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Abstract

Parkinson’s disease motor symptoms are associated with an increase in subthalamic

nucleus beta band oscillatory power. However, these oscillations are phasic, and there is a

growing body of evidence suggesting that beta burst duration may be of critical importance

to motor symptoms. This makes insights into the dynamics of beta bursting generation valu-

able, in particular to refine closed-loop deep brain stimulation in Parkinson’s disease. In this

study, we ask the question “Can average burst duration reveal how dynamics change

between the ON and OFF medication states?”. Our analysis of local field potentials from the

subthalamic nucleus demonstrates using linear surrogates that the system generating beta

oscillations is more likely to act in a non-linear regime OFF medication and that the change

in a non-linearity measure is correlated with motor impairment. In addition, we pinpoint the

simplest dynamical changes that could be responsible for changes in the temporal pattern-

ing of beta oscillations between medication states by fitting to data biologically inspired mod-

els, and simpler beta envelope models. Finally, we show that the non-linearity can be

directly extracted from average burst duration profiles under the assumption of constant

noise in envelope models. This reveals that average burst duration profiles provide a win-

dow into burst dynamics, which may underlie the success of burst duration as a biomarker.

In summary, we demonstrate a relationship between average burst duration profiles,

dynamics of the system generating beta oscillations, and motor impairment, which puts us

in a better position to understand the pathology and improve therapies such as deep brain

stimulation.
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Author summary

In Parkinson’s disease, motor impairment is associated with abnormal oscillatory activity

of neurons in deep motor regions of the brain. These oscillations come in the shape of

bursts, and the duration of these bursts has recently been shown to be of importance to

motor symptoms. To better understand the disease and refine therapies, we relate the

duration of these bursts to properties of the system generating them in the pathological

state and in a proxy of the healthy state. The data suggest that the system generating bursts

involves more complexity in the pathological state, and we show that a measure of this

complexity is associated with motor impairment. We propose biologically inspired models

and simpler models that can generate the burst patterns observed in the pathological and

healthy state. The models confirm what was observed in data, and tell us how burst gener-

ation mechanisms could differ in the disease. Finally, we identify a mathematical link

allowing us to infer properties of the burst generating system from burst duration mea-

surements in patient recordings. This sheds some light on the significance of burst dura-

tion as a marker of pathology.

Introduction

The cardinal motor symptoms of Parkinson’s disease (PD) are slowness of movement (brady-

kinesia) or even inability to initiate movements, as well as rigidity due to increased muscle

tone, and tremor. As suggested in [1], increased basal ganglia (BG) oscillatory activity in the

beta band (13–35 Hz) has been correlated with worsening of motor symptoms, in particular

bradykinesia and rigidity but not tremor [2–6]. It is believed that heightened synchrony in the

beta band decreases the information coding capacity of the cortico-basal ganglia network [7],

as recently confirmed [8]. PD is caused by a progressive loss of dopaminergic neurons, and

can be successfully managed for a number of years by pharmacological treatment (the princi-

pal drug is Levodopa, a precursor of dopamine).

Physiological mesoscale beta activity in the cortex is of phasic nature and comes in bursts

[9–11] (not to be confused with spike bursting). In PD, besides the average level of synchrony,

the temporal patterning of beta activity has more recently been shown to be of importance.

Specifically, the proportion of longer bursts of activity in the beta band of subthalamic nucleus

(STN) local field potentials (LFPs) OFF medication has been correlated with motor

impairment [12]. It was also found that motor symptoms can be ameliorated by shortening

beta bursts of longer duration with STN adaptive deep brain stimulation (aDBS) [13]. Since

then, STN bursts in PD patients have been shown to impact motor performance at the single

trial level [14]. In another task, the percentage of time spent in beta bursts has been shown to

be a better predictor of bradykinesia than average beta power [15], and it has been argued that

temporal synchrony patterning may be more sensitive to clinical changes than average syn-

chrony [16]. The clinical relevance of temporal synchrony patterning may extend to other PD

motor symptoms, and STN beta burst duration has also been suggested as a potential bio-

marker for freezing of gait in PD [17]. Given this mounting body of evidence, providing

insights into the dynamics of burst generation should put us in a better position to understand

the pathology and treat it, in particular with targeted neurostimulation. In this study, we there-

fore ask the following question: can we relate observed changes in beta oscillation temporal

patterning in PD between the ON and OFF medication states to changes in dynamical proper-

ties of the system generating beta oscillations?
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In previous studies, STN beta bursts have been mostly studied based on one arbitrary

threshold of the beta envelope as events above the threshold, potentially with a minimum

duration condition (examples of various thresholds shown in Fig 1A). Average burst duration

and amplitude profiles describing the average burst duration and amplitude for a range of

thresholds (see Fig 1A and 1B for an illustration of average burst duration profiles) have been

introduced [12, 13]. However, they played a minor role in these studies and have not been con-

sidered systematically on an individual patient basis. Here, we leave behind the arbitrary

choice of a threshold by relying on profiles across thresholds to provide an unbiased character-

isation of beta oscillation temporal patterning. It has been established that STN beta burst

duration is a better metric than burst amplitude to distinguish between the healthy and patho-

logical states in an animal model of PD [18]. We begin our study by investigating in STN

recordings of PD patients whether average burst duration profiles are better at distinguishing

between the ON and OFF medication states than average burst amplitude profiles. We only

observe significant changes in the temporal patterning of beta oscillations in average burst

duration profiles, and come to the conclusion that burst duration is the better metric as in

[18]. We introduce a burst duration specific measure of non-linearity based on linear surro-

gates, and show that our measure of non-linearity is increasing in recordings from the ON to

the OFF state, thereby presenting a first level of description of the dynamical changes associ-

ated with changes in the temporal patterning of beta oscillations. To support the relevance of

these changes, we study the correlation of our non-linearity measure with motor symptoms.

Many modelling studies have reported the generation of sustained beta oscillations in the

context of PD, and have identified several potential sources of exaggerated beta oscillations

Fig 1. Introducing average burst duration profiles. Average burst duration profiles are obtained by computing beta envelope average burst duration for a

range of thresholds. An example is provided for three thresholds, where thick lines highlight the duration of individual bursts for the three thresholds in

panel A, and the corresponding averages are identified with the same colour in panel B. Considering the time discretization of simple envelope models of

the form dx = μ(x)dt + zdW, where μ is the drift function,W is a Wiener process, and z is a constant noise parameter, we illustrate with two example drift

functions the link between envelope dynamics (panels C1 and C2, one-dimensional vector field also sketched with blue arrows) and average burst duration

profiles (panels E1 and E2). The envelope models produce the black envelopes in panels D1 and D2, and beta oscillations (shown in grey in panels D1 and

D2) can be obtained by adding a constant frequency phase equation. In C1, when xmoves away from the fixed point, it will be strongly attracted back. By

contrast, in the case of C2, if x is around 1, there is weak attraction towards the fixed point, allowing x to stay at an elevated level for longer.

https://doi.org/10.1371/journal.pcbi.1009116.g001
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(see [19] for a review). However, reproducing the temporal patterning of beta oscillations has

received little attention. It was reported very recently that spike bursting in a small proportion

of neurons in the feedback loop formed by the STN and the globus pallidus pars externa (GPe)

could contribute to transient beta oscillations [20]. Models of the STN-GPe feedback loop

have been shown to generate realistic transient beta oscillations in response to beta frequency

inputs from PD patient electroencephalogram (EEG) recordings [21], and in response to bio-

logically inspired input patterns in healthy animals [22]. How mesoscopic model dynamics

would need to change in the absence of correlated inputs to account for changes observed in

the temporal patterning of beta oscillations in patients ON and OFF medication has not been

investigated. To delineate the simplest two-population neural circuit dynamics that can repro-

duce average burst duration profiles ON and OFF medication, we fit time discretized Wilson-

Cowan (WC) models [23] of increasing complexity receiving uncorrelated inputs to selected

patient data.

The time discretization of one dimensional stochastic processes can be used to simulate the

envelope of beta oscillations (see Fig 1C and 1D). We call these models “envelope models”.

Under simplifying assumptions, the envelope of a linear WC model was shown in [24] to be

described by a particular envelope model. While the WC model is biologically inspired and

describes the STN-GPe circuit, envelope models are simpler, can reproduce average burst

duration profiles, and summarize the essence of the underlying dynamics. We use this to our

advantage to pinpoint in all the datasets available the simplest polynomial forms of envelope

drift function reproducing the ON and OFF medication states. We also derive an analytical

expression for average burst duration profiles by identifying a first passage problem. Based on

this result, we relate changes in average burst duration to changes in one specific parameter in

the linear case.

