) the functional connectivity between STN and M2 in terms of the magnitude squared coherence. (G, H,

and I) Same as (D, E, and F) but for theHD defined states. Grey lines show the intermediate spectra generated between Up and Down

states.

https://doi.org/10.1371/journal.pcbi.1009887.g002
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predominant in theHD-Up state. A similar differential response of beta sub-bands in Parkin-

sonism has been reported experimentally [40] and will be used as the main spectral discrimina-

tor between HD-Down andHD-Up states in this model.

The strength of hyperdirect and pallidal inputs to STN shape network-wide

patterns of phase synchronization

We next tested our second hypothesis that changes in connectivity (i.e., the strength of PS or

HD inputs to the STN) can impact synchronization across the entire CBGT circuit. To this

end, we investigated the phase synchronization occurring within bursts of rhythmic activity

since these are significantly altered in Parkinsonism [16,41,42], and are commonly targeted

with closed-loop stimulation (results section “A Model of Dual-site Controlled Phase Locked

Stimulation can Effectively Modulate Spectral Features of Population Activity”). Bursts were

defined by setting a threshold on the envelope of STN activity band-passed at beta frequencies

(see Materials and Methods section “Definition of Transient Burst Events and Statistics” and

Fig 3A). Due to the bimodal nature of the STN spectra, bursts, and phase synchronization

(within-burst phase locking value- PLV) were derived separately for β1 and β2 frequencies.

We used simulations from the four previously defined Up and Down network states to con-

struct connectivity matrices (Fig 3B) representing the change in the within-burst phase locking

value (PLV) from that measured in simulations of the fitted model (significance tested against

surrogate distribution–see Materials and Methods section “Phase Synchronization: Connectiv-

ity Matrices and Time Resolved Estimates”, permutation-test (500), α� < 0.05). In the two

states associated with an amelioration in motor symptoms (PS-Down andHD-Up), we found

two major effects: (a) downregulation of the PS connection to 30% of its strength in the fitted

model (i.e., in the dopamine depleted state) significantly reduced cortical and thalamic β1

phase synchrony (PS-Down; Fig 3B, groups labelled I and II). (b) The switch to β2 frequencies

in the STN and M2 induced by strengthening of the HD pathway (described in the previous

section) is also seen in increased cortical and thalamic β2 synchrony with the rest of the net-

work (groups III and IV respectively), and occurs simultaneously to changes in β1 synchrony

in the same regions (groups V and VI).

When looking at the states associated with disease progression, we found that strengthening

pallidal inhibition (i.e., PS-Up) resulted in a selective desynchronization between STR and its

downstream targets in the indirect pathway (GPe, STN, and GPi) at β2 frequencies (group

VII). This suggest that increased pallidal inhibition of the STN results in the loss of frequency

selective synchronization of the indirect pathway. Furthermore, downregulation of the HD

pathway (HD-Down) was associated with significant decreases (from the fitted model) in β2

cortico-subthalamic PLV (group IX). We refer to the switching of synchronization between β1

and β2 frequency associated with modulation of the HD pathway strength as a “conditioning”

effect, that we will later relate to the effects of cortical stimulation.

Examination of the phase reorganization of population activities during

transient beta bursts

To understand how transiently phase synchronized networks emerge during bursts of high

amplitude beta activity and how they are shaped by synaptic inputs to the STN, we next per-

formed a set of time resolved analyses of the phase alignment between M2 and STN regions

(Fig 3C–3J). Since STN rhythms in β1 were more prominent than β2 in the model fitted to the

6-OHDA lesioned state, and in states associated with worsening of symptoms (i.e.,HD-Down,

shown in Fig 2), we used this sub-band to define the bursts and estimate changes in the

dynamics of phase synchronization during beta bursts. We specifically looked at transient
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Fig 3. Changes in hyperdirect (HD) or pallido-subthalamic (PS) network states result in circuit wide alterations in transient (i.e.,

within-burst) phase synchronization at beta band frequencies. Data were simulated using the four predefined network states (see

main text and Fig 2) of the CBGT model: PS-Up (purple), PS-Down (green),HD-Up (blue), andHD-Down (red). (A) 120s of data were

simulated from each model and then bandpass filtered at lower or upper beta band. The Hilbert envelope was used to defined “burst”

epochs as periods of suprathreshold (>75th percentile) activity in the STN (shaded yellow area). Phases across all six sources in the

model were reconstructed using the angle of the Hilbert transformed signals. This phase estimate was used to construct connectivity

matrices or time-locked statistics of burst activity. (B) Connectivity matrices indicating all possible pairs of within-burst phase

synchronization (PLV) across the CBGT circuit. Matrices show the difference in PLV from that of the fitted model, color-coded

according to the inset colorbar. The matrix is thresholded to only show significant changes in PLV from those estimated in the fitted

model (compared to surrogate distribution, permutation-test (500), α< 0.05). Results for lower and upper beta are shown in the top and

bottom diagonals respectively. (C and G) Radar plot of within-burst (i.e., when the STN envelope is suprathreshold) changes in STN/M2

phase difference. Circles indicate median, with bars giving the circular standard deviation. �indicate significant Rayleigh test for

difference in mean phase from those computed from length matched, randomly selected out-of-burst data. Note that the radial

dimension has no meaning, bars are offset for presentation purposes. Angular lengths should be interpreted with relation to the grid-

lines. (D and H) Analysis of the STN amplitude envelope between PS-Up/Down andHD-Up/Down filtered at lower beta frequencies.

Traces are mean +/- S.E.M timelocked to burst onset at t = 0. Bars indicate significant cluster-statistics for deviation from length-

matched, out-of-burst data (cluster-statistic (500), α< 0.05). (E and I) Analysis of M2/STN phase difference (centred relative to the

mean phase at 0˚). (F and J) Scatter plots of burst amplitude versus the relative phase stability (estimated as the mean absolute derivative

of STN/M2 phase difference in the window 0 to +500 ms). In the case where there was a significant Pearson’s correlation coefficient (R),

we plot a regression line. Overall burst amplitude was correlated with phase stability.

https://doi.org/10.1371/journal.pcbi.1009887.g003

PLOS COMPUTATIONAL BIOLOGY Stimulating at the right time to recover network states

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009887 March 4, 2022 8 / 32

https://doi.org/10.1371/journal.pcbi.1009887.g003
https://doi.org/10.1371/journal.pcbi.1009887


dynamics in phase corresponding to β1 bursts, as these periods of activity are later targeted

with phase specific stimulation (results section “A Model of Dual-site Controlled Phase Locked

Stimulation can Effectively Modulate Spectral Features of Population Activity”).

Population activities from the up or down modulated network states exhibited a reorganiza-

tion in their within-burst phase alignment relative to that observed in the fitted model (Fig 3C

and 3G; first column). The PS-Up state exhibited a close to anti-phase relationship (203±5˚)

between M2 and STN and was found to be similar to that forHD-Down- the other state associ-

ated with worsened motor symptoms (panel H; red line, 172±29˚). Interestingly, bothHD-Up
and PS-Down- states associated with weakened β1 amplitude (and accordant reduction in PD

symptoms)- exhibited a much larger variance, with that of PS-Down approaching a 45˚ circular

standard deviation. This suggests that an optimal phase alignment exists for promotion of β1

bursts, a feature that we attempt to leverage when implementing phase specific stimulation.

Across all simulated states, there was a rapid adjustment of cortico-subthalamic phase dif-

ference around burst onset (panels E and I), as seen by the initial transient phase reorganiza-

tion that is most prominent prior to peak amplitude within a burst. However, the phase

evolution in the states associated with a reduction in Parkinsonian symptoms and weaker β1

burst amplitudes (PS-Down- green trace, orHD-Up–blue trace) exhibited: (a) a larger transient

deviation in phase, and (b) noisier dynamics that settled more slowly over the duration of the

burst after the burst amplitude started reducing. Note that the direction of change in relative

phase was not consistent across different states.

