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Abstract
Human decisions can be reflexive or planned, being governed respectively by model-free and model-based learning systems.
These two systems might differ in their responsiveness to our needs. Hunger drives us to specifically seek food rewards,
but here we ask whether it might have more general effects on these two decision systems. On one hand, the model-based
system is often considered flexible and context-sensitive, and might therefore be modulated by metabolic needs. On the
other hand, the model-free system’s primitive reinforcement mechanisms may have closer ties to biological drives. Here,
we tested participants on a well-established two-stage sequential decision-making task that dissociates the contribution
of model-based and model-free control. Hunger enhanced overall performance by increasing model-free control, without
affecting model-based control. These results demonstrate a generalized effect of hunger on decision-making that enhances
reliance on primitive reinforcement learning, which in some situations translates into adaptive benefits.

Keywords Motivation · Learning · Decision-making · Reward · Planning

Significance statement

The prevalence of obesity and eating disorders is steadily
increasing. To counteract problems related to eating, people
need to make rational decisions. However, appetite may
switch us to a different decision mode, making it harder to
achieve long-term goals. Here we show that planned and
reinforcement-driven actions are differentially sensitive to
hunger. Hunger specifically affected reinforcement-driven
actions, and did not affect the planning of actions. Our
data shows that people behave differently when they are
hungry. We also provide a computational model of how the
behavioral changes might arise.

Introduction

Hunger is an adaptive motivational state that drives us
to eat, restoring homeostatic balance (Saper et al., 2002).
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However, maladaptive behavior in the context of hunger
generates many clinical problems. One in seven adults
suffers from obesity, one of the most serious health issues
in the developed world, and 10% suffer from a range of
eating disorders. One critical contributing factor may be the
changes in decision-making produced by hunger.

One well-studied effect of hunger is to amplify the
value of reward, both specifically for food (Epstein,
Truesdale, Wojcik, Paluch, & Raynor, 2003; Malik,
McGlone, Bedrossian, & Dagher, 2008), and even for
generic reward signals (Haase, Cerf-Ducastel, & Murphy,
2009; Siep et al., 2009; Aitken, Greenfield, & Wassum,
2016; Cone et al., 2016; Papageorgiou, Baudonnat, Cucca,
& Walton, 2016)(Simon et al., 2017; Briers, Pandelaere,
Dewitte, & Warlop, 2006). This modulation of value
may feed into primitive reinforcement systems (Daw and
O’Doherty in Glimcher and Fehr (2013)), strengthening
simple action learning. This kind of value-based action
reinforcement is inflexible, and is more strongly engaged in
people with eating disorders (Voon et al., 2015). However,
to allow for flexible, context-sensitive action selection, these
primitive systems must be guided by a planning system,
which computes how to get to a reward using a causal
model of the world, rather than simply engaging actions that
previously led to reward. The planning system is sensitive
to metabolic needs insofar as they determine our goals
(Dickinson, 1985; Dickinson & Balleine, 1994; Aw et al.,
2009; Friedel et al., 2014), but it is not known whether
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needs can make us generally better or worse at goal-directed
planning.

In this study, we asked whether hunger promotes
primitive decisions based on reinforcement, or planned
actions. Simple reinforcement is model-free, with memory
only about how rewarding actions were in particular
states. In contrast, the model-based planning system, uses
knowledge about how actions change the state of the world.
Would both of these systems be sensitive to biological
needs?

On one hand, we might expect the model-free system
to be modulated by hunger, because it may rely more
on primitive neural systems. Circulating hormones that
signal metabolic need target subcortical brain areas that
regulate feeding (Zigman, Jones, Lee, Saper, & Elmquist,
2006; Elmquist, Bjørbæk, Ahima, Flier, & Saper, 1998). In
particular, leptin inhibits and ghrelin activates dopaminergic
neurons in the ventral tegmental area, and could therefore
modulate learning and decision-making via the mesolimbic
pathway (Hommel et al., 2006; Figlewicz, MacDonald
Naleid, & Sipols, 2007; Abizaid et al., 2006). This
automatic mechanism could presumably be advantageous,
since hunger may trigger reward-driven behavior enabling

organisms to adapt to the variability in environmental
abundance (de Ridder, Kroese, Adriaanse, & Evers, 2014;
Symmonds, Emmanuel, Drew, Batterham, & Dolan, 2010;
Levy, Thavikulwat, & Glimcher, 2013; Shabat-Simon,
Shuster, Sela, & Levy, 2018).