Different envelope dynamics result in different average burst duration profiles (this is illus-

trated in Fig 1C–1E). To fully relate temporal patterning of beta oscillations to dynamics, we

establish a mathematical link under general assumptions from average burst duration profile

to envelope dynamics. This suggests that average burst duration profiles are a direct signature

of envelope dynamics, and may be one reason why beta burst duration is found to be an

important marker of pathology in experimental studies of PD. In addition, we illustrate the

relationship between burst duration and dynamics by recovering envelope dynamics in enve-

lope model synthetic data, and in examples of patient data. This envelope dynamics inference

method may find applications in other contexts, as it can be applied to any envelope time

series.

Starting with the data, the paper’s narrative will be guided by the following questions. Is the

system generating beta oscillations more likely to operate in a non-linear regime OFF medica-

tion than ON medication (surrogate analysis, and envelope model subsections)? Can the

change in a measure of non-linearity help predict motor impairment (surrogate analysis sub-

section)? Which are the simplest neural mass models that can reproduce the average burst

duration profiles observed in ON and OFF medication data (neural mass model subsection)?

Which type of non-linearity is required to explain experimental average burst duration profiles

in the ON and OFF states (envelope model subsection)? How can we directly extract this non-

linearity from average burst duration profiles (dynamics inference subsection)? The surrogate

analysis is based on a statistical method which makes the least assumptions about the system,

and is used to link dynamical changes with motor impairment. While the biologically inspired

neural mass models describe the STN-GPe circuit, the simpler to fit envelope models are par-

ticularly insightful as they can be used to study the dependence of average burst duration on

model parameters, and provide a direct link from average burst duration to drift function.
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Results

Comparing bursting features ON and OFF medication

Choice of bursting features. Neural activity at beta frequency comes in the shape of

bursts, and several features could be analysed to capture differences in beta bursting dynamics

between medication states in STN LFPs. Differences in average beta power between medica-

tion states have been well documented in STN LFPs, see for instance [2, 25–28]. We therefore

investigate bursting dynamics beyond simple differences in average beta power by individually

z-scoring each dataset. To quantify the duration of bursts, we use as bursting feature the aver-

age burst duration profile. To quantify the amplitude of bursts, we use as bursting features the

average burst amplitude profile, and the probability density function (PDF) of the envelope

amplitude. To quantify the rate of occurrence of bursts, the average burst rate profile can be

easily obtained from the average burst duration profile (see derivation in S1 Text). The average

burst rate profile therefore does not bring any additional information and is not included in

the analysis.

Bursts are commonly defined as events corresponding to the envelope being above a prede-

fined threshold for more than 100 ms [12, 13], but burst profiles across thresholds do not

depend on an arbitrary threshold choice. Additionally, given a short time series, burst profiles

make more efficient use of the data available than the distribution of burst durations at a single

threshold. This is because they rely on a mean value for a given threshold and the same time

series is reused for all thresholds. Although the duration of a given burst will necessarily

decrease with increasing threshold, average burst duration profiles can be more complicated

than a simple decreasing function of thresholds. This is illustrated in Fig 2, where the decrease

in burst duration of individual bursts is more than compensated by the decrease in the propor-

tion of shorter bursts when going from the 70th percentile to the 80th percentile. Importantly,

dynamical properties of the system are revealed by average burst duration profiles as will be

detailed later.

Fig 2. Average burst duration profiles can have complex shapes. Thick lines highlight the duration of individual bursts for two thresholds in the left

panel. The corresponding averages are identified with the same colour in the average burst duration profile in the right panel. Longer bursts are still present

at the 80th percentile, and shorter bursts are significantly more frequent at the 70th percentile than at the 80th percentile. In addition, high amplitude, longer

bursts are sharp (quick rise and fall), and therefore their duration is only shortened slightly from the 70th to the 80th percentile. As a result, the average burst

duration profile is non-monotonic.

https://doi.org/10.1371/journal.pcbi.1009116.g002
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We extracted the power spectrum density (PSD) and the three bursting features mentioned

above from filtered bilateral STN LFP recordings of 8 patients with advanced Parkinson’s dis-

ease ON and OFF Levodopa [2]. A detailed description of the data, as well as our data process-

ing and feature extraction methodologies are provided in the subsection “Extracting power

spectra and bursting features” in the Methods section.

The average burst duration profile is the relevant feature to discriminate bursting

dynamics ON and OFF medication. Our statistical analysis reveals that the average burst

duration profile is the most powerful of the three bursting features analysed (average burst

duration profile, average burst amplitude profile, envelope amplitude PDF) to discriminate

bursting dynamics between conditions. Significant differences in mean burst duration and

mean burst amplitude between the ON and OFF states were assessed by t-tests (n = 5, d.f. = 8)

with false discovery rate (FDR) control at 5% (more details on FDR control in the subsection

“FDR control” in the Methods section). We evaluated significant differences in envelope PDFs

between the ON and OFF conditions using cluster-based permutation testing (106 permuta-

tions). The power spectra and the three bursting features are shown for the right hemispheres

of the eight patients in Fig 3. Besides differences in the power spectra which are known to be

statistically significant, only average burst duration profiles exhibit significant differences after

FDR correction between the ON and OFF states. These significant differences are seen in most

patients, although they are consistent across thresholds only for half of the datasets. Besides a

difference in mean power removed by z-scoring, amplitude statistics were not found to be

Fig 3. Power spectra and bursting features ON and OFF Levodopa (right hemispheres). Each column corresponds to the right hemisphere of one of the

eight patients. Each row corresponds to a feature, the ON state is in blue, and the OFF state in red. The first row shows power spectra, the second row

average burst duration profiles, the third row average burst amplitude profiles, and last row envelope amplitude PDFs. Statistically significant differences

under FDR control are indicated by black stars (three bursting features only). Error bars represent the SEM.

https://doi.org/10.1371/journal.pcbi.1009116.g003
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significantly different ON and OFF medication as exemplified by the lack of significant differ-

ences in both average burst amplitude profiles and envelope PDFs for all patients. A similar

picture is seen in left hemisphere LFPs (see Fig A in S1 Fig). We show in Figs B and C in S1 Fig

that profiles obtained ON medication are different from similarly filtered pink noise (1/f

noise) for the majority of hemispheres. This confirms that ON profiles are physiologically

meaningful, despite the choice of filtering windows always centered on the beta peak OFF

medication. We will therefore focus on average burst duration profiles in the rest of the paper,

and we begin with a linear surrogate analysis of the changes in these profiles.

Investigating changes in dynamics using a linear surrogate analysis of

average burst duration profiles

Our first approach to relating changes in the temporal patterning of beta oscillations between

the ON and OFF states to dynamical changes is to consider the degree of non-linearity in the

ON and OFF states. It is obtained by comparing average burst duration profiles ON and OFF

medication to the profiles of their respective linear surrogates. In addition, we provide support

for the relevance of these changes by reporting correlations with motor impairment.

Linear surrogates. Linear surrogates provide a way of testing for the presence of non-lin-

earity in the system that generated an observed time-series [29]. Here linear system refers to a

stationary linear stochastic process, an example of which is a stationary linear Gaussian process

(in discrete time an auto-regressive moving average model or ARMA model). An ARMA(p,q)

model can be described as

yn ¼
Xp

i¼1

aiyn� i þ
Xq

i¼0

bi�n� i; ð1Þ

where �i are independent Gaussian white noise increments, and ai and bi are constant coeffi-

cients. The value at time n is a linear combination of past values and noise terms.

Linear surrogates preserve the linear properties of the data (linear correlations) but erase

any potential non-linear structure. Besides the mean and standard deviation, linear properties

are limited to the auto-correlation at all lags in the time domain, which is equivalent to the

power spectrum in the frequency domain (Wiener-Khinchin theorem). Thus, linear surrogates

preserve the PSD.

The most common linear surrogates, Fourier transform (FT) surrogates and iterated ampli-

tude adjusted Fourier transform (IAAFT) surrogates assume that the data is stationary (more

details on these methods are given in “From FT surrogates to GWR surrogates” in the Methods

Section). Depending on their duration, nonstationarity may be present in LFP recordings, and

could be mistaken for non-linearity by FT and IAFFT surrogates. In this work, even if the

recordings used are short (on the order of 250 s), we rely on gradual wavelet reconstruction

(GWR) surrogates, which can mitigate the nonstationarity issue. GWR surrogates are provided

along a continuum parametrised by ρ, where ρ = 0 corresponds to IAAFT surrogates, and

ρ = 1 corresponds to the data [30]. In addition to addressing the influence of nonstationarity,

this continuum allows to quantify effect strength. More details on the GWR method can be

found in “From FT surrogates to GWR surrogates” (Methods section). Nineteen GWR surro-

gates were computed from the filtered data for each patient and hemisphere, ON and OFF

medication, and for each ρ level ranging from 0 to 0.9 in steps of 0.1 with an additional value

at 0.99 (as close to the data as possible). At ρ = 0.1, the largest wavelet coefficients making up

10% of the total wavelet energy are left out of the randomization procedure, which ensures

that most of the data temporal variability is included in surrogates (see surrogates shown in

the Methods Section for a range of ρ levels).
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Changes in a burst duration specific measure of non-linearity between the ON and OFF

states. To evaluate dynamical changes between the ON and OFF states, we define a burst

duration specific measure of non-linearity based on linear surrogates, and show that it is sig-

nificantly greater OFF than ON medication.