Corroborating this, analysis of the stability (in terms of the mean rate of change) of the

phase difference between STN and M2 activity during a β1 burst (i.e. at 0 to 750ms after burst

onset) using the Relative Phase Stability metric (see Materials and Methods section “Phase

Synchronization: Connectivity Matrices and Time Resolved Estimates”) directly correlated

with STN β1 burst power in three out of the four states (Fig 3F and 3J; Pearson’s R, P� 0.001).

This supports the idea that maintenance of high amplitude activity accompanies periods of sta-

ble phase locking between STN and M2, although it does not determine whether these changes

in phase drive those in amplitude or vice-versa (see results section “A Model of Dual-Site Con-

trolled Phase Locked Stimulation Can Effectively Modulate Spectral Features of Population

Activity” below for a direct manipulation of phase in the model).

A model of dual-site controlled phase locked stimulation can effectively

modulate spectral features of population activity

We next examined our third hypothesis that phase-specific stimulation could modulate oscil-

latory activity using a model of on-line, closed-loop stimulation with a phase-locked control

algorithm. We devised a dual-site control policy using STN as the sensing site (to gate and

parameterize stimulation) and M2 as the stimulation site (cartooned in Fig 4A). Since STN

rhythms in β1 were the most amplified features in states associated with worsening of symp-

toms (i.e.,HD-Down and PS-Up) we targeted this band with closed loop stimulation. Cortical

stimulation was delivered at the onset of a β1 burst sensed in the STN and was locked to differ-

ent phases of this activity. This stimulation/sensing pair was chosen as it provided superior

STN beta suppression than the alternative scenario with STN stimulation with cortical sensing

for the same stimulation thresholds and amplitudes (supplementary S4 Fig). Furthermore,

supplementary analyses (S7 Fig) showed that flexible state recovery (a principle goal of this

work; see results section “Phase stimulation can mimic the spectral features and synchroniza-

tion of network activity relating to altered connectivity”) with STN stimulation was inferior

when compared to the cortical stimulation presented. Stimulation was modelled through the

addition of a sinusoidal voltage to the average membrane potential of the superficial cell layer
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in the cortical microcircuit. Input amplitude was fixed to 1/3 of the intrinsic noise level and

the central frequency was set to 18 Hz. The phase was constructed to preserve a fixed phase

alignment with the bandlimited signal (at β1) sensed from the STN population. We also tested

a number of non-phase specific control strategies, including sinusoidal 18 Hz (with random

phase), as well as playback of phase-locked stimulation (see Materials and Methods section

“Modelling Phase Locked Stimulation of Motor Cortex Using Activity in the Subthalamic

Nucleus”). None of these alternative stimulation strategies were able to achieve a suppression

of beta rhythms in the model (supplementary S3 Fig; see also discussion).

Fig 4. A model of dual-site controlled motor cortical stimulation phase locked to signals sensed in the subthalamic nucleus, can

modulate beta activity across the network. (A) Schematic for phase specific neuromodulation in the rodent brain. Activity at the STN is

used to gate stimulation delivery at M2. (B) Stimulation waveforms were generated using an 18 Hz sinusoid, with phase constructed to be

offset against an on-line phase estimate of STN activity. Stimulation was delivered as a direct voltage injection to the stimulated population

(superficial layer of M2). Effects upon β power were either amplifying (blue; 330˚) or suppressing (orange; 150˚) depending on the phase. (C)

Amplitude response curves of power in the motor cortex, STN, as well as their synchronization (in terms of coherence) when sweeping across

12 stimulation phases. Curves are shown separately for lower (β1; bold line) or upper beta (β2; dashed line). Corresponding spectra are shown

in supplementary S5 Fig. (D) Analysis of mean M2/STN phase difference during stimulation period (centred relative to the mean phase at 0˚)

filtered at lower beta frequencies. Circular markers indicate median, with bars giving the circular standard deviation. �indicate significant

Rayleigh test for difference in phases from the unstimulated, fitted model. Note that the radial dimension has no meaning, bars are offset for

presentation purposes. Angular lengths should be interpreted with relation to the grid-lines. (E) Analysis of the STN amplitude envelope

during stimulation. (F) Analysis of M2/STN phase difference tracked across time. Traces are mean+/- S.E.M time locked to burst onset at t = 0.

Bars indicate significant cluster-statistics for deviation from the unstimulated model (two-sample t-test, n = 500, α< 0.05).

https://doi.org/10.1371/journal.pcbi.1009887.g004
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An example trace activity observed during stimulation is given in Fig 4B. This shows: (a)

how the controller tracks phase and delivers a stimulus (to M2) with a phase shift relative to

the sensed population (STN). Phase estimation is impaired towards the end of suppressing

stimulation (e.g., orange traces) due to the reduced SNR; and (b) the effects of stimulation

upon the rhythmic activity in the STN are dependent upon the specific phase, with some

amplifying and others suppressing (examples in blue and orange respectively). The stimulation

angle with respect to the underlying sine wave is shown in the first panel of Fig 4C. The effects

upon the power, and coherence between the motor cortex and STN are summarised as ampli-

tude response curves (ARCs) in the remaining panels of Fig 4C. The total range of modulation

for STN β1 (bold lines) is -18% to +155%, and for β2 (dashed line) is +10% to +60% compared

to the power in the unstimulated model. The total range of modulation for M2 power β1 is

-17% to +240%, and for β2 is 0% to +40%.

The suppressive and amplifying effects of phase locked stimulation can be

explained in terms of their effects upon phase progression within bursts

To understand how the effects of stimulation upon transient burst activity compare to that

occurring spontaneously (i.e., the analyses in Fig 3).–we investigated phase coupling in the β1

band (i.e., the frequency of activity sensed in the STN and targeted by stimulation) between

the STN and motor cortex (i.e., the sensing and stimulating sites respectively) during phase

specific cortical stimulation. Fig 4D shows that cortical stimulation induces a significant shift

in the phase difference between STN and M2 for the duration of stimulation, for both amplify-

ing (blue; 151±10˚; compared to the unstimulated model; Watson-Williams (103) = 13.45;

P< 0.001) or suppressing (orange; 221±11˚; compared to the unstimulated model; Watson-

Williams (103) = 31.66; P < 0.001) stimulation. Notably, the phase was shifted in opposite

directions corresponding to whether stimulation was β1 amplifying (closer to in-phase) or sup-

pressing (closer to anti-phase).

Analysis of the burst envelopes (panel E; clusters indicate significant shift from unstimu-

lated model; indicated by bold bar above traces) shows that amplifying effects of stimulation

(blue; targeting 330˚) are achieved by sustaining and moderately amplifying β1 amplitude

across the burst, whilst suppressive effects (orange; targeting 150˚) arise due to a rapid shorten-

ing of the burst duration. Accompanying changes in cortico-subthalamic phase alignment dur-

ing stimulation (panel F) were different to that observed spontaneously (i.e., in Fig 3).

Previously, changes in phase around the burst were predominantly made up of a transient slip

near the initiation of the burst. Instead, when stimulation was applied, there was a phase

realignment that is sustained across the stimulation period.

Phase locked stimulation does not always induce a change in phase alignment, as we dem-

onstrate when the same analysis was performed at β2 frequencies (i.e., the non-targeted fre-

quency, supplementary S5 Fig). Changes in within-burst β2 dynamics are delayed

(approximately +100 ms after stimulation) suggesting that the emergence of these rhythms in

the STN potentially result from the rapid suppression of β1 rhythms as was shown in Fig 4C,

and could result from propagation of a cortically derived β2 rhythm.