On the other hand, we might expect a higher-level,
model-based system to be modulated by hunger. It is by
definition more flexible, being sensitive to state and context.
Higher-level control may be decreased by hunger. For
example, hunger promotes impulsivity, preventing us from
reaching long-term goals (Bartholdy et al., 2016; Kirk &
Logue, 1997; Skrynka & Vincent, 2019). Cognitive control
is regulated by homeostatic hormones (Higgs et al., 2017),
and is impaired in obesity (Hassenstab et al., 2012) but
enhanced in anorexia nervosa (Compan, Walsh, Kaye, &
Geliebter, 2015).

In the present study, we employed a two-stage decision-
making task (Daw, Gershman, Seymour, Dayan, & Dolan,
2011) to examine if hunger modulated the model-free or
model-based decision system. In this task, people must
choose between two rockets, each going predominantly to
one of the second-stage planets (Fig. 1A). Once on a planet,
they choose between two aliens that probabilistically deliver

Fig. 1 Study design. A) Schematic of the task design developed by
(Daw et al., 2011). Each first-stage choice rocket flew predominantly
to one of the second-stage planets (common transition: 70% of the
trials) and sometimes to the other second-stage planet (rare transi-
tion: 30% of the trials). Each second-stage alien probabilistically led
to a reward. The reward probabilities for each second-stage alien fluc-
tuated across trials between 25% and 75% according to a Gaussian

random walk. Task instructions and images were obtained from Kool,
Cushman, and Gershman (2016). B) Participants were tested in a
within-subjects counterbalanced, randomized crossover design. Partic-
ipants were tested on two separate days approximately 1 week apart.
One session took place after 14 h of fasting, the other session after
consuming a full meal
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a reward. If a reward is obtained, it pays off to return to
that planet on the next trial by selecting the same first-
stage rocket again. Crucially, the rockets occasionally go to
the other planet (a “rare transition”). If a reward is earned
in this situation, it pays off to choose the other rocket
next time, because that rocket is more likely to bring you
back to the same second-stage planet. The simple, “model-
free” approach is to repeat the rocket choice whenever
it was rewarded. A more sophisticated, “model-based”
strategy is to consider that rockets do not always go to the
same planet and plan ahead to reach the most rewarding
planet.

We showed that increased metabolic need enhanced
reflexive model-free control of behavior, without affecting
deliberate model-based control. Although food deprivation
has been shown to increase impulsivity, this study provides
evidence that relying on a reflexive model-free system does
not make hungry people maladaptive, when the deliberate
model-based system remains unaffected.

Methods

Participants

Thirty-two healthy volunteers (females: 20, mean age:
25.6 ± 6.5) were recruited for this study. All participants
were healthy, had no history of psychiatric diagnoses,
neurological or metabolic illnesses, and had not used recre-
ational drugs in the past 3 months. All participants had a
normal weight (body mass index: 22.9±3.2 kg/m2), regular
eating patterns and no history of eating disorders. Each par-
ticipant gave written informed consent, and the study was
conducted in accordance with the guidelines of the Univer-
sity of Oxford ethics committee. We estimated a medium
effect size (Cohen’s d = 0.50) from three published within-
subjects studies using a similar sequential decision-making
task. We assume that an effect of hunger used in the current
study lies in a similar range as compared to the interven-
tions used in these studies (a pharmacological manipulation
with L-DOPA (Wunderlich, Smittenaar, & Dolan, 2012), a
transcranial magnetic stimulation intervention (Smittenaar
et al., 2013), psychosocial stress intervention (Radenbach
et al., 2015)). We then used G*Power (3.1.9.7) software and
estimated that we need 32 participants to obtain a power
of 0.80, at α = 0.05. Our observed power (with an effect
size of 0.44) is 0.78. All data and code are openly available
at https://data.mrc.ox.ac.uk/data-set/effects-hunger-model-
based-and-model-free-decision-making (van Swieten,
Manohar, & Bogacz, 2021).