We obtain average burst duration profiles and PSDs from the filtered data and surrogates

as detailed in “Extracting power spectra and bursting features” (Methods Section), except that

no segmentation is done, the surrogates are not filtered (as they already reproduce the spec-

trum of the filtered data), and profiles from surrogates are averaged across surrogate realisa-

tions. The resulting average burst duration profiles of linear surrogates and filtered data are

shown for the right hemispheres of the eight patients in Fig 4 for ρ = 0. Similar figures are pro-

vided for a range of ρ levels for both hemispheres (see Figs D and E in S1 Fig). Fig D in S1 Fig

and Fig E in S1 Fig also show that surrogate PSDs very closely match data PSDs as expected.

As shown in Fig 5A, we define a non-linearity measure specific to burst duration profiles as

the sum of the squared differences between filtered data and linear surrogate average burst

duration profiles, relative to the square of the mean value of the surrogate average burst dura-

tion profile. We refer to this measure as BDDLS, which stands for burst duration distance to

linear surrogate. We call the difference between BDDLS OFF and ON medication BDDLSdiff.

Our burst duration specific measure of non-linearity, BDDLS, was found significantly

greater OFF than ON medication from ρ = 0 up to ρ = 0.6 under FDR control as shown in

Table 1 (one-tailed Wilcoxon signed rank test, all patients and hemispheres, n = 16 per condi-

tion). Scatter plots corresponding to all of the analysed ρ levels are provided in Fig F in S1 Fig.

Since the BDDLS measures include a scaling by the square of the mean value of the surrogate

average burst duration profile, the effect of medication state cannot be due to the profiles of

data and surrogates having overall larger values OFF medication. Two conclusions can be

drawn from the effect being significant up to ρ = 0.6. Firstly, the effect is not due to nonstatio-

narity in the data (as mentioned earlier, GWR surrogates at ρ = 0.1 already look very similar to

the data, and thus capture the major non-stationary features that may be present). Secondly,

significance up to ρ = 0.6 implies that a limited amount of phase randomization in the surro-

gates is enough to start seeing a significant difference between BDDLS OFF and ON medica-

tion, hinting at a strong effect. More details on ρ can be found in “From FT surrogates to

GWR surrogates” (Methods section).

As a control, we calculated BDDLS OFF and ON medication for data band-pass filtered

± 3 Hz around 35 Hz, for ρ = 0. The control condition aims to show some frequency specificity

of the difference in BDDLS between conditions. The choice of ρ = 0 is therefore conservative

Fig 4. Average burst duration profiles ON and OFF medication for data and GWR surrogates at ρ = 0 (right hemispheres). In all panels, data profiles

are solid lines, while linear surrogate profiles are dashed lines. The OFF medication state is indicated in red, and the ON state in blue.

https://doi.org/10.1371/journal.pcbi.1009116.g004
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(a difference is more likely when the surrogates are the most different from the data). No effect

of medication state on BDDLS was found (p = 0.449, n = 16 per condition, and see Figs G and

H in S1 Fig). Although band-pass filtered data around 35 Hz may be filtered noise (at least par-

tially), we observe that differences in power do not necessarily translate into differences in

BDDLS, as PSDs vary considerably between the OFF and ON states in the controls, but

BDDLS OFF and ON medication are similar. As BDDLS is greater in the OFF state, we investi-

gate below whether BDDLSdiff correlates with motor impairment.

Clinical correlations. To show that the difference in BDDLS OFF and ON medication,

BDDLSdiff, is indicative of motor impairment, we also consider two other metrics as possible

predictors of motor impairment. The first one is the relative difference between PSD OFF and

ON medication called PSDdiff (the difference has to be relative to allow an analysis across

patients as PSD levels vary greatly), and the second one is the sum of the differences between

burst duration profiles OFF and ON medication across thresholds called DURdiff (similar

scale across patients). DURdiff is illustrated in Fig 5B. Motor impairment was measured using

the unified Parkinson’s disease rating scale (UPDRS) OFF medication. To increase test sensi-

tivity, the rating was done using half points as opposed to integers only [2]. The correlations

Fig 5. Sketch of burst duration metrics. A: illustration of burst duration distance to linear surrogates in the OFF state

(BDDLS OFF). BDDLS OFF is defined as the sum of squared differences between data and linear surrogate average

burst duration profiles for the OFF condition divided by the square of a scale. The scale is taken as the mean value of

the OFF linear surrogate average burst duration profile. BDDLS ON is defined in a similar way, and BDDLSdiff is

BDDLS OFF medication minus BDDLS ON medication. B: DURdiff is defined as the sum of the differences across

thresholds between burst duration profiles OFF and ON medication. In this figure, summation is indicated by the

symbol +, division by the symbol /, and squaring by the symbol 2.

https://doi.org/10.1371/journal.pcbi.1009116.g005

Table 1. Statistical significance of medication state effect on BDDLS. Showing p-values for the test that BDDLS is greater OFF than ON medication (sign rank test, all

patients, both hemispheres, n = 16 per condition) as a function of the GWR surrogate parameter ρ. P-values in bold are smaller than 5%, while green indicates significance

under FDR control.

ρ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.99

p-val 0.0010 0.0009 0.0010 0.0009 0.0003 0.0081 0.0012 0.259 0.510 0.330

https://doi.org/10.1371/journal.pcbi.1009116.t001
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we report are for predictors and hemibody UPDRS OFF medication averaged across sides.

The Spearman’s correlations described below are therefore for n = 8, d.f. = 6.

BDDLSdiff correlates with UPDRS OFF medication. The correlation is statistically signifi-

cant under FDR control from ρ = 0.1 to ρ = 0.5 (Spearman’s correlation coefficients and associ-

ated p-values are shown in Table 2). This suggests a robust effect as explained previously. The

other factors of interest PSDdiff (relative change in PSD) and DURdiff (change in burst dura-

tion) are also correlated with UPDRS OFF medication (Spearman’s correlation of 0.500,

p = 0.216, and of 0.476, p = 0.243, respectively). The lack of statistical significance for these fac-

tors is likely due to the small sample size (eight subjects). The relationship between predictors

and clinical scores is plotted in Fig I in S1 Fig.

The three predictors considered are correlated, although with one exception not signifi-

cantly so. The relationship between the predictors is plotted in Fig J in S1 Fig. Spearman’s cor-

relations are 0.500, p = 0.216 between BDDLSdiff for ρ = 0.2 and PSDdiff, 0.476, p = 0.243

between BDDLSdiff for ρ = 0.2 and DURdiff, and 0.952, p = 0.001� between DURdiff and

PSDdiff, where � denotes significance under FDR correction. The lack of significance in the

remaining comparisons may be due to the relatively low number of subjects. However, scaling

BDDLS by the mean value of the surrogate average burst duration profile decorrelates as much

as possible BDDLSdiff from DURdiff. Moreover, non-linear correlations cannot be recovered

from the PSD (the power spectrum only captures linear correlations) which implies that

BDDLSdiff should contain information not present in PSDdiff if the system is non-linear and

non-linear behaviour is reflected in its average burst duration profile.

We have made apparent that changes in the temporal patterning of beta activity between

medication states can be related to an increase in our burst duration specific non-linearity

metric OFF medication, and that changes in the BDDLS metric are correlated with motor

symptoms. Average burst duration profiles OFF medication rank higher on the BDDLS metric

and can therefore be thought of as being generated by a system more likely to operate in a

non-linear regime than ON medication. By non-linear regime we mean a regime where the

generated signal covers enough of the dynamical system vector field that the system non-lin-

earity translates into non-linear structure in the generated signal. Indeed, the distribution of

state variables greatly affects measures of the degree of non-linearity in stochastic dynamical

systems [31, 32]. To get a clearer idea of which specific dynamical changes could be at play

between the ON and OFF states, we proceed to model chosen datasets ON and OFF medica-

tion using neural mass models, and identify the simplest dynamical systems that can fit the

data in each state.