Phase stimulation can mimic the spectral features and synchronization of

network activity relating to altered connectivity

We then tested the hypothesis that the phase specificity of stimulation can provide selective

modulation of the spectra and network-wide changes in synchronization of rhythmic activity

that can mimic changes in synaptic connectivity. To do this we compared the spectral finger-

prints of spontaneous population activity following alterations of synaptic connectivity
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(depicted in Figs 2 and 3B), with those estimated from activity during stimulation (depicted in

Fig 4). These summaries of population activity (Fig 5A–5C) were computed using two statisti-

cal features: (a) the concatenated power spectra of the six regions in the model; and (b) the

connectivity matrix indicating the magnitude of the pairwise complex PLV (see Materials and

Methods section “Characterizing Network States with Spectral Fingerprints”). Fingerprints

between stimulated and spontaneous data were then compared for similarity using the pooled

R2. The results of this analysis are presented in Fig 5D and 5F and show that depending upon

the feature used to summarise the circuit activity, different phases of stimulation can trigger

activity that resembles to different degrees (in terms of the pooled R2) each of the four previ-

ously defined network states.

In Fig 5D, comparison of the local power spectra between stimulated and spontaneous

states shows that, cortical stimulation phase-locked to STN β1 activity can evoke rhythmic

activity resembling either theHD-Up/Down or PS-Up states (>60% of the explained variance).

Notably there was an anti-phase relationship between stimulation outcomes with spectral fin-

gerprints most resembling theHD-Down (peak R2 = 0.96 at 330˚) and theHD-Up states (peak

R2 = 0.72 at 150˚). This antiphase recovery of states mirrors that of the switch between β1 and

β2 power in the STN (shown in Fig 4C), but goes beyond this to show that cortical stimulation

modulates spectral features across the wider network. This argument is reinforced by compari-

sons between stimulation outcomes and patterns of network-wide phase synchronization (Fig

5E). Recovered states most resembled Up- or Down- regulation of the HD pathway, but also

showed differences with the mapping using just power spectra. In particular there was a peak

in the recovery of PS-Down (peak R2 = 0.76 at 90˚) when the recovery of PS-Up was at its low-

est (trough R2 = 0.56 at 90˚). The difference in recovery with summaries of either spectral or

phase synchronization suggests a disconnect between the two features, with stimulation more

readily changing interregional synchronization than local power spectra. Furthermore, the

ability to accurately recover states related to an upregulated HD pathway, suggests that M2

stimulation phase locked to β1 activity in the STN may have the potential to restore network

activity following degeneration of this same pathway in response to dopamine depletion.

In line with this, recovery of network states, linked to empirically derived control/lesion

connectivity patterns (supplementary S6 Fig), exhibited an antiphase relationship. Note how-

ever, the ability of stimulation to recover spectral fingerprints derived from dopamine intact

control animals (R2< -1) was poor. Spectral profiles derived from control animals did not con-

tain a distinct peak in the beta band which gave rise to this poor performance. Complete sup-

pression of beta rhythms is not reproducible with the ~17% maximal β1 suppression

achievable with modelled stimulation. These data reflect not only hypothesised changes in HD

and PS pathways, but reconfigurations of the wider network expected to accompany dopamine

depletion.

When both spectral and phase synchronization features were combined to give an overall

mapping of stimulation phase to states (Fig 5D), we confirmed the ability of phasic stimulation

to broadly mimic activity matching Up- or Down- regulation of the HD pathway, as well as

capture > 60% of the variance of features associated with the PS-Up state. None of the stimula-

tion phases achieved over 45% explained variance of features derived from the PS-Down state.

Phase locked stimulation can compensate for changes in synaptic

connectivity by mimicking network states

Finally, we test to what extent the recoverability of states is limited by the network connectiv-

ity. We formed a set of secondary models in which the strength of either the HD or PS path-

ways was modulated across a continuous scale, and then examined the match with fingerprints
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Fig 5. Stimulation of the cortex phase locked to activity sensed in the STN can induce network-wide patterns of activity that

resembles those corresponding to spectral fingerprints of spontaneous activity associated with changes in connection strength. (A)

Data simulated from the four network states PS-Up (purple), PS-Down (green),HD-Up (blue), andHD-Down (red) (see main text and

Fig 2) was used to compute spectral fingerprints of spontaneous burst activity which were then compared against those constructed from

the outcomes of phase locked stimulation. Only data during which stimulation was delivered (i.e., within a high amplitude STN beta

burst event) was analysed. We used two different spectral fingerprints to compare network states with stimulated epochs: (B) the

concatenated power spectra of each of the 6 populations in the CBGT circuit. Data were normalized to unit variance prior to

concatenation such that comparisons were focused on the shape of spectra rather than large differences in amplitude. (C) Matrices of the

pairwise phase synchronization (magnitude of the PLV) were estimated using the Hilbert transformed signals (see Fig 3A) for both β1

and β2 frequencies. (D, E, and F) Stimulation was applied across 12 phases in the fitted model and data were compared (using pooled R2)

to each network state using: the concatenated spectra (D); the matrix of PLV magnitudes (E); and the two features combined (F). These

results show that spectral fingerprints from stimulation outcomes resembles that from different network states (i.e., a change in synaptic

connectivity) depending upon the phase at which stimulation was delivered. (G, H, I) The above was repeated but when varying the

connection strength of the PS pathway. Results are plot as a heatmap color-coded to indicate the best fitting state at each phase (x-axis;
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of spontaneous activity in the four discrete network states used throughout the paper (Fig 5G–

5I and 5J–5L respectively). Results show that the states accessible are dictated by the strength

of inputs to the STN. At weakened PS pathway strengths (close to ~80%,) stimulation is most

flexible, and able to access 3 out of 4 states (Fig 5G), with the range increasing when using

phase synchronization as the feature to be compared (Fig 5H). As pallidal inhibition of the

STN is weakened, it becomes harder to mimic the patterns of activity linked to the PS-Up state

as subcortical synchronization at β1 frequencies is effectively arrested.

Similarly, both strengthening or weakening of the HD pathway reduces the range of net-

work states accessible with stimulation (Fig 5J–5L). Again, fingerprints of phase synchroniza-

tion related toHD-Up orHD-Down were most readily accessed, with both recoverable when

HD strength was in the range 70–311% (Fig 5K). These results suggest that the capacity of

well-timed stimulation to recover both local and network signatures will be moderated by the

strengths of connectivity within the CBGT circuit.

Discussion

Summary of findings

Using simulations of the CBGT circuit (Fig 1), we have shown that network-wide synchroniza-

tion, disrupted by altered synaptic connectivity, may be restored by well-timed stimulation. In

agreement with our first two hypotheses, the PS and HD pathways, both significantly altered

in Parkinsonism, can determine the expression of beta frequency biomarkers, leaving distinct

fingerprints in both the power spectra (Fig 2) and patterns of network-wide phase synchroni-

zation (Fig 3). Notably, the HD pathway played a conditioning role by dictating the relative

expression of β1 (14–21 Hz) or β2 (21–30 Hz) activity, whilst the PS pathway acted as a broad-

band modulator of beta amplitude. To test our third hypothesis, we showed that M2 stimula-

tion phase locked to STN can achieve both focal effects- through amplification or suppression

of rhythmic activity (Fig 4), and global effects- by altering circuit-wide synchronization. In

support of this hypothesis, stimulation yielded spectral fingerprints that well matched states

defined under altered connectivity (Fig 5D and 5F). Finally, we showed that the ability of stim-

ulation to recover network states is dependent upon the organization of the network at the

time when an input was given (Fig 5G–5L), with the HD states more readily recovered than PS

states. These results support the idea that phase locked stimulation can restore or compensate

for deficits in synchronous communication arising from large scale synaptic reorganization in

diseases such as Parkinsonism.