Manipulation of metabolic state

Participants were tested in a within-subjects counterbal-
anced, randomized crossover design for the effects of food
deprivation on planning (Fig. 1B). Sessions were approx-
imately 1 week apart (at least 4 days, but no more than
14 days). All sessions took place at the same time of day
between 10:00 am and 1:00 pm, to minimize time-of-day
effects. For one session, participants were asked to refrain
from eating and drinking caloric drinks from 8:00 pm the
night prior to testing. For the other session, participants
were asked to eat normally the day before and consume a
full breakfast within 1 h of arriving at the lab for testing.
We assessed the effect of food deprivation on self-reported
feelings of hunger and mental state using a computerized
Visual Analogue Scale (Bond & Lader, 1974; Flint et al.,
2000). Participants were asked to place a cursor on a 100-
mm scale with positive or negative text ratings anchored
at either end. This assessment provided a subjective mea-
sure of whether the manipulation worked. Participants also
performed a risk-taking, attention and learning task not
described in this paper.

Paradigm

In the two-step task, participants make a series of choices
between two stimuli, which lead probabilistically to one
of two second-stage states (Fig. 1A). Each first-stage
rocket leads more frequently (70%) to one of the second-
stage states (a “common” transition), and in a minority
of the choices (30%) to the other second-stage state (a
“rare” transition). These second-stage states require a choice
between two aliens that offer different probabilities of
obtaining a monetary reward. To encourage learning, the
reward probabilities for each second-stage alien fluctuated
across trials between 25% and 75% according to a Gaussian
random walk (Daw et al., 2011).

To solve this task, a model-free strategy would involve
choosing the same rocket when it previously resulted
in a reward. This would occur irrespective of whether
the transition to the second-stage was common or rare
(i.e., whether the planet was expected or unexpected),
because the model-free system is insensitive to the structure
of state transitions within the task. In contrast, a model-
based strategy would necessitate switching to the other
rocket after a reward, if the transition was a rare one (i.e., if
the chosen rocket went to the unexpected planet). This is
because participants can use their model of which rocket
tends to lead to which planet, to maximize their chances of
obtaining future rewards.
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The task consisted of 201 trials, divided into three blocks
of 67 trials separated by short breaks. If participants failed
to enter a choice for a first or second-stage choice within 2
s, the trial was aborted and not included in further analyses.
A new set of randomly drifting reward distributions was
generated for each participant. Participants received 1 pence
for every point they earned.

Before completing the full task, participants were
extensively trained on different aspects of the task.
Participants sampled 25 times from aliens with different
reward probabilities. They were also told that each rocket
preferentially goes to one of the planets, but they were
not instructed on which rocket goes to what planet or
the explicit transition probabilities (Kool, Cushman, &
Gershman, 2016). Finally, participants practiced the full
task for 25 trials. There was no response deadline for any
of the sections of the training phase. Different rockets,
planet colors, and aliens were used for the training and
experimental phase, and these were counterbalanced across
conditions and participants.

Stay-switch behavior

The one-trial-back stay-switch analysis is the most widely
used method for characterizing behavior on the two-step
task (Daw et al., 2011; Akam, Costa, & Dayan, 2015;
Wunderlich et al., 2012). This method quantifies the
tendency of a participant to repeat the choice made on the
last trial or switch to the other choice, as a function of the
outcome and transition on the previous trial. We considered
four possible outcomes: Common-Rewarded (CR), Rare-
Rewarded (RR), Common-Unrewarded (CU ), and Rare-
Unrewarded (RU ). Model-based and model-free indices
were computed from the stay probabilities following each
outcome according to:

MF = (P (stay|CR) + P(stay|RR)) − (P (stay|CU)

+P(stay|RU)), (1)

MB = (P (stay|CR) + P(stay|RU)) − (P (stay|CU)

+P(stay|RR)). (2)

We also examined whether hunger modulated other
measures of simple reinforcement learning. We found
no effect of hunger on changes in model-free control
for second-stage choices or for action-specific, stimulus-
irrelevant choices at the first-stage (Fig. S1).