Investigating changes in dynamics using neural mass models

To investigate which particular changes to the dynamics of a biologically inspired model of the

STN-GPe loop could account for the changes in the temporal patterning of beta oscillations

observed between the OFF and ON conditions, we fit WC models of increasing complexity to

patient data. Because fitting neural mass models to patient data is computationally expensive,

we select the top two datasets with the largest BDDLS for ρ = 0 (these are OFF medication

Table 2. Spearman’s correlations between BDDLSdiff and UPDRS score OFF medication. Values are presented as a function of the GWR surrogate level ρ. P-values in

bold are smaller than 5%, while green indicates significance under FDR control. Predictors and hemibody UPDRS OFF are averaged across sides (n = 8, d.f. = 6).

ρ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.99

correlation 0.571 0.738 0.810 0.929 0.833 0.810 0.333 -0.048 -0.571 0.595

p-val 0.1511 0.0485 0.0218 0.0022 0.0154 0.0218 0.428 0.935 0.151 0.132

https://doi.org/10.1371/journal.pcbi.1009116.t002
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datasets), and the corresponding ON datasets. These datasets are patient 6, right hemisphere

(which we denote patient 6R), and patient 4, left hemisphere (which we denote patient 4L).

Datasets 6R OFF and 4L OFF display the most striking average burst duration profile devia-

tions from their respective linear surrogates (see Fig D in S1 Fig and Fig 4). Datasets 6R ON

and 4L ON have average burst duration profiles typical of the ON state.

Fitting a linear Wilson-Cowan model to ON state datasets. We start by fitting to patient

6R ON and 4L ON the time discretization of a linear WC model which describes the interac-

tions between an excitatory and an inhibitory population of neurons. The discrete linear WC

model can be seen as a multivariate version of an ARMA model (Eq (1)). The WC model is a

natural choice as it can be mapped onto the basal ganglia STN-GPe loop as shown in Fig 6, the

STN being modelled as the excitatory population, and the GPe as the inhibitory population

[33–35]. While the STN-GPe circuit is characterised by complex currents at the microscopic

level, our choice to work with the mesoscopic WC model is based on the mesoscopic character

of the data available. As a heuristically derived mean-field model, the WC model benefits from

a low number of parameters while retaining some level of description of a microscopic biologi-

cal reality [23]. The LFP recordings used in this study have been obtained from DBS electrodes

implanted in the STN, and therefore we model the LFP signal by the activity of the excitatory

population. The STN and GPe are reciprocally connected, and the STN receives a constant

excitatory input from the cortex, while the GPe receives a constant inhibitory input from the

striatum, and is also self-inhibiting. Uncorrelated inputs, specifically Gaussian white noise, are

added to each population. The STN activity, E, and the GPe activity, I, are described by the sto-

chastic differential equations

dE ¼
1

OE
� Eþ fbðlE � wIEIÞ
� �

dt þ zdWE;

dI ¼
1

OI
� I þ fbð� lI þ wEIE � wIIIÞ
� �

dt þ zdWI;

8
>>><

>>>:

ð2Þ

with wPR the weight of the projection from population “P” to population “R”, λP the constant

input to population “P”, and OP the time constant of population “P”. In addition,WE andWI

are Wiener processes, and z is the noise standard deviation. In this attempt to describe

simple ON state average burst duration profiles, we use a linear activation function given by

fβ(x) = βx, where β is the slope.

The time discretized model is fitted to two features (also known as summary statistics) of

the data, namely the data PSD and the data average burst duration profile. How fitting is

Fig 6. Mapping of the Wilson-Cowan model onto the STN-GPe loop. The excitatory population E and the

inhibitory population I model the basal ganglia STN and GPe, respectively. Arrows denote excitatory connections or

inputs, whereas circles denote inhibitory connections or inputs. The DBS electrode is implanted in the STN (indicated

by a dashed light blue line) and records the STN LFP. The STN also receives an excitatory input from the cortex, while

the GPe receives an inhibitory input from the striatum, and also has a self-inhibitory loop.

https://doi.org/10.1371/journal.pcbi.1009116.g006
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carried out is described in “Fitting procedure” in the Methods section. As the model output E
models the centered LFP recordings, a model of the beta envelope is obtained by considering

the Hilbert amplitude of E (modulus of the analytic signal of E).

The best fits to patients 6R ON and 4L ON are shown in the first and third rows of Fig 7,

and we report the corresponding model parameters in Table A in S1 Table. The input parame-

ters λE and λI only contribute to transients in the linear WC model, and are therefore set to

zero here. They will have an influence on the model output when non-linearity is introduced.

The linear WC model is able to reproduce both the data PSD and average burst duration pro-

file in both cases (coefficient of determination R2 = 0.756 for 6R ON, see Fig 7C1 and 7D1, and

R2 = 0.798 for 4L ON, see Fig 7C3 and 7D3).

Fig 7. Best WC model fits. Showing best fits to datasets 6R (ON: first row, OFF: second row), and 4L (ON: third row, OFF: fourth row). The

first column shows twenty seconds of filtered LFP recording (A panels), while the same duration of model oscillatory activity output is plotted

in the second column (B panels). Data and model PSDs are compared in the third column (C panels), and data and model average burst

duration profiles are shown in the last column (D panels, SEM error bars). In the first and third rows, all model outputs correspond to fits of the

linear WC model. In the second and fourth rows, dark red solid lines correspond to fits of the delayed non-linear WC model, and dark red

dashed lines to fits of the linear WC model (shown for comparison, D panels only).

https://doi.org/10.1371/journal.pcbi.1009116.g007
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We have shown that a linear WC model can fit to patients 6R ON and 4L ON, and we next

fit increasingly complex WC models to patients 6R OFF and 4L OFF to investigate the OFF

medication case.

Fitting Wilson-Cowan models to the highest BDDLS patients. The same procedure as

before is used to fit the time discretized linear WC model to patients 6R OFF and 4L OFF. The

linear WC model does not fit well to the data average burst duration profile in both cases (see

dashed lines in Fig 7D2 and 7D4, R2 = 0.312 for patient 6R OFF and R2 = 0.635 for patient 4L

OFF). We report the corresponding model parameters in Table A in S1 Table.

We next introduce the time discretization of a non-linear WC model, which is identical to

the linear WC model (see Fig 6), except that its activation function

gb;ZðxÞ ¼
Z

1þ e� bðx� 1Þ
ð3Þ

is non-linear and that connections carry a delay. The system of stochastic differential equations

(Eq (2)) is therefore modified as

dEt ¼
1

OE
� Et þ gb;ZðlE � wIEIt� DIEÞ
� �

dt þ zdWE;t;

dIt ¼
1

OI
� It þ gb;Zð� lI þ wEIEt� DEI � wIIIt� DIIÞ
� �

dt þ zdWI;t;

8
>>><

>>>:

ð4Þ

where ΔPR is the delay from population “P” to population “R”, and η is a scaling parameter.

The best fits to patients 6R OFF and 4L OFF obtained with the same fitting methodology as

before are shown in the second and fourth rows of Fig 7 (corresponding model parameters in

Table B in S1 Table). The non-linear WC model with delays is able to reproduce the data aver-

age burst duration profile and the data PSD well in both cases (R2 = 0.91 for patient 6R OFF,

see dark red lines in Fig 7C2 and 7D2, and R2 = 0.931 for patient 4L OFF, see dark red lines in

Fig 7C4 and 7D4). The Bayesian information criterion (BIC) corresponding to the average

burst duration profile fit is lower in both cases for the delayed non-linear WC than for the lin-

ear WC (ΔBIC = 12.26 for patient 6R OFF, and ΔBIC = 19.55 for patient 4L OFF). This differ-

ence in BIC highlights the superior fit of the non-linear model despite the increase in model

complexity.

In summary, this subsection has demonstrated that in a biologically inspired excitatory/

inhibitory (E/I) model, reproducing the most striking average burst duration profiles in the

OFF condition requires the addition of delays and a non-linear (sigmoidal) activation function

compared to typical ON profiles. The need for non-linearity agrees with the surrogate analysis

carried out previously, but more importantly the present results also delineate the simplest

type of biologically inspired model required to reproduce the two conditions studied.

In some cases, the envelope of E/I models can be related to what we call in this work “enve-

lope models” (illustrated in Fig 1). Indeed, it was shown in [24] that the envelope of a linear

WC model is a Rayleigh process, assuming the ratio of E to I envelope amplitudes is constant,

and the phase delay between E and I oscillations is also constant. A Rayleigh process is in fact a

particular type of envelope model. We next investigate whether a similar conclusion to that of

this subsection on E/I models holds for envelope models, which provide a direct, simpler

description of envelope dynamics and can more easily be fitted to all datasets. Additionally, we

will study envelope models analytically to obtain additional insights.
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Investigating changes in dynamics using envelope models

To obtain the simplest polynomial dynamics describing the OFF and ON conditions, we con-

sider envelope models directly describing the LFP envelope and fit them to data. Furthermore,

to describe the dependence of burst duration on model parameters, we derive an approximate

analytical expression for the average burst duration profile, and apply it to the model most rep-

resentative of the ON condition.