Different network states underlie the expression of oscillatory control

signals and determine the effects of stimulation

Neural oscillations are important biomarkers for a range of neuropsychiatric disorders [43].

These spectral features, which often reflect symptom severity, can also be used as control sig-

nals in closed-loop brain stimulation [42]. In Parkinsonism, STN beta activity has been used to

control closed-loop DBS [42], where its effective suppression leads to a concurrent reduction

in motor symptoms [44,45].

Our model shows that the expression of STN beta is dependent on network connectivity

with the PS pathway controlling the gain of a subcortical STN/GPe resonator, that increases

angle of stimulation relative to STN activity) and connection strength (y-axis; percentage of fitted synaptic strength, dashed line indicates

100%- i.e., the model fit to the 6-OHDA lesion data and plot in D, E, and F). (J, K, and L) Same as G, H, and I, but for modulations of

HD pathway strength.

https://doi.org/10.1371/journal.pcbi.1009887.g005
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the amplitude of broadband beta activity STN, but at the expense of spatial and frequency

selectivity of network synchrony (Fig 3B). This agrees with studies implicating increased cou-

pling of the STN/GPe loop in the emergence of excess beta synchrony in the CBGT circuit

[46,47], and with experimental evidence that this pathway is strengthened [11,12] and overac-

tive [48] following dopamine depletion.

Furthermore, we found that the HD pathway shifts beta rhythms to higher frequencies in

line with the hypothesis that β2 activity is a signature of cortico-subthalamic drive, following

the finding of a correlation between β2 power and HD tract density in PD patients [40].

Whether β1 or β2 bands reflect functionally distinct rhythms is not well understood- lower fre-

quency activity is more readily suppressed by Levodopa [18] and DBS [38], and STN activity

in the two sub-bands synchronize with different cortical regions [38,39]. In agreement with

the model presented here, recent experimental evidence suggests that the specific phase and

frequency of beta expression is modulated by changes in dopaminergic tone [49]. These results

highlight how singular changes to monosynaptic inputs to the STN can shape activity of the

wider network, not just by altering the amplitude and frequency of oscillatory activity, but also

by dictating the synchronization of different elements of the wider circuit.

Taken together, the results presented agree with several computational [13,50] and experi-

mental models [51] that show that pathological STN synchrony arises from the interplay of PS

and HD pathway inputs impinging on the STN. Weakening of the HD pathway may give rise

to STN/GPe resonance at β1 frequencies, as resonant activity is undisrupted by mismatched β2

inputs arriving from the cortex. In agreement with other models exploring thalamocortical

feedback [13], we suggest that β1 rhythms amplified by the STN/GPe loop can return to motor

cortex- effectively reinforcing synchrony across the CBGT at this frequency. This potentially

explains how reduced HD transmission in PD can be observed alongside elevated cortico-sub-

thalamic coherence [9]. How this translates to enhanced STN firing rate seen in primate mod-

els [52] is unclear, and would require models incorporating both oscillatory dynamics and

detailed synaptic conductances to explain. Our model is distinct from a previous dynamic

causal modelling study in which effective connectivity of the HD pathway was found to be

raised in the 6-OHDA state [50], a finding in disagreement with findings of impaired cortico-

subthalamic efficacy [8,9], and likely arising due to the relative insignificance of the STN/GPe

circuit in that model.

Phase locked stimulation provides a means by which to target and

manipulate synchronous interareal communication in the brain

Network perspectives of brain stimulation [53] enables therapies to go beyond the focal target-

ing of rhythms, and towards modulation of functional networks such as those disturbed in

neuropsychiatric disorders spanning depression, anxiety, and dementia [54,55]. Here, we

show that stimulation of the motor cortex not only manipulates beta rhythms in the STN, but

also repatterns the phase synchronization of the circuit in a way that could bias communica-

tion [1]. We report here that stimulation of M2 could achieve a maximum of ~30% suppres-

sion of STN β1 rhythms, similar to the ~25% suppression achieved experimentally in a

6-OHDA rodent model [31]. Similar suppressive effects were also observed during adaptive

DBS in humans (~14% beta power reduction in [44]) which was linked to a ~50% reduction in

blinded hemi body UPDRS. It should be noted that approximately 60% suppression of beta

power is observed following levodopa administration [56]. The range of amplification and sup-

pression reported here is dependent upon both the threshold level chosen to gate stimulation

delivery and stimulation amplitude (see supplementary S4 Fig). We also found that stimulation

more readily amplified than suppressed the target rhythm, an asymmetry likely arising from:
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(A) the maximum limits of suppression (-100%) vs amplification (unbounded); (B) the relative

ease with which it is possible to entrain the system to an external input delivered in open loop,

than it is to use a precisely timed perturbation to completely suppress an oscillation.

Phase locked stimulation in our model can selectively pattern network activity in a way that

most readily resembles up- or down-regulation of the cortico-subthalamic HD pathway.

Whilst the preference for stimulation to recover network synchrony related to the HD states

(Fig 5) may arise due to our choice of sensing and stimulation sites (see discussion below), the

coexistence of β1 and β2 frequency activity in this model means that targeted suppression of β1

can permit synchronization of the network by β2, an effect resembling the conditioning role of

the HD pathway. This mechanism is supported by the finding that β2 emergence was delayed

by ~100ms following the suppression of β1 activity (supplementary S5 Fig). This modulation

of an auxiliary, non-targeted rhythm at β2 is consistent with experimental results reported by

Sanabria and colleagues, in which phase locked stimulation of the GPi led to higher frequency

beta activity (>18 Hz) in tandem with targeted suppression of rhythms at 11–17 Hz [26]. This

phenomenon is not limited to the CBGT circuit and has been observed in the emergence of

secondary tremor rhythms following phase-locked thalamic DBS [27]. Our analysis of using

different amplitude thresholds for gating stimulation (supplementary S4 Fig) suggests that fre-

quency specificity is reduced at lower thresholds (such as those used in [26]). This may accen-

tuate effects on non-targeted frequency bands (i.e. amplification of β2). These findings

emphasize the importance of optimizing the gating threshold.

To experimentally test our predictions that phase specific stimulation can induce changes

in circuit-wide synchronization, it would be necessary to make extensive multi-site recordings

during phase locked stimulation. Experimental setups for electrical stimulation have recently

been described in 6-OHDA lesioned rats [31] which has the potential to test the PD specific

aspects of this work, such as the conditioning role of HD and its potential to be mimicked by

stimulation. State dependent effects could be also be tested by inducing pathway specific

changes, either via pharmacological, optogenetic [51], or electrical [57] means, and then ana-

lysing the effects of phase specific stimulation across a circuit of interest. Recent work outside

of the CBGT circuit, has shown that optogenetic stimulation can achieve phase specific modu-

lations of network-wide activity similar to that described here [58].

Informing strategies for future stimulation paradigms

Here we model cortical stimulation, locked to activity sensed in the STN, a configuration cho-

sen as it provided better suppression of STN β1 rhythms than the reverse stimulation/sensing

combination (supplementary S3 Fig). Stimulation was modelled as a sinusoidal input to the

superficial pyramidal cells, similar to that resulting from transcranial alternating current stim-

ulation (tACS) which has been shown to entrain sub-threshold cortical activity [59] in a phase

dependent manner [60]. Thus, predictions from this theoretical model could be tested using a

combined depth electrode implanted in the STN and closed-loop control of tACS stimulation.