Statistical analyses were implemented in MATLAB and
SPSS (IBM Corp. Released 2019. IBM SPSS statistics for
Windows, Version 26.0. Armonk, NY: IBM Corp.). We
report the effect size with Cohen’s d and η2p and report
the 95% confidence interval (CI) of the difference between
groups.

Computational modeling

We used a hybrid computational model that assumes that
the model-based and model-free systems both contribute
to choice behavior (Daw et al., 2011). Model-based and
model-free algorithms learn the value of the stimuli that
appear in the task in three different pairs. There is one
first-stage pair (s1 ∈ {1, 2}) and two second-stage pairs
consisting of two stimuli each (s2 ∈ {3, 4, 5, 6}). The
indices s1 and s2 refer to stage 1 and stage 2, respectively.
The index t refers to the trial number.

At the first-stage, model-free ‘cached’ values were
updated using a temporal difference algorithm. This
algorithm learns to maximize the total outcome by
strengthening or weakening associations between the first-
stage state and the first-stage actions, depending on whether
a reward followed that action or not:

QMF
s1 (t + 1) = QMF

s1 (t) + α1(Qs2(t) − QMF
s1 (t))

+α21(r − Qs2(t)), (3)

where α1 is the learning rate for the first-stage. The
parameter α21 determines the extent to which the second-
stage reward prediction error influences first-stage choices
(which is equivalent to the temporal discounting term α1×λ

in the model by Daw, Gershman, Seymour, Dayan, and
Dolan (2011)).

Model-based values were computed for each first-stage
stimulus and every trial in a forward-looking manner by
multiplying the state value of the best second-stage option
with the state transition probabilities:

QMB
1 = 0.7 × max(Qs2,3, Qs2,4) + 0.3

×max(Qs2,5, Qs2,6), (4)

QMB
2 = 0.3 × max(Qs2,3, Qs2,4) + 0.7

×max(Qs2,5, Qs2,6). (5)

Model-based learning was simplified and the transition
probabilities were not updated by explicitly modeling state
prediction errors. Simulations by the authors of the original
task showed that learning of state transitions quickly
converge to stable values (see Supplementary Materials of
Daw et al. (2011)).

The hybrid model computes the actual value that is
used in determining first-stage choices as a weighted
combination of the model-based (QMB) and model-free
(QMF) values. The first stage Q values are computed the
following way:

Q
hybrid
s1 = βMBQMB

s1 + βMFQ
MF
s1 , (6)

where βMB and βMF are the weighting parameters for
model-based and model-free control, respectively (and are
equivalent to β1 × ω and β1 × (1 − ω) in the model by
Daw et al. (2011)). Note that in a pure model-free approach
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βMB = 0, and in a pure model-based approach βMF = 0.

Q-values for the four second-stage stimuli were updated
according to the reward prediction error (Rummery &
Niranjan, 1994):

Qs2(t + 1) = Qs2(t) + α2(r − Qs2(t)), (7)

where α2 is the learning rate for the second-stage.
A first-stage choice depends on the relative difference in

stimulus values between Qs1,1 and Qs1,2 and the choice C

on the previous trial, which takes on the value 1 when the
current choice equals the previous choice. The parameter π

captures first-stage choice perseverance. Using the softmax
choice function, the probability of choosing a first-stage
stimulus was computed according to:

P1 = 1/(1 + exp(−(Q
hybrid
s1,1 − Q

hybrid
s1,2 ) − πC)), (8)

and for the second-stage:

P3 = 1/(1 + exp(−β2(Qs2,3 − Qs2,4)), (9)

where β2 control the randomness of second-stage choices.
We used a hierarchical model-fitting strategy that

takes into account the likelihood of individual participant
choices given the individual participant parameters and
also the likelihood of the individual participant parameters
given the parameter distribution in the overall population
across conditions. This two-stage hierarchical procedure
is an estimation strategy of the iterative expectation-
maximization algorithm (EM) (MacKay, 2003; Guitart-
Masip et al., 2011). This regularizes individual participants’
parameter fits, rendering them more robust toward over-
fitting. To infer the maximum-a-posteriori estimate of each
parameter for each participant, we set the prior distribution
to the maximum-likelihood given the data of all participants
and then used EM for the two conditions separately to obtain
parameter estimates for each condition. The statistical
significance was tested using paired t tests with respect to
the Gaussian scaled model parameters (see Supplementary
Material for the transformation of parameters). The reported
p values were corrected for multiple comparisons using the
Bonferroni method.

Results

As expected, participants rated their subjective feelings of
hunger significantly higher after 14 h of fasting than after
eating a full meal (Wilcoxon signed-rank test: [Z = −4.84,
p < 0.0001, d = 0.86]), indicating that the manipulation
was successful.

We first examined the influence of food deprivation
on choice behavior. During each session, a participant
undertook 201 trials, of which on average 2.3±s.d. 3.1 trials

were not completed due to failure to enter a response within
the 2 s time limit. Food deprivation did not affect the number
of missed trials [t31 = 1.19, p = 0.245, d = 0.22, 95% CI
[-0.61 2.29]] or median response times for first- and second-
stage choices (first-stage RThungry = 616 ms, RTsated = 640
ms; paired t test, [t31 = −1.29, p = 0.207, d = 0.23,
95% CI [-55.10 12.41]], second-stage RThungry = 788 ms,
RTsated = 821 ms; paired t test, [t31 = −1.25, p = 0.220,
d = 0.22, 95% CI [-88.65 21.34]]), suggesting that food
deprivation did not alter overall attention in this task.

Food deprivation only modulatedmodel-free
control

To dissociate model-based and model-free control, we
measured the tendency to “stay” with the same first-
stage choice as the previous trial. Model-free and model-
based strategies predict distinct patterns of stay behavior.
A model-free reinforcement learning strategy predicts
actions repeat when reinforced, i.e., a main effect of
reward (Fig. 2A), whereas a model-based learning strategy
predicts a crossover interaction between reward outcome
on the second-stage and the type of transition (Fig. 2B).
This arises because model-free and model-based strategies
predict opposing stay probabilities on trials following a rare
transition. After a rare transition, the model-free system
updates the value of the first-stage chosen stimulus, such
that reward promotes staying with the current choice. The
model-based system instead updates state values, and so
rewards after a rare transition will promote switching, since
the unchosen first-stage stimulus is more likely to lead to
the previously rewarded second-stage state.

We examined whether the probability of staying or
switching depended on the level of food deprivation
(hungry or sated), the transition type (common or rare),
and the reward on previous trial (reward or no reward),
using a three-way repeated measures ANOVA (Fig. 2C–
F). Participants used both model-free and model-based
strategies to solve this task, which is consistent with
previous studies (Daw et al., 2011; Wunderlich et al., 2012;
Deserno et al., 2015).

The key analyses concerned whether hunger modulated
these learning strategies (Fig. 2F). Food deprivation
increased the tendency to repeat the same choice after
receiving a reward, but not after reward omission, showing
that food-deprived individuals relied more on model-free
strategies. Hunger did not affect overall stay behavior or
model-based strategies.

Demographic factors may potentially modulate the
effect. Including age as a covariate had no effect on
the results. Including a median split of body mass index
(BMI) showed possible inter-individual differences, with
strong hunger effects on model-free learning in higher
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Fig. 2 Stay-Switch behavior at first-stage. Model-based and model-
free strategies for reinforcement learning predict different patterns by
which outcomes experienced after the second-stage impact first-stage
choices on subsequent trials (Daw et al., 2011). A) Simulation of
choice behavior driven by the model-free system. Rewards increase
the likelihood of choosing the same stimulus on the next trial, regard-
less of whether that reward occurred after a common or rare transition.
B) Simulation of choice behavior driven by the model-based system,

which relies on an interaction between transition type and reward
outcome. C) Experimental data of food deprived participants. D)
Experimental data of sated participants. E) Change in stay probabil-
ity with food deprivation. Food deprivation increased the tendency to
stay after receiving a reward and increased the tendency to switch
after reward omission. Error bars represent SEM. F) Statistics stay
behavior: three-way repeated measures ANOVA

BMI individuals (see Supplementary Material) but not in
lower BMI individuals. However, we were not powered to
detect between-subject effects, and we do not interpret these
further.