Fitting envelope models to burst duration profiles. The time discretization of the sim-

plest stochastic process with state dependent drift and uncorrelated white noise, the Ornstein-

Uhlenbeck (OU) process, is in fact enough to model the average burst duration profile of the

majority of ON medication datasets, and of a few OFF medication datasets. The OU process is

described by the stochastic differential equation

dx ¼ � yxdt þ zdW; ð5Þ

whereW is a Wiener process, θ a positive decay parameter, and z the constant noise standard

deviation. While x(t) directly models the envelope, the phase equation

_� ¼ 2pn; ð6Þ

where ν is a constant frequency can be used to generate oscillatory activity as z(t) = x(t) cos ϕ(t).
To reproduce the average burst duration profiles of the datasets whose envelopes cannot be

described by OU processes, we extend the drift function of the OU model to include non-lin-

ear polynomial terms. We are thus considering the time discretization of models of the form

dx ¼
XnP

i¼0

dix
i

 !

dt þ zdW; ð7Þ

where nP is the degree of the polynomial drift, and ðdiÞi2f1;::;nPg are constants with dnP < 0.

The resulting envelope models are fitted to the average burst duration profile of all datasets.

For each dataset, we fit envelope models of increasing polynomial degree starting with nP = 1

(OU) until a fit to the average burst duration profile with R2 > 95% is achieved. We call these

models “minimal models”. Model parameters are optimised (procedure in “Fitting procedure”

in the Methods section) to obtain the best fit to the data average burst duration profile with

x(t) directly modelling the beta envelope. With its frequency ν adjusted to match the data peak

frequency, each model is scaled so that the standard deviation of z(t) approximately matches

that of the data.

The best fits of minimal models to all datasets are shown in Fig 8. The coefficients of deter-

mination R2 of all models leading to, and including, minimal models are reported in Tables C

and D in S1 Table. We verified that minimal models have the lowest BIC of all models consid-

ered for a given dataset (see Tables E and F in S1 Table). We report minimal model parameters

in Tables G-J in S1 Table. The fitted drift functions of minimal models (second and fourth

rows in Fig 8) were found more often linear ON medication (10 cases out of 16) than OFF

medication (5 cases out of 16). Barnard’s exact test [36] shows a trend (p = 0.0551, n = 16 per

condition) in the medication state affecting whether the minimal model is linear or non-linear.

The minimal model degree is strictly greater OFF than ON medication in 10 out of 16 cases,

and this difference is statistically significant (p = 0.020, binomial test with parameters

(16,0.3438)).

In line with the previous subsections, envelope model fits suggest that reproducing average

burst duration profiles OFF medication is more likely to require envelope models with
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non-linear drift functions, such as polynomial drift functions of degree greater than one. We

have shown that envelope models can successfully model patient average burst duration pro-

files, and we next study analytically how to express average burst duration profiles as a function

of envelope model dynamics.

Fig 8. Envelope model fits to all datasets. The top two rows correspond to left hemispheres, the bottom two rows to right hemispheres, and each

column corresponds to one patient. Patient’s average burst duration profiles and corresponding model fits are shown in the first and third rows

(SEM error bars). The OFF state is represented in red for data, and in dark red for model fits. The ON state is represented in blue for data, and in

dark blue for model fits. The drift functions (μ) of the fitted envelope models are shown in the second and fourth rows. The range of x values

shown for each drift function corresponds to the range spanned by the corresponding model, and the light grey line represents μ = 0.

https://doi.org/10.1371/journal.pcbi.1009116.g008
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Average burst duration and exterior problem mean first passage time. In order to

study the dependence of burst duration on envelope model parameters, we seek an analytical

expression for the average burst duration profile of envelope models. As recently noted in [24],

the concept of average burst duration is related to the concept of mean first passage time

(MFPT, also known as mean exit time) in the exterior problem. Considering a threshold or

boundary L and a starting point x0 = L + δ, with δ> 0, we denote the continuous-time MFPT

from x0 to L by tx0 ;L. It is defined by the expectation of the random variable inf{t� 0: xt� L}.

At this point it should be clarified that the average burst duration of a continuous-time sto-

chastic process with Gaussian noise is always zero, as all trajectories starting from the threshold

L will cross it again in vanishingly short times. In addition, MFPTs in continuous time are sys-

tematically biased towards shorter first passage times since a continuous stochastic model is

more likely to cross the boundary when close to it than its discrete-time counterpart. However,

we can adapt classical MFPT results from continuous-time stochastic process literature to ana-

lytically approximate the average burst duration of the corresponding models in discrete time.

In what follows, we use a tilde to distinguish quantities that can be measured readily in a time

discretized system from the continuous-time quantities.

To study the associated discrete-time model with time step dt, we are considering the con-

tinuous-time case of a stochastic process

dx ¼ mðxÞdt þ zdW; ð8Þ

where we have assumed that the real valued drift function μ can depend on x, and that z is con-

stant in time and space. Following a derivation similar to the derivation reviewed in [37], we

show in the Methods section (see “Continuous model MFPT”) that the MFPT of the continu-

ous system is given by

tx0 ;L ¼
2

z
2

Z L

x0

Z þ1

x
e

2

z2

R x1
x

mðxÞdxdx1dx: ð9Þ

For the integral to converge, it is necessary that μ(x) is non-vanishing and negative at +1,

which is the case in models describing neural oscillations. Eq (9) cannot be applied to white

noise only, where μ(x) = 0.

From Eq (9), we derive an expression for the average burst duration of the discretized

model with time step dt. We show in the Methods section (see “Discretized model”) how to

correct for the systematic bias of the continuous model (Steps 1 and 2). We also detail therein

how to relate average burst duration and MFPT (Step 3): when crossing a threshold L from

below at the start of a burst, a discrete model will always overshoot the threshold, and the aver-

age burst duration at threshold L can be related to MFPTs by taking into account the overshoot

distribution at L (see Fig 9). We finally obtain to first order in
ffiffiffiffiffi
dt
p

the average burst duration

~tL for the discrete-time model as

~tL �

ffiffiffiffiffiffiffiffiffiffi
2pdt
p

z

Z þ1

L
e

2

z2

R x1
L

mðxÞdxdx1: ð10Þ

Eq (10) provides a general relationship from drift function to average burst duration profile

for the discretization of stochastic envelope models described by Eq (8). As shown in Fig 10,

this result applied to the OU model and a third degree polynomial envelope model (Eq (11)

below and Eq (48) in the Methods section, respectively) is very close to simulations.

Increasing average burst duration in the OU model. Building on the previous result, we

highlight the dependence of average burst duration on model parameters and show how bursts

can be lengthened in the discretized OU model, which is representative of most datasets in the
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ON condition and of linear systems in general (see Fig K in S1 Fig). We are considering here

the discretization of an OU process centered on zero (Eq (5)). Eq (10) gives, to first order in
ffiffiffiffiffi
dt
p

,

~tL � p

ffiffiffiffiffi
dt
2y

r

e
yL2

z2 erfc
ffiffiffi
y
p
L
z

 !

; ð11Þ

Fig 9. First exit time and overshoot distribution. Showing a discrete realisation of an OU process overshooting the

threshold L by δ, with a sketch of the overshoot probability density at L in purple. The first exit time from x0 to L is the

time taken to get below L for the first time when starting from x0.

https://doi.org/10.1371/journal.pcbi.1009116.g009

Fig 10. Simulations of average burst duration profiles for OU processes and a third degreepolynomial model.

Average burst duration profiles from simulations of OU processes are compared to Eq (11) for a range of decay

parameters and z = 1 in panel A. Similarly, average burst duration profiles from simulations of a third degree

polynomial envelope model are compared to Eq (48) in panel B. Simulations are indicated by dashed lines (SEM error

bars), and analytical results by dotted lines. Simulations consist of five repeats of 105 s, with a time step of 1 ms (OU

process simulations use the exact updating Eq (17)).

https://doi.org/10.1371/journal.pcbi.1009116.g010
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where erfc is the complementary error function. The dependence of average burst duration on

parameters is easier to see when L is expressed as a percentile of the time series values, which is

also how we plot average burst duration profiles. Because of this choice, the shift introduced to

ensure the envelope stays positive (see “Fitting procedure” in the Methods Section) will have

no impact on the result.