It should be noted that stimulation of the STN phase locked to cortical activity can also be

used to achieve similar effects if stimulation amplitude and thresholds are optimised according

to the cost function of interest (e.g. β1 suppression; supplementary S4 Fig).

Despite this, experimental evidence for therapeutic effects of cortical stimulation are incon-

sistent (see review [61]), yet no closed-loop approaches as presented here have been tested so

far. The dual effects of phase specific stimulation (i.e., achieving both amplification and sup-

pression), combined with recent evidence that cortical stimulation can suppress pathological

activity in vivo [51,62] highlight the clinical potential for well-timed cortical stimulation.

Nonetheless, our modelling suggested that although STN stimulation paired to cortical sensing

PLOS COMPUTATIONAL BIOLOGY Stimulating at the right time to recover network states

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009887 March 4, 2022 16 / 32

https://doi.org/10.1371/journal.pcbi.1009887


exhibited inferior state recovery (supplementary S7 Fig), it can suppress STN β1 (S4 Fig). This

setup could be readily implemented with current technology leveraging paired ECoG record-

ings with DBS [32,34].

Our model contains a number of important parameters, such as stimulation amplitude, fre-

quency, shape etc., that are not explored here. These quantities form important targets for opti-

mization, that can facilitate recovery of a range of network states. We used a high threshold for

burst detection, and to gate stimulation. This resulted in a trade-off (supplementary S4 Fig)

that allowed us to clearly illustrate phase dynamics, but in tandem, limited the efficacy of the

stimulation. Furthermore, the spatial precision of stimulation delivery is likely to be a limita-

tion in real world applications, thus understanding better the layer or nuclei specificity of

effects remains a goal of future work.

We also note the dependency between phase specific stimulation and the signal quality at the

sensing electrode. Our supplementary analyses (see S4 Appendix) show that the zero-crossing

technique used for phase detection is only effective at suppressing beta frequency activity up to

around -5dB (~1:3 SNR). Real world applications will likely require more refined phase estima-

tion techniques [63], especially those making explicit estimation of observation noise [64].

Finally, the finding that stimulation effects are themselves dependent on network state

agrees with previous studies exploring the state-dependency of stimulation [65,66]. These find-

ings support hierarchical control algorithms that nest low-level stimulation delivery (e.g., on-

line phase estimation) beneath a state estimation scheme to dynamically adjust stimulation

parameters (e.g., stimulation phase). This would allow stimulation to adapt to factors such as

pharmacological treatment and sleep, minimize adverse effects such as dyskinesias [32], and

potentially respond to synaptic reorganization resulting from therapy [57].

Limitations

Neural mass models allow the interactions between large populations of neurons to be

described as a low dimensional system. This makes them amenable to parameter optimisation,

yet the approximations made can render them unsuitable to investigate phenomena such as

complex spiking and nonlinear integration of inputs. In this model, we were unable to capture

the direct biophysical effects of inputs representing high frequency stimulation on lower fre-

quency activity, as the lumping of time constants lead to an effective filtering of high frequency

drive. Possible ways of modelling high frequency stimulation include either biasing the param-

eters of the sigmoid function representing STN outputs to favour tonic activation or bringing

endogenous noise to a level such that external inputs can saturate the same sigmoid. Both

mechanisms induce beta suppression in this model via switching STN output from bursting to

tonic activity, as proposed in [67].

Moreover, rhythms at high beta/gamma rhythms are abstracted in our model by a bimodal

spectrum that results from an inability to capture higher frequency activity thought to be

important in prokinetic states [32,36]. The model also omits low frequency alpha/theta which

has been implicated in this circuit in dystonia [68] but were not present in the experimental

data used to fit the models. Furthermore, models were fit to activity recorded under urethane

anaesthesia and may be only qualitatively similar to that seen in the awake animal. This may

overemphasize pathways such as thalamocortical feedbacks that exhibit increased strength

under anaesthesia [69]. However, urethane’s effects on neurotransmitter function are small

compared to other anaesthetics [70], and dose dependency allows access to cortically activated

states which most resembles the waking brain [35].

Model extensions could incorporate additional neuronal populations, such as pallido-stria-

tal arkypallidal cells [71], multiple cortical sources of hyperdirect pathway, distinct populations
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of striatal medium spiny neurons, or pallidal interneurons. Specifically, inclusion of arkypalli-

dal projections would also allow us to predict how alternative models considering pallido-stria-

tal origins of beta oscillations [72] may alter response to stimulation. These additions to the

circuit model would render a larger number of states recoverable by phase locked stimulation,

but also demand increased spatial and temporal specificity to access them. Furthermore, the

dataset here is limited in its ability to answer these questions due to the paucity of spatial reso-

lution in the cortical recordings (ECoG from a single cortical “screw”).

Finally, the model of stimulation presented here does not incorporate the spatial complexity

of real life epicortical stimulation, rather we model the stimulation as current injection directly

to a single neuronal population. Applications of this technology in vivo would require detailed

understanding of the spatial extent of stimulation to understand how electrical spread could

affect pathway specific activity.

Conclusions

The outcomes of this work are twofold: (1) the expression of rhythmic biomarkers (e.g., STN

beta bursts) are shaped by the network connectivity (e.g., connectivity of the CBGT circuit);

and (2) precisely timed stimulation can recover network activity in a way that could compen-

sate for disruption resulting from synaptic reorganization (e.g., alterations of the HD or PS

pathways). By resynchronizing population activity to reflect physiological states, stimulation

could restore neural communication without the need to alter connectivity. This model allows

for numerous sensing and stimulation regimes to be explored that can assist the development

of next generation stimulation that can flexibly pattern neural activity to restore healthy neural

communication.

Materials and methods

Ethics statement

All experiments were conducted in accordance with the Animals (Scientific Procedures) Act,

1986 (United Kingdom), and with Society for Neuroscience Policies on the Use of Animals in

Neuroscience Research.

Electrophysiological recordings in 6-hydroxydopamine (6-OHDA) lesioned

rats

Parameters of a computational model were constrained using a set of archival data consisting

of multisite recordings in the basal ganglia and cerebral cortex of nine adult male Sprague-

Dawley rats (Charles River, Margate, UK) with 6-OHDA induced dopamine depletion, a

model of degeneration associated with Parkinsonism in humans described previously [73,74].

Animals were implanted with two multi-contact silicon probes to measure local field potentials

(LFP) from multiple structures in the basal ganglia: dorsal striatum, external segment of palli-

dum (GPe), and subthalamic nucleus (STN). Additionally, electrocorticography (ECoG) was

measured over “secondary motor cortex” (M2), a homologue of the premotor cortex in

humans [75], using a 1 mm diameter steel screw juxtaposed to the dura mater above the right

frontal cortex. Anaesthesia was induced with 4% v/v isoflurane (Isoflo, Schering-Plough Ltd.,

Welwyn Garden City, UK) in O2 and maintained with urethane (1.3 g/kg, i.p.; ethyl carba-

mate, Sigma, Poole, UK), and supplemental doses of ketamine (30 mg/kg; Ketaset, Willows

Francis, Crawley, UK) and xylazine (3 mg/kg; Rompun, Bayer, Germany). Recordings were

made during periods of ‘cortical activation’ [69] induced by a hind-paw pinch.
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For more details of the experimental recordings and data acquisition please see the original

experimental papers [15,35,50,74].