The contributions of model-free and model-based strate-
gies to choice behavior can be summarized with an alter-
native index (Eqs. 1 and 2). The current metabolic state
modulated the model-free (MF) index [t31 = 2.47, p =
0.019, d = 0.44, 95% CI [0.02 0.19]], but not the model-

based (MB) index ([t31 = 0.26, p = 0.799, d = 0.05,
95% CI [-0.08 0.10]]; Fig. 3A). The session order and the
amount of training did not alter MB or MF indices ([p >

0.2]; Fig. 3B). These analyses confirmed that the manip-
ulation of metabolic state, rather than training, caused the
effects observed in this study. This observation corresponds
with earlier reports that extensive training did not alter the
trade-off between the model-based and model-free system
(Grosskurth et al., 2019).

Fig. 3 Hunger increased model-free control and performance.A) Food
deprivation increased the relative contribution of the model-free (MF),
but not model-based (MB), system to stay behavior at stage 1. B)
Training did not significantly alter the contribution of the MB or MF

system to choice behavior. C) Food deprivation increased the number
of points earned. D) Session order had no significant impact on the
number of points earned. Error bars represent SEM. *p < 0.05
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Food deprivation enhanced performance

Although some studies have reported a significant corre-
lation between overall performance and enhanced model-
based control (Wunderlich et al., 2012), recent studies have
shown that the number of points may not be strongly cor-
related to either model-based or model-free control (Akam
et al., 2015; Kool et al., 2016). In this study, food depri-
vation enhanced performance, measured as the number of
points earned in the task ([t31 = 2.25, p = 0.032, d = 0.40,
95% CI [0.64 13.36]]; Fig. 3C). The total number of points
earned did not differ between the first and second testing
days ([t31 = 1.84, p = 0.075, d = 0.32, 95% CI [-
0.63 12.38]]; Fig. 3D), suggesting that more experience with
the task structure did not improve performance (Grosskurth
et al., 2019).

Computational modeling confirmedmodel-free
effects

The behavioral pattern in Fig. 2E deviates from the pattern
we expected from a pure model-free effect. Some studies
have also criticized the interpretation of the stay-switch
measures, in Eqs. 1 and 2, as mapping onto model-free
and model-based systems, respectively (Grosskurth et al.,
2019). Furthermore, model-based behavior is sometimes
confused as model-free behavior (Feher da Silva & Hare,
2020). Therefore, we corroborate the behavioral results
with computational modeling to assess the effects of
food deprivation, and attribute these effects to a specific
computational process. The complexity of the task and the
contribution of model-based and model-free strategies to
choice behavior were captured by a seven parameter model
(Fig. 4A). These seven parameters can be grouped into
four categories based on their functional roles: the model-
based system, model-free system, second stage or bias.
The quality of the fitting procedure was verified with a
parameter recovery analysis (see Supplementary Material).
All parameters were well recovered (0.65 ≤ R < 0.95)
and the model fitting procedure did not introduce spurious
correlations between the other parameters (|R| < 0.4;
Fig. S2).

We found that food deprivation significantly increased
the learning rate for first-stage choices [α1, p < 0.001,
d = 0.76, 95% CI [0.51 1.45]] and the contribution of
second-stage prediction errors [α21, p = 0.042, d =
0.52, 95% CI [0.14 0.78]]. These data suggest that hunger
increased model-free learning. Hunger did not affect any
of the other parameters ([p > 0.14]; Fig. 4B). Surrogate
data generated with the best fitted parameters (Table S1)
confirmed that the key difference in stay behavior (Fig. 2E)
was captured by the estimated parameters (Fig. 4C). The

modeling results confirmed that hunger increased model-
free learning, without affecting model-based control, which
explains the pattern observed in Fig. 2E.