We express the average burst duration of a discrete OU process as a function of threshold

percentile using the stationary probability distribution of the OU process (see “OU” paragraph

in the Methods section). We obtain

~tL � p

ffiffiffiffiffiffiffi
2dt
y

r

1 � L%

� �
eferf � 1ð2L% � 1Þg

2

; ð12Þ

where L% is the percentile rank (between 0 and 1) corresponding to threshold L, and erf−1 is

the inverse error function. Eq (12) does not depend on the noise parameter z (which only

scales trajectories), and makes apparent a simple dependence of the average burst duration on

the decay parameter. We can conclude that increasing the average burst duration for a given

threshold corresponds to decreasing the decay in the OU model, which is what is intuitively

expected.

We have demonstrated that discretized envelope models can reproduce the average burst

duration profile of all the datasets available with R2 > 95%, and we have provided the polyno-

mial forms of the drift functions required. In addition, the average burst duration profile of

discretized envelope models has been approximated analytically, which yields insights into

how model parameters influence average burst duration profiles. This analytical result opens

the question of a reverse link from average burst duration profile to dynamics, which we inves-

tigate next.

Average burst duration profiles are a signature of envelope dynamics

In this subsection, we establish that average burst duration profiles are a signature of envelope

dynamics by showing that the envelope drift function can be recovered from the average burst

duration profile. This clarifies how a change in the temporal patterning of beta oscillations sig-

nals a change in dynamics.

Relationship between envelope drift function and average burst duration profiles. To

highlight the importance of average burst duration as a marker of dynamics, we establish a

link for a general class of stochastic processes with additive noise between average burst dura-

tion, noise standard deviation, and dynamics. We are considering a time discretization (time

step dt) of the stochastic process given by Eq (8). As a reminder, we assume that the real valued

drift function μ can depend on x, and that the diffusion term z is constant in time and space.

We show in “Passage method” in the Methods section, that to first order in
ffiffiffiffiffi
dt
p

,

mðLÞ � � z

ffiffiffiffiffi
pdt
2

q
þ z

2

@~tL
@L

~tL
: ð13Þ

Eq (13) highlights a direct relationship from average burst duration in discrete time to enve-

lope dynamics (drift function). This is essentially a local relationship (at threshold L), and the

drift function can be estimated where the average burst duration profile is known. We call this

estimation procedure the “passage method”, and show next that it can recover envelope

dynamics in synthetic data and patient data.

Inferring dynamics in synthetic data and in patient data with the passage method. To

validate the method, we first test the passage method on synthetic data. We are considering
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envelope time series of 250 s (roughly the same length as patient data) and of 1000 s generated

from an OU envelope model and a fifth degree polynomial envelope models. Dynamics from

these time series are recovered using the passage method. We are considering 300 thresholds,

and applying smoothing to ~tL and its derivative (full details provided in “Passage method” in

the Methods section). The results are shown in the first two rows of Fig 11. Approximations of

Fig 11. Inferring envelope dynamics with the passage method. The method is applied to synthetic data (OU model in the first row, fifth degree

polynomial model in the second row), and patient data (patient 6R, ON medication in the third row, and patient 6R, OFF medication in the last row). The

recovered drift functions (μ) are shown in the first column, and the average burst duration profiles and the inverse CDFs simulated from the recovered

dynamics are shown in the second and third columns, respectively. Ground truths are provided when available (black dashed lines). Synthetic data results

are presented for 250 s and 1000 s of synthetic data. In the last column, 5 s of simulated data from the recovered dynamics are compared to training data.

https://doi.org/10.1371/journal.pcbi.1009116.g011
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the drift functions μ are recovered (Fig 11A1 and 11A2), and the average burst duration pro-

files and inverse cumulative distribution functions (CDFs) obtained from simulating the

recovered dynamics approximate the synthetic data well (Fig 11B1 and 11B2 and 11C1 and

11C2, respectively). Recovered dynamics and associated features are better approximations

when recovered from the longer time series than from the shorter ones. Performance is how-

ever reasonable for the shorter time series, which are approximately the duration of patient

data recordings.

Given its success on synthetic data, we test the method on patient data. We pick the patient

that scores the highest on our burst duration specific non-linearity measure, patient 6R OFF,

and the same patient and hemisphere ON medication for comparison. The method is applied

as before, with the additional estimation of the noise parameter and the time step (specifics of

the application of the method to patient data detailed in “Passage method” in the Methods sec-

tion). The results are shown in the last two rows of Fig 11. There is no ground truth to compare

the recovered dynamics (Fig 11A3 and 11A4) against, but the average burst duration profiles

and inverse CDFs obtained from simulating the recovered dynamics are a good match to the

data. We note that the dynamics inferred ON medication are closer to a straight line, as

reported for this dataset in the previous subsections.

Comparison of the passage method with a direct method. To evaluate the performance

of the passage method in extracting envelope dynamics from data, we compare our method

with a simpler envelope recovery method that directly estimates time derivatives from the

envelope time series. Specifically, time derivatives are calculated from consecutive envelope

values using first order differences. The resulting derivative estimates are binned in 300 bins of

equal width (same number of bins as the number of thresholds in our method) within which

derivative values are averaged.

Both the direct method and the passage method are applied to envelope time series of a

range of durations from 100 s to 1000 s generated by the OU model and the fifth degree poly-

nomial model used in previous tests. The passage method is applied as described in “Passage

method” (Methods section), except that no smoothing is applied to either the passage method

or the direct method for a fair comparison. The sum of the squared errors between the recov-

ered drift function μ and the corresponding ground truth is calculated for both methods for

each time series, and the results are presented in Fig 12. The passage method is at a slight

Fig 12. Comparison of the passage method and the direct method on synthetic data. Showing the sum of squared

errors between the inferred and ground truth μ functions for both methods as a function of the duration of synthetic

data used for inference. The synthetic data were generated from an OU process (left) and a fifth degree polynomial

(right). In both cases, the mean value of the sum of squared errors and the SEM error bars are obtained for a large

number of repeats (150 repeats from 100 s to 250 s, 100 repeats from 350 s to 450 s, and 50 repeats from 500 to 1000 s).

Significant differences are highlighted by black stars (t-tests under FDR control, same sample sizes as for error bars).

https://doi.org/10.1371/journal.pcbi.1009116.g012
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advantage for a range of time series lengths in the OU case, and for all time series lengths in

the fifth degree polynomial case.

Discussion

In this study, we analysed PD patients’ STN LFP recordings in the beta band and first moti-

vated the choice of average burst duration as a marker of the differences in bursting dynamics

ON and OFF medication. We found a burst duration specific measure of non-linearity based

on linear surrogates to significantly increase from the ON to the OFF medication state, and the

change in this non-linearity measure to be correlated with motor impairment. We further nar-

rowed-down dynamical changes underlying the changes in beta oscillation temporal pattern-

ing between medication states by fitting models to data. The simplest biologically inspired

neural mass model to reproduce typical ON average burst duration profiles was a WC model

with a linear activation function and uncorrelated inputs, while the most striking OFF profiles

required the addition of a non-linear activation function and of delays. Envelope models were

fitted to all datasets, and reproducing average burst duration profiles OFF medication was

more likely to require non-linear polynomial drift functions, while the majority of ON medica-

tion datasets could be modelled with linear drift functions (OU processes). The simplicity of

envelope models enabled us to derive an approximate expression for average burst duration

profiles (Eq (10)). This expression clarified how model parameters affect average burst dura-

tion in the linear case. In addition, we showed that the non-linearity can be directly extracted

from average burst duration profiles using our “passage method” (based on Eq (13)), demon-

strating that average burst duration profiles are a signature of envelope dynamics. This sheds

light on why burst duration has been suggested in multiple studies as an important biomarker

in PD.

Bursting features. Average burst duration profiles are an insightful and exhaustive way of

characterising bursting dynamics. Average profiles across thresholds benefit from information

from a range of thresholds and capture more about the system than the burst duration distri-

bution at one threshold (which may only integrate dynamical information, and predominantly

above the threshold). In fact, we demonstrate that average burst duration profiles are closely

related to average burst rate profiles, and more importantly, to the dynamics of the beta enve-

lope. Some previous studies have used wavelet amplitude as the beta envelope to study bursting

features [12, 13], while we used the Hilbert envelope of the filtered signal. We found little dif-

ference between the methods as far as average burst duration is concerned. While a number of

recent studies define bursts as Hidden Markov Model states [38, 39] or using support-vector

machines [40], we aim at providing a more complete dynamical picture of beta dynamics. If

both STN LFP and single unit activity are available, the temporal structure of beta synchronisa-

tion can be investigated using first-return maps of the signal phases [41].