All data (LFP and ECoG) were: 1) down sampled from the hardware native 17.9 kHz to 250

Hz using Spike2 acquisition and analysis software (Cambridge Electronic Design Ltd., Cam-

bridge, UK); 2) imported into MATLAB; 3) mean subtracted; 4) band-passed filtered 4–100

Hz with a finite impulse response, two-pass (zero-lag) filter with order optimized for data

length; 5) Z-scored to standardize to unit variance; 6) divided into 1 second segments; and 7)

subjected to a Z-score threshold criterion such that epochs containing any high amplitude

artefacts were removed. The exact threshold was chosen on a case-by-case basis dependent

upon recording gain and size of the artefact. Example traces of the recordings can be seen in

Fig 1A. Artefact-rejected, epoched data were then taken forward to compute data features for

the fitting procedure.

Data features used for model estimation: Spectra and directed functional

connectivity

Local dynamics within each node of the model were constrained by fitting to power spectra.

Power spectra were constructed using Welch’s periodogram method computed using non-

overlapping epochs (1 second) multiplied by a Hanning window. To reduce spectra to their

main peaks, the 1/f background of the empirical spectra was removed by first performing a lin-

ear regression in the log-log space and then subtracting the linear component from the spectra

[76,77]. This ensured that the parameter estimation scheme was focused upon fitting the spec-

tral peaks in the empirical data and not the background noise. The spectra from the nine rats

were then combined using the mean across the group.

To constrain interactions between connected populations we used non-parametric direc-

tionality (NPD), using the Neurospec toolbox (http://www.neurospec.org/). NPD provides a

non-parametric assessment of directed connections between neural signals derived from their

spectral estimates alone [78,79]. Briefly, NPD performs a prewhitening of the signals’ autospec-

tra that allows for the (symmetric) coherence to be decomposed into its (asymmetric) direc-

tional components by integrating over separate lags of the (prewhitened) cross-correlations

and transferring back to the frequency domain. The resulting NPD spectra were averaged

across the nine rats.

The group averaged spectra and NPD were further smoothed using a sum of Gaussians

(maximum of three), with order selected dependent upon the best fit evaluated using the

adjusted R2. These data features form the summary statistics upon which the model was

inverted. The individual power spectra for each region are shown in Fig 1B (insets), and full

set of features show in supplementary S1 Fig.

It should be noted that dynamics not summarised in these features such as properties of

bursting activity, do not inform parameter estimates and thus cannot be expected to constrain

model behaviour.

Model description

We used a model describing the large-scale activity of coupled neuronal populations within

the cortico-basal ganglia-thalamic network. This model has been used previously to recapitu-

late spectral features of recordings made in Parkinsonism [50,80,81]. We modified the model

to explicitly incorporate stochastic inputs that could give rise to bursting dynamics (see Mate-

rials and Methods section “Formulation of Model from Coupled Neural Mass Equations”).

The model includes a motor cortex microcircuit consisting of three pyramidal layers (superfi-

cial, middle, and deep) plus an inhibitory interneuron population [82]. Each cortical layer also
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contains recurrent self-inhibitory connections reflecting local neuronal gain control. Further-

more, we modelled subcortical neuronal populations of the basal ganglia: the striatum (STR),

the external and internal segments of the globus pallidus (GPe/i), the subthalamic nucleus

(STN); as well as the ventrolateral thalamus (Thal.). Intrinsic noise arising from synaptic sto-

chasticity, and indeterminate background activity was modelled as stochastic inputs to all the

subcortical populations as well as the middle pyramidal layer of the motor cortex. The precise

model architecture (depicted in Fig 1B) was selected using a model comparison procedure

(described in Materials and Methods section “Parameter Estimation and Model Selection”).

Formulation of model from coupled neural mass equations

The circuit model comprises six regions/sources (i.e., the putative origins of empirically recorded

field activity) that are themselves made up of a set of one or more locally coupled populations

(e.g., supragranular cell layer in motor cortex). Each population in the model is described by a

coupled neural mass equation [83,84] that models the average voltage change in a large, homoge-

nous population of neurons. Overall, the model consists of nine coupled 2nd order stochastic

delay-differential equations (separable into 18, 1st order equations given in S1 Appendix).

To model long distance connectivity between each source (e.g., M2! STR), contributions

from themth to the nth source are delayed according to the delay matrix D. The connection

strength is given by a weighted connectivity matrix ω, and the total input to source n (given in

the superscript) at time t, is given by the sum of inputs across all 6 sources:

AnðtÞ ¼
X6

m¼1

on;msnðV
mðt � Dn;mÞÞ ð1Þ

where Vm is the output voltage of theMth source, D is the delay matrix specifying the delay for

connection of sourcem to n. Long distance connections are assumed to form substantial delays

that are explicitly incorporated into the model (constraint such that Dn,m>0). The average out-

put spike rate of the population in response to a voltage v is given via the sigmoid operator:

SiðvÞ ¼ 1=ð1þ e� RivÞ; ð2Þ

which is parameterised by Ri to determine the slope of the activation function (a parameter

specific to each of the ith populations) and effectively models the variance of the population’s

firing thresholds.

The connectivity matrix of the full model (depicted in Fig 1B) is given below:

o ¼

0 0 0 0 0 o1;6

o2;1 0 0 0 0 0

0 o3;2 0 o3;4 0 0

o4;1 0 o4;3 0 0 0

0 o5;2 0 o5;4 0 0

0 0 0 0 o6;5 0

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

ð3Þ

where column 1 gives connections projecting from M2; column 2 from the STR; column 3

from the GPe; column 4 from the STN; column 5 from the GPi; and column 6 from the Thal.

Equivalently the rows give the weights of the input to each of the populations. Variants of this

full model can then be created by adjusting the parameters or removing coefficients ωn,m from

the matrix. Equations were integrated numerically using the Euler-Maruyama scheme as

detailed in S2 Appendix. Example traces of the model’s simulations can be seen in Fig 1C.

PLOS COMPUTATIONAL BIOLOGY Stimulating at the right time to recover network states

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009887 March 4, 2022 20 / 32

https://doi.org/10.1371/journal.pcbi.1009887


Parameter estimation and model selection

The parameters and architecture of the model were estimated using a scheme based on the

sequential Monte Carlo Approximate Bayesian Computation algorithm (ABC; [85–88]). ABC

is an algorithm for simulation-based inference [89] and allows for inversion of nonlinear, sto-

chastic time series models. Importantly, this permits the investigation of bursting dynamics,

such as those analysed in this work. The validity of this approach (in terms of the accuracy of

estimation of parameters as well as the identification of model architectures), given the type of

neural mass models and neurophysiological data described here, has been examined in previ-

ous work [90]. Briefly, ABC approximates the posterior density over models and their parame-

ters, given some empirical data. This is achieved by computing the forward simulation using N
draws from a prior distribution of parameters and then iteratively rejecting samples dependent

on the distance between the simulated and empirical data. Explicitly, experimental data and

simulations are compared by first transforming the two datasets using a common summary

statistic and then computing the goodness-of-fit, in terms of the mean squared error across the

features. Here, we use the power spectral density and directed functional connectivity (see

Materials and Methods section “Data Features used for Model Estimation: Spectra and

Directed Functional Connectivity”) to capture oscillatory dynamics and their interactions

between neural populations, respectively. By adaptively reducing the threshold on the accept-

able error between the summary statistics of the empirical and simulated data, the algorithm

converges towards an approximation of the true posterior density over parameters, by travers-

ing a sequence of intermediate distributions. Convergence was determined by setting a thresh-

old on the error gradient (i.e., the improvement in accuracy with each step).