Discussion

Truly adaptive behavior involves changing policy in
response to not only outcome contingencies, but also
our metabolic state. In this study, we used a sequential
decision-making task to test whether hunger modulates
simple reflexive decisions or prospectively planned actions.
Hunger enhanced overall performance by increasing model-
free control, without changing model-based control. These
results indicate that hunger enhances adaptive behavior
by boosting reinforcement learning, without affecting
cognitive processes that are required for future planning.

To solve the two-step task, people can either use model-
free learning and simply repeat actions that yielded rewards,
or they can use model-based learning to track states that
yielded rewards, and plan actions to reach those states.
These two strategies entail very different computations.
These may in turn rely upon different brain systems (Lee,
Shimojo, & O’Doherty, 2014) that could respond differently
to resource depletion or repletion. The sequential task
allowed us to track both of these modes of decision-making.
In line with previous studies (Daw et al., 2011; Wunderlich
et al., 2012; Grosskurth et al., 2019), our participants used
a mixture of model-based and model-free strategies to solve
the task.

Hunger increased the importance of model-free control,
characterized by a main effect of reward and increased
learning rates derived from computational modeling. At
first glance, it might be surprising that hunger increased
both α1 and α21. The exact parameterization of the model
may matter due to the hierarchical nature of the fitting
procedure, which assumes that each parameter has a similar
distribution across participants. A previous model of the
task formulated α21 as split into the product of the stage
1 learning rate α1 and an eligibility parameter λ. In that
formulation, there is a trade-off between α1 and λ. Applied
to our data, that formulation showed worse recoverability of
the eligibility trace parameter (van Swieten (2020) Fig. 7.5).
Our re-parameterized model is algebraically equivalent to
previous models (e.g., Daw et al. (2011); Grosskurth et al.
(2019)), but may give a clearer separation between the two
steps of learning. It is important to establish recovery of
the models (Palminteri, Lefebvre, Kilford, and Blakemore,
2017) and their validity (Wilson & Collins, 2019). We were
able to recover parameters well in our simulations (Figs. S2
& S3). Moreover, we performed a model comparison by
including hunger as a factor, or excluding it. We find
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Fig. 4 Computational modeling results. A) First-stage choices depend
on a model-based and model-free component. Model-based values
are computed by multiplying the stimulus with the highest value of
both second-stage planets with their respective transition probabilities.
Model-free values are updated using a first-stage reward prediction
error (RPE1; scaled by α1), which captures the difference between the
value of the chosen option in the first-stage and the chosen option in the
second-stage (state transition), and an eligibility trace of the second-
stage reward prediction error (RPE2). RPE2 captures the difference
between the reward received and the value of the chosen second-
stage option (scaled by α2). The model assumes that the second-stage

prediction error influences the first stage values with a learning rate
α21, because it assumes that first-stage choice leaves eligibility trace
that makes QMF modifiable according to subsequent prediction errors.
Black arrows indicate contribution to. Red arrows indicate that values
are scaled by. B) Differences in Gaussian scaled parameters between
food-deprived and sated conditions. Positive values indicate that the
parameter estimate was higher when food-deprived compared to sated
(food deprived > sated). C) Surrogate data simulated with the original
model using best-fitting parameters for this model (Table S1) revealed
the key pattern in stay behavior as shown by the experimental data in
Fig. 2E. Error bars represent SEM. * p < 0.05

significantly better model fits with hunger included as a
factor (�AIC = 41), in line with both the behavioral results,
and the significant difference in the recovered parameters.