Besides the PSD, our statistical analysis of patient STN LFP recordings identified average

burst duration across thresholds as the analysed bursting feature most suited to distinguish

between burst dynamics in the ON and OFF states. We highlight the importance of individu-

ally z-scoring the filtered data when comparing average burst amplitude profiles between med-

ication states to control for differences simply due to changes in mean beta power. A similar

result has been reported in a non-human primate study [18] where beta burst duration was

found to be a better differentiator of healthy and pathological episodes in the STN than burst

amplitude. Deleting longer beta episodes resulted in a greater decrease of parkinsonian activity

than deleting stronger episodes. In our patient analysis, the ON medication state gives an

approximation of the physiological state. It is hypothesised that shorter bursts are more likely

to be physiological, whereas longer burst are more likely to be pathological [12, 13]. Longer
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bursts are known to be associated with more synchronization in the STN, but also across the

motor network [42]. This results in less information coding capacity [7, 8] and may underlie

the motor symptoms.

Surrogate analysis. Our burst duration specific measure of non-linearity, BDDLS, provides

a new dimension that can be used to analyse LFP recordings. Non-linearity here should be

understood as non-linear correlations in the time series of interest (a sinusoid is considered

linear, as it can be represented by an ARMA model, see “Linear surrogates”). A high BDDLS

can come from a longer average burst duration for all thresholds than what would be expected

for a linear system (e.g. dataset 2R OFF), and/or a change in burst duration distribution for

certain thresholds only (e.g. dataset 6R OFF, and see Fig 2 where the proportion of short bursts

is lower at high thresholds).

We showed that, in the case of PD, the difference in BDDLS between medication states in

STN LFPs is correlated with motor impairment. In our small patient sample, the correlations

for ρ = 0.1 to 0.5 were greater than 0.73, while the correlations obtained with the relative differ-

ence in power and the difference in burst duration were 0.500 and 0.476, respectively. How-

ever, given the uncertainty arising from the small sample size, the correlation between

BDDLSdiff and motor impairment may have been overestimated. Therefore, we do not claim

that BDDLSdiff is superior to PSDdiff or DURdiff in predicting motor impairment. The corre-

lation between BDDLSdiff and motor impairment should be re-evaluated on larger datasets.

Nevertheless, predicting burst duration based on PSD alone will not be accurate for patients

that have different average burst duration profiles than their linear surrogates, which is the

case for most patients OFF medication. This is because the PSD only reflects linear

correlations.

The lower signal to noise ratio (SNR) ON medication may play a role in the difference in

BDDLS observed between medication states. In particular, the weak SNR in some STNs ON

medication where there are no obvious discrete peaks in the power spectrum (see Fig L in S1

Fig) may contribute to the low BDDLS in these cases. However, if the difference in SNR

between medication states were the primary driver of BDDLSdiff, we would expect BDDLSdiff

to be strongly correlated with PSDdiff. This is not the case as highlighted by the left panel in

Fig J in S1 Fig (Spearman’s correlation is 0.500, p = 0.216 for ρ = 0.2). In addition, simulations

suggest that it might still be possible to detect non-linearity from average burst duration pro-

files of signals with relatively low SNR (see Fig M in S1 Fig).

Changes between the ON and OFF states can be classified into three types. The first one is

mostly “linear” changes (e.g. patient 5R in Fig 4, where both the ON and OFF average burst

duration profiles are close to their surrogates and there is a large difference between surro-

gates). The second one is mostly “non-linear” changes (e.g. patient 4R in Fig 4, where the ON

profile matches its surrogate and the OFF surrogate, and the OFF profile differs from its surro-

gate). The third one is both “linear” and “non-linear” changes (e.g. patient 6R in Fig 4, where

the ON profile is close to its surrogate, and there is a large difference between surrogates and

between the OFF profile and its surrogate). Importantly, these categories could provide a basis

to stratify patients, in particular if similar results could be obtained from non-invasive EEG

recordings.

The scaling by the mean value of the surrogate profile that was applied to BDDLS helped

decorrelate BDDLSdiff from the difference in burst duration (DURdiff). We defined DURdiff

as a difference between ON and OFF data burst duration profiles for simplicity, but it may be

the case that defining DURdiff as the difference between ON and OFF linear surrogates would

decorrelate BDDLSdiff and DURdiff further and would improve predictive power when all

three metrics are considered. Given more data, the contribution of the metrics to predict

motor impairment should be further assessed, for instance by comparing multivariate
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regressions based on various combinations of the metrics. Given longer time series, BDDLSdiff

could also be compared to differences in long-range temporal correlations in the beta envelope

between medication states [27].

Surrogate testing has been previously used to explore non-linearity in brain recordings in

pathological states. In particular it has been reported that epileptic seizures are associated with

non-linear brain dynamics, while little non-linearity was found in Alzheimer’s disease

(reviewed in [43]). In the context of PD, we found an increase in a burst duration specific mea-

sure of non-linearity OFF medication compared to ON medication. From an information the-

oretic perspective, non-linear correlations between frequencies within the beta band may

further reduce information coding capacity, and impair motor function. Non-linear correla-

tions between different frequencies in STN LFP rhythms have in fact been reported to be

greater OFF than ON medication [44]. On a related note, scalp EEG recordings over the senso-

rimotor cortex of PD patients were found to have more pronounced non-sinusoidal features

in the beta band OFF medication compared to ON medication [45] and OFF DBS compared

to ON DBS [46]. In addition, non-linearity has been identified in inter-spike interval series in

PD patients OFF medication [47]. STN LFPs were also described as more non-linear during

resting tremor in PD [48], but our non-linearity measure is specific to burst duration in the

beta band and may therefore be more specific to bradykinesia and rigidity. Very recently, a

non-linearity measure related to a higher order version of auto-correlative signal memory was

found to be greater OFF than ON medication in STN LFPs filtered in the beta band [49].

Non-linear correlations are not seen in average power, and we showed that our non-linear-

ity measure is correlated with motor impairment, which has implications for aDBS in PD

patients. A slow variant of aDBS provides stimulation according to average beta power on a 50

s time scale [50, 51]. Slow aDBS will not address selectively the aspect of the pathology we

highlighted in this study, since average power cannot reflect non-linear correlations. Providing

aDBS according to a predictive algorithm based on the frequency information contained in a

300 ms window before burst onset was reported in PD to be very close in performance to opti-

mised aDBS, i.e. to threshold based stimulation [52]. Moreover, it appears that pathological

synchronization is established earlier than common thresholds used to define beta bursts [53].

Non-linear information not present in the windowed power spectra taken as features in [52]

may provide additional predictive power, and linear surrogates estimated on a slower time

scale than real time could provide a useful baseline to compare ongoing recorded activity

against. The computational cost of GWR surrogates rules them out, and computationally

cheaper IAAFT surrogates may be better cut out for the task. Although GWR surrogates were

used in our study to account for potential nonstationarity in LFP recordings, a correlation

with clinical scores was observed for ρ = 0, which corresponds to IAAFT surrogates. Average

burst duration profiles and BDDLSdiff have been studied on a slow time scale (about 250 s of

data). How little data can be used to reliably estimate BDDLSdiff remains to be explored, and

other non-linearity measures may be more suited to real-time use. Nevertheless, closed-loop

DBS targeting non-linearity in the drift function of beta envelope models might prove more

selective in suppressing pathological oscillations than closed-loop DBS approaches based on

amplitude. Additionally, amplitude thresholds in aDBS would need to change with medication

and activity level, and a stimulation strategy not requiring an amplitude threshold would be

simpler.

Modelling burst duration profiles. When fitting models to patient data, model complexity

was increased gradually to avoid overfitting and identify the simplest models that could fit the

data. Linear models could fit to the simplest average burst duration profiles. The linear models

chosen were a linear WC model without delays and an OU envelope model. On the one hand,

the architecture of the former can be mapped onto the STN and GPe populations [33–35], and
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it only has a few parameters, making it easier to constrain and less likely to overfit the data. On

the other hand, the latter is perhaps the simplest stochastic envelope model with a non con-

stant drift term, and is a simplification of the Rayleigh envelope model, which has been shown

to describe the envelope of the linear WC model under certain assumptions [24] as mentioned

in the Results Section. To model more complex average burst duration profiles (higher burst

duration specific measure of non-linearity), complexity was introduced gradually in neural

mass models and envelope models. It was verified that a linear WC model without delays

could not fit the data, and that a non-linear WC model without delays could not fit the data

either, before successfully fitting the non-linear WC model with delays. With envelope models,

polynomial drift functions of increasing degree were fitted to the data until satisfactory mini-

mal models were obtained.