The model structure was determined by fitting 13 different models (described in S3 Appen-

dix) to the data and then performing a model comparison using the estimate of the marginal

probability as the criterion for the best fitting model. Marginal probabilities (i.e., the approxi-

mate model evidence) were estimated by drawing N times from the posterior to simulate a set

of N realizations of the summary statistic. The marginal probability was then given by the

probability that the summary statistics were less than a certain threshold �� (common across

models) distance from the actual data (see S3 Appendix for more detail). The outcome of this

procedure is given in [90] and in which we found that a model incorporating both the hyper-

direct and subthalamo-pallidal pathways was the best candidate in describing the patterns of

neuronal activity in recordings made in Parkinsonian rats. This model is very similar in archi-

tecture to previous work investigating the same system [50,81]. This posterior model fit was

used for the simulations in this paper and is referred to as the fittedmodel. Its architecture is

depicted in Fig 1. Specifically, we used the maximum a posteriori estimate (the mode of the

marginal posterior distribution over parameters) of parameter expectations to specify the val-

ues of the fitted model. For a full list of model parameters that were estimated and details of

their priors, please see table in S1 Appendix.

Definition of discrete network states

For the purposes of this paper, we defined a set of discrete network states (i.e., configuration of

connection weights) that could be used to explore the model’s dynamics and its response to

stimulation. As was introduced, dopaminergic cell loss linked to Parkinsonism has been asso-

ciated with the weakening of the HD pathway [8–10], as well as strengthening of the PS path-

way [11,12]. For each of these connections, we set both an Up- and Down-regulated state

reflecting changes in connectivity from the model fit to 6-OHDA data. Previous experimental

work highlighted a 70% increase in the amplitude of inhibitory post synaptic currents at the

STN following dopamine depletion [11], equating to a PS-Down state with roughly 30%
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connectivity of the 6-OHDA lesioned model (i.e. fitted model). We set a PS-Up state with con-

nectivity strength that elicited roughly a doubling of broadband β power in the STN (c.f. upper

range of effective beta band modulation reported in [25]). Similarly, we set aHD-Down state

also at 30% connectivity of the fitted model, and anHD-Up state yielding a doubling of broad-

band β power. We constructed states reflecting both an increase and decrease in connectivity

with the aim of later comparing them to the outcomes of phase specific stimulation (see Esti-

mating the Recovery of Network States by Stimulation) which was expected to both amplify

and supress rhythms [25].

Altogether, we defined two hyperdirect states:HD-Down andHD-Up; and two pallido-sub-

thalamic states: PS-Down and PS-Up. In our discussion of the results, we consider HD-Up and

PS-Down as proxies for the dopamine intact state in which motor symptoms are expected to

be alleviated, whilstHD-Down and PS-Up represent further synaptic reorganization (i.e.

beyond that of the 6-OHDA lesioned animals to which the model was fit) reflecting hypotheti-

cal disease progression and increased severity of motor symptoms. Evidence that motor defi-

cits may be worsened further in the pathological state includes both optogenetic stimulation at

beta frequencies of the 6-OHDA rat model [51], as well as 20 Hz DBS delivered in patients

with PD [91,92]. Schematics of these states and their hypothesised functional significance are

depicted in Fig 2A–2C.

Characterizing network states with spectral fingerprints

For each network state, we simulated 128s of data and then formed summaries of the popula-

tion activity of the circuit by constructing a set of spectral fingerprints [33] that we would later

use to classify stimulation outcomes. These fingerprints consisted of: (A) the spectra of the

population activity (as shown in Fig 2D, 2E, 2G and 2H) computed using Welch’s periodo-

gram method (with 1 second segments) for each source in the model. Spectra for each of the 6

sources were truncated to the range 2–48 Hz and then normalized to unit variance to prevent

large changes in amplitude dominating the comparisons. Following this, all spectra were

concatenated into a single vector. (B) The matrix of all pairwise phase locking values (PLV)

between each source (computed within-bursts, see Definition of Transient Burst Events. . .;

shown in Fig 3B; for details of its computation please see Materials and Methods section

“Phase Synchronization: Connectivity matrices and Time Resolved Estimates”). Empirical

states were constructed in the same way- computing the fingerprints of spectra and PLV indi-

vidually for each of the nine animals. Note empirically derived spectra were corrected for 1/f

background (as detailed in Materials and Methods section “Data Features used for Model Esti-

mation: Spectra and Directed Functional Connectivity”). When comparing empirical states,

only PLV pairs within the basal ganglia were used. This was because the poor SNR of the corti-

cal ECoG led to small PLVs that were not well reflected in the model.

Note that spectral fingerprints were computed “within-burst” (see Materials and Methods

section “Definition of Transient Burst Events and Statistics”) since (A) we aimed to character-

ize network properties that were directly attributable to high SNR in the beta range. Prelimi-

nary analyses (not included) indicate that SNR impacts spatial selectivity of network

synchronization. (B) We later compare the fingerprints derived from spontaneous activity and

those induced by stimulation. As we gate stimulation according to beta bursts, this ensured

that analyses were directly comparable between the two conditions.

Definition of transient burst events and statistics

To define and characterize the properties of intermittencies in rhythms, we constructed a band

filtered signal and then used a threshold on the envelope (method summarised in Fig 3A;
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[17,93]). Specifically, we used a zero-phase, fourth order Butterworth filter for either lower (β1:

14–21 Hz) or upper beta (β2: 21–30 Hz) frequencies. We then constructed the analytic signal

from the band-passed signal using the Hilbert transform. The instantaneous amplitude and

phase are then given by the magnitude and angle of the complex signal. Bursts were defined as

periods at which the envelope of STN beta activity exceeds the 75th percentile (c.f. [17,93]) for

a duration longer than one cycle of the lower cut-off frequency of the filter [93,94].

We employ a burst definition based on the 75th percentile of the amplitude envelope. This

is an important parameter which influences the efficacy of stimulation, as it sets a bound on

the gating of stimulation. This choice is driven by the dependency between instantaneous

phase and SNR [95,96]. Note that in practice, stimulation can be delivered at much lower

thresholds (e.g., 15th percentile, see [26]) or with no threshold at all (see supplementary S4

Fig). Recent work has highlighted the limitations of using a threshold to detect bursts, espe-

cially where a common threshold definition is applied across data [97,98]. Here, we avoid such

a comparison, and compute thresholds specific to the given network states.

We use the term “within-burst” consistently to denote data across the network within the

time window that a STN beta burst was detected according to the above criteria. Changes in

within-burst amplitude (Figs 3D and 3I; and 4D) were compared against randomly selected

out-of-burst data (from the same network state and matched to the number and duration of

the detected bursts) using a non-parametric cluster-based permutation test (see Materials and

Methods section “Statistical Comparisons”).

Phase synchronization: Connectivity matrices and time resolved estimates

In order to measure the synchronization between population activity within the model, we

summarised phase consistency between pairs of simulated signals using the phase locking

value (PLV; [99]) over N time points:

PLV ¼
1

N

XN

n¼1

eiyðnÞ
�
�
�
�
�

�
�
�
�
�

ð4Þ

where θ(n) is the phase difference ϕ1(n)−ϕ2(n). Instaneous phase was computed as described

for within bursts, using the angle of the Hilbert transform of the bandpassed signals (see Mate-

rials and Methods section “Definition of Transient Burst Events”). To estimate changes in the

spatial pattern of phase synchronization across the network, the difference in the within-burst

PLV between each network state (i.e.HD-Up/Down, PS-Up/Down) and the fitted model was

computed (Fig 3). We used a surrogate approach to determine the statistical significance of

changes in PLV between states (Fig 3B only): we randomly selected out-of-burst data (from

the respective state) with length matched to that of the real bursts, and then shuffled the signal

pairs (i.e., burst with signal A1 and B1 became A1 and BK, with K indicating the index of a ran-

domly selected burst; pairs were truncated to the shortest burst). This maintained the power

spectral features but removed any temporal correspondance between the segments. Using

these out-of-burst data (selected from each state), we computed the difference in PLV (i.e.

compared to the fitted state). This was done across 500 permutations with a threshold estab-

lished at the 95th percentile of the resulting distribution to establish significance of the respec-

tive changes.