When food deprived, participants won more points,
suggesting that increased model-free control is beneficial
to overall performance. Why might this be? To perform
optimally, participants continually have to update the
estimates of second-stage outcomes (aliens) according to
the randomly drifting outcome probabilities. It turns out
that this stochasticity imposes a low ceiling on achievable
performance on this task, such that the theoretical winnings
do not differ between pure model-based, model-free and

random agents (Akam et al., 2015; Kool et al., 2016).
Over the last decade, various versions of the task have
been introduced and concern has been raised about the
interpretation of the findings. Although it has been shown
that model-free behavior can be confused for model-based
behavior (Akam et al., 2015) and model-based behavior
can be confused for model-free behavior (Feher da Silva
& Hare, 2020), we emphasize that our effects are within-
subject changes, so any biases would affect both sessions
equally. We also opted to use this particular design as a
continuation of a previous study by Friedel et al. (2014).
However, we cannot rule out that hunger could decrease
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attention to the instructions, which can enhance the model-
free behavior.

A previous study by Friedel et al. (2014) hinted towards
a relationship between model-based control and metabolic
need. Friedel et al. indexed the metabolic need of an
individual as the change in valuation for food rewards in a
separate devaluation paradigm. They observed that people
who exhibited greater devaluation also showed more model-
based control. In contrast, our study asks whether changes
in metabolic needs have generalized effects on cognition,
beyond the specific reward type that changes in value.
By testing the same individuals twice on this sequential
decision-making task (once in high metabolic need and once
in low metabolic need), we were able to directly examine
the causal effect of metabolic need on the balance between
model-based and model-free control in the same individual,
and correlate this with overall performance. Crucially, our
observations are complementary to those of Friedel et al.
(2014). Although metabolic changes did not affect model-
based behavior for monetary outcomes, they may still affect
the value of food rewards. Indeed, the value of a particular
reward increases when humans or animals are deprived of it
(Aw et al., 2009; Epstein et al., 2003; Pompilio, Kacelnik,
& Behmer, 2006; Siep et al., 2009). Instead, the increased
learning we observed must reflect a more general change in
cognition, perhaps associated with heightened motivation.

How might such general effects arise? One mechanism
may be that food deprivation acts as a mild stressor
(Deroche et al., 1995). Stress itself may impair model-based
control (Otto, Raio, Chiang, Phelps, & Daw, 2013) and
enhances reliance on model-free strategies, particularly for
negative outcomes (Park, Lee, & Chey, 2017). This may
arise through the action of various metabolic hormones,
as well as hypothalamic inputs to the ventral prefrontal
cortex. It is worth noting that the results are incompatible
with hunger simply disrupting attention, which would be
expected to decrease learning rates and performance.

Metabolic hormones mostly act on primitive, subcortical
areas (Elmquist et al., 1998; Zigman et al., 2006), including
the basal ganglia. These areas play an important role in
model-free control (Gläscher et al., 2010; Daw et al., 2011;
Lee et al., 2014; Deserno et al., 2015; Smittenaar et al.,
2013), and are modulated by the current metabolic state
(Cone et al., 2016; Aitken et al., 2016; Papageorgiou et al.,
2016; Hommel et al., 2006; Abizaid et al., 2006). This
link may support our behavioral and modeled findings
that hunger increased model-free control, without affecting
model-based decision-making.

Our findings may be directly relevant to populations
with dysregulation of hunger. Obese individuals with
eating disorders, but not obese individuals without eating
disorders, exhibit increased model-free behavior in this
same task (Voon et al., 2015). Our study provides a

crucial causal link, that within individual participants from
an unselected population, hunger increases model-free
behavior. We only had a small range of BMI in our sample
and thus are not powered to detect the effects of BMI
on effects of hunger on this task. However, there was a
suggestion that people with a higher BMI have stronger
hunger effects (see Supplementary Material). Future studies
may include individuals with a wider range of BMI and
individuals with eating disorders, such as anorexia nervosa
and binge eating disorder. Given that cognitive control is
enhanced in anorexia nervosa and reduced in binge eating
disorder (Higgs et al., 2017), the effects of hunger on these
populations might differ from the individuals in this study
who have a normal weight and normal eating habits.

To conclude, we found that increased metabolic need
enhanced reflexive model-free control of behavior, without
affecting deliberate model-based control. Moreover, relying
on a reflexive model-free system does not necessarily make
hungry people maladaptive, when the deliberate model-
based system remains unaffected.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.3758/s13415-021-00921-w.
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