When using connectivity matrices as a fingerprint of each state (depicted in Fig 5C), we

used the magnitude of the PLV (as in Eq 4) computed using the within-burst activity of each

network state or stimulation model.

To investigate the time evolution of phase synchronization across bursts (Figs 3G and 3L;

and 4F), we computed the PLV between cortex and STN, within a sliding window (200ms
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duration, 95% overlap). Changes in the time-resolved phase and PLV (Figs 3E, 3G, 3J and 3L;

and 4E and 4F) were compared against randomly selected, length matched, out-of-burst data

using cluster statistics (see Materials and Methods section “Statistical Comparisons”).

Finally, we computed the relative phase stability (RPS) of the STN/M2 phase coupling:

RPSðtÞ ¼
dð�M2ðtÞ � �M2ðtÞÞ

dt

�
�
�
�

�
�
�
� ð5Þ

where || indicates the absolute value, and d/dt the derivative with respect to time. We approxi-

mated the derivative using the finite difference. We report RPS values as the average value it

took across the burst duration (Fig 3F and 3K). This measure indicates the absolute rate of

change in phase difference between M2 and STN, with an RPS = 0 indicating a constant phase

aligment (i.e. zero-change), larger values indicate that the phase difference between STN and

M2 fluctuated more over time.

Modelling phase locked stimulation of motor cortex using activity in the

subthalamic nucleus

To explore the impact of phase-locked stimulation on beta bursts (Figs 4 and 5), we first simu-

lated a baseline dataset (128s) from the fitted model. We then re-simulated the model with an

identical noise process but included a model of on-line, phase-locked stimulation of the motor

cortex triggered from beta band activity sensed in the STN. To perform on-line estimation of

phase, we adopted a zero-crossing analysis similar to the hardware approach reported in [27].

This algorithm was used to construct a sinusoidal stimulation pattern with phase updated

every 25ms. To derive this input, a zero-phase, 4th order, Butterworth filter with passband at β1

frequency was applied to the past three seconds of data up to the current update step. Data

were zero-padded for one second on either end to reduce edge artefacts. The frequency

response of the filter was inspected to ensure proper cut-off behaviour around the target band.

To avoid unstable envelope estimates occurring close to the most current timestep due to the

Gibbs effect [100], a 25ms delay was used to determine stimulation gating. The envelope was

then constructed using the absolute value of the Hilbert transformed signal.

Stimulation was applied depending on if the following criteria were met: (A) the envelope

of the sensing population exceeded the 75th percentile of that measured in the baseline (i.e.,

unstimulated data), and (B) no stimulation had occurred in the previous 500ms. Stimulation

was then delivered for 500ms. Criterion B was introduced to ensure settling of dynamics back

to their unstimulated state (as confirmed by visual inspection of traces) and to prevent run-

away excitation. The phase of stimulation was estimated by extrapolating from the last positive

zero-crossing of the bandpass filtered signal nearest to the current time step, assuming an 18

Hz (i.e., the centre of the pass band) sinusoidal rhythm. Despite this assumption of fixed fre-

quency, instantaneous frequency is expected to be dynamic. Assuming an upper limit of the

deviation in frequency of ±2 Hz, we can expect a maximum error of ±40˚ in phase alignment

of the stimulation patterning. A validation of this method is given in S4 Appendix.

This estimate was then used to reconstruct the estimated phase of the sensing population

ϕsense for the next 25ms cycle. The external input to the stimulated population in the model is

then constructed as:

uexstim ¼
A sinð�sense þ D�shiftÞ; crit ¼ true

0; crit ¼ false

(

ð6Þ

where Δϕshift represents the target phase shift of the stimulating input with respect to the
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sensing population; and A is the amplitude of the stimulation which is set to 1/4 of the stan-

dard deviation of the intrinsic noise to the stimulating population (ui in supplementary equa-

tions S1.5 (in S1 Appendix)). Please see the discussion for a consideration of the role of

amplitude in our results. The stimulus is only non-zero if the gating criteria crit are met.

Summed intrinsic and extrinsic input to the neural mass (replacing ui with Ustim) then

becomes:

Ustim ¼ u
ex
stim þ Cstimu

in
stim ð7Þ

Phase-locked stimulation was delivered to the superficial layer of the cortex only (c.f. non-

invasive stimulation such as that performed in [59]). The phase shift, Δϕshift was swept from -π
to +π radians in 12 bins (i.e., a 30˚ resolution). The resulting power spectra for each stimula-

tion regime was analysed and the within band power plotted against stimulation phase to yield

band-limited amplitude response curves (ARCs) in either the lower or upper beta bands.

ARCs were constructed from epochs of data during which stimulation was delivered. Epochs

were matched according to stimulation duration when comparing ARCs and the unstimulated

model.

Alternative stimulation strategies were also tested. Specifically, we used phase non-specific

stimulation at 18 Hz, using the above gating criteria but with fixed instantaneous frequency

(i.e., constant phase). As a second control, designed to identify whether spectral effects resulted

from the phase tracking algorithm, we also “played back” stimulation patterns [101] but in a

different model instance, where the actual phase was no longer matched to the model

dynamics.

Estimating the recovery of network states by stimulation

In a final set of analyses shown in Fig 5, we investigated the hypothesis that phase-locked stim-

ulation of the motor cortex relative to STN can modulate network activity to reproduce states

seen previously during changes to connectivity. To do this, we compared fingerprints of the

predefined network states (see Materials and Methods section “Definition of Discrete Network

States”) with the outcomes of phase locked stimulation. To compare fingerprints between net-

work states and phase stimulation we used a pooled R2 measure [102]:

R2

pooled ¼ 1 �
1

Nf

XNf

n¼1

XNn

i¼1
ðystaten;i � y

stim
n;i Þ

2

XNn

i¼1
ðystimn;i � ystimn;i Þ

2

0

@

1

A ð8Þ

where Nf is the number of features (i.e., Nf = 2: one vector from concatenated spectra and one

vector from the flattened connectivity matrices), yn the feature under consideration, Nn the

length of yn and yn the mean of the nth data feature. R2
pooled varies between -1 and 1, with 1

indicating a perfect fit, and negative coefficients indicating that the average fit is worse than

that of a straight line going through the mean. Note that when comparing simulated with

empirical states, we ignored features including GPi and Thal., as these were not available in the

original data. Due to differences in the phase dependent recovery of empirical states, curves

from both control and lesion conditions were realigned with respect to the phase attaining

maximum recovery of the lesion state. When computing the pooled measure, we include the

circular estimate within the sum of Eq (8).

In a secondary analysis we repeated this but modulated the strength of connectivity in the

HD and PS pathways from 30% to their maximum defined in terms of 200% evoked beta.

These results were then represented as heatmaps of the R2
pooled for connectivity strength versus

stimulation phase.
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Statistical comparisons

Summary statistics of phase angles were computed with the circular mean and standard devia-

tion, whilst tests of differences in means were computed using the Watson-Williams test (in

text descriptions and Fig 3C and 3H). Tests for differences in continuous data (Figs 3D–3G,

3I–3L and 4C–4F) were performed using non-parametric cluster-based permutation tests

using an implementation based in Fieldtrip [103], using the t-statistic when comparing means.

Clusters were detected from 500 permutations and a P = 0.05 two-sided alpha level. For clarity

of presentation, clusters were restricted to the top five largest effects, and clusters smaller than

20ms in duration were excluded.
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