Dynamical changes identified in neural mass models and envelope models between medi-

cation states deserve further discussion. While it could be tempting to conclude from the WC

fits that delays are necessary to reproduce the data from patients 6R OFF and 4L OFF, the cor-

responding third degree polynomial envelope models suggest that non-linearity is enough to

reproduce the data and that delays are not necessarily required in envelope models. Changes

in WC model parameters between medication states cannot be interpreted directly because of

non-identifiability (many sets of parameters can lead to the same output). The levelling-off at

high thresholds of several average burst duration profiles OFF medication (e.g. 1L OFF, 4L

OFF, 6R OFF) could be explained by larger oscillations getting stability from an additional

attractor. Multistability could be a dynamical interpretation of such features in the average

burst duration profile, and could open the door to a dynamical definition of bursts as events in

the vicinity of an attractor at larger amplitude. However multistability turns out to not be a

requirement since the minimal models fitted to datasets 1L OFF, 4L OFF, and 6R OFF do not

exhibit multistability (horizontal axis not crossed, light grey line in Fig 8) but produce average

burst duration profiles close to the data. This is also the case for the dynamics inferred by the

passage method applied to dataset 6R OFF (see Fig 11A4 and 11B4). While the “bumps” or

levelling-off seen in the drift functions of datasets 1L OFF, 4L OFF, and 6R OFF are not indica-

tive of multistability, they suggest an attractive influence at the corresponding amplitude level.

This attractive influence brings more stability to oscillations of the corresponding amplitude.

It is unclear how this attractive influence could be interpreted in terms of physiological pro-

cesses at this point. Multistability is however present in the minimal envelope models fitted to

datasets 6L OFF and 4R OFF. In contrast, we note that in the ON condition, drifts of minimal

envelope models are either straight lines or are shaped like simple parabolas and do not display

the more complex features observed in the OFF condition.

The classification of changes between the ON and OFF states in three types (“linear”

changes, “non-linear” changes, and a combination of both) mentioned when discussing the

surrogate analysis are reflected in the fitted envelope models. For patient 5R (given as an exam-

ple of mostly “linear” changes), the minimal models representing the ON and OFF states are

both linear, but with different slopes. For patient 4R (given as an example of mostly “non-lin-

ear” changes), the ON state is represented by a linear model, and the OFF state by a fourth

degree polynomial drift. The ON and OFF drift functions significantly overlap, and the OFF

drift function adds non-linearity on top of the ON drift function. The ON state could be

thought of as a sub-regime of the OFF state. For patient 6R (given as an example of combined

“linear” and “non-linear” changes), the ON state is represented by a linear model, and the OFF

state by a third degree polynomial drift. The ON and OFF drift functions do not overlap.

The drift function and noise parameter of a minimal envelope model characterise the sys-

tem generating the observed beta oscillations in a concise manner. In this study, we have iden-

tified differences in the drift function of minimal envelope models between medication states
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in PD patients. The drift function and noise parameter are however more than just features of

the beta state, and can be used to generate synthetic beta envelopes with average burst duration

profiles (and equivalently average burst rate profiles) similar to the data, which could contrib-

ute to in-silico design and testing of closed-loop DBS strategies.

It is well known that simple WC models of the STN-GPe loop can generate sustained beta

oscillations without the need for correlated inputs [35, 54], but whether that is the case for

transient beta oscillations has not been reported. The finding that a simple STN-GPe WC

model with uncorrelated noise as inputs can reproduce the top two most complex average

burst duration profiles of the dataset, i.e. realistic transient beta oscillations, is consistent with

the theory that the STN-GPe loop could play a predominant role in the generation of patholog-

ical beta activity [55–57]. In line with this, STN beta bursts have recently been shown to pre-

cede thalamic and cortical bursts during movement cancellation [58]. However, there is no

consensus on how exaggerated beta oscillations arise, and other theories include excessive beta

oscillations originating in the longer cortico-BG-thalamic loop [35, 59], or directly within

interconnected populations of striatal neurons [60]. Our WC model does not exclude a role of

influences external to the STN-GPe, such as cortical and striatal influences. Indeed the model

receives constant inputs from these populations as well as white noise. However, reproducing

average burst duration profiles ON and OFF medication did not require correlated external

inputs. While the mesoscopic character of LFPs prevents us from probing neural mechanisms

at the microscopic level, we show that simple neural circuit mechanisms can account for the

complex temporal patterning of STN LFPs obtained from PD patients OFF medication.

Analytical expression of average burst duration in envelope models. Standard first-pas-

sage results are available for continuous-time stochastic processes (see for instance [37]), but

their application to time-discretized systems is not immediate. While we derive a three step

correction to obtain the average burst duration profile of envelope models in discrete time

(assuming time-independent but possibly state dependent drift function and constant diffu-

sion term across space and time), other related approaches are worth mentioning. Perhaps the

most relevant is a continuity correction introduced in the financial literature to price continu-

ous barrier options [61]. The correction consists in shifting the continuous barrier to account

for discrete monitoring of prices, but is not applicable when the initial price is close to the bar-

rier. As a result, this approach cannot be successfully used for bursts, since they start very close

to the barrier (the distribution of initial points is given by the overshoot distribution). Alterna-

tively, algorithms have been suggested to approximate continuous first passage time distribu-

tions with simulations [62–64]. In the specific case of the OU model, approximations are

directly available for the first passage density of the discretized model, but their complexity

makes them unpractical [65, 66].

Discrete models are required to model burst duration, however the dependence of our

results on the time step is worth discussing. As mentioned in the Results Section, discrete mod-

els are required to model burst duration since the average burst duration for a continuous sto-

chastic process with Gaussian noise is always zero. As expected, the average burst duration

given by Eq (10) goes to zero as the time step goes to zero. Moreover, the dependence of aver-

age burst duration on the time step predicted by Eq (10) matches what is observed when simu-

lating the OU and third degree models used in Fig 10 for various time steps. Importantly, the

square root of the time step is only a constant factor that scales the average burst duration as

seen in Eq (10), and it does not influence the shape of the profile. The time step can be seen as

a parameter of the bursting model, and can be chosen to match the roughness of the data enve-

lope, which is done when applying the passage method to data. We also highlight that our ana-

lytical approach differs from our experimental approach in that the minimum burst duration

of 100 ms considered for data analysis and fitting is not modelled.
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Mean first passage time analysis in the context of gamma bursts has been used in [24],

where an expression is given for the mean duration of a typical burst in a Rayleigh envelope

model. A typical burst is defined therein as starting and ending at the envelope median, and

peaking at the envelope mean plus one standard deviation. The present work contributes a

result for a more general class of models, without relying on an arbitrary burst threshold and

peak. Our result also includes the influence of time discretization, and the dependence on the

threshold used to define bursts. Eq (10) is applicable to the time discretization of a Rayleigh

model dx ¼ � yxþ z2

2x

� �
dt þ zdW, and the corresponding average burst duration at threshold

L is simply ~tL ¼
ffiffiffiffiffiffiffiffiffiffi
2pdt
p

z

2yL.

It is noteworthy that a simple analytical expression could be obtained for the average burst

duration profile of the time discretization of OU processes (Eq (12)), making the analysis of

the influence of model parameters on average burst duration possible. Besides thresholds, only

the decay parameter and the time step play a role in the expression. For a given time step, it is

therefore possible to identify an envelope decay in a dataset by fitting an OU average burst

duration profile to the dataset’s average burst duration profile. The decay could be assimilated

to the real part of the eigenvalues of a broader class of linear envelope models. In the context of

simple integrate and fire neuron models, firing can be related to the first passage of an OU pro-

cess, and the associated decay parameter is estimated in [67] by considering inter-spike inter-

val statistics. In our work, Eq (12) clarifies the role played by the decay parameter, and predicts

that a linear system modelling beta bursts will be made more pathological when its decay

parameter is reduced, which makes intuitive sense. This may correspond to changes in average

burst duration described as “linear” in the “Surrogate analysis” part of the discussion. Addi-

tionally, since we have expressed the average burst rate as a function of the average burst dura-

tion in S1 Text, we provide an approximate analytical expression for the average burst rate of

OU processes (equation (D) in S1 Text). Burst rate is also of interest as it is used to characterise

bursting in some experimental studies (see for example [15, 68, 69]). In the third degree model

analysed in Fig 10, dependence on model parameters cannot be studied directly contrary to

the OU case, but the integral expression given by Eq (48) could facilitate numerical analysis as

it can be evaluated numerically much faster than the model can be simulated and subjected to

burst duration quantification. Also of experimental interest, the burst duration distribution for

a given threshold can be obtained analytically for OU processes as an infinite series, but is hard

to evaluate numerically since it involves confluent hypergeometric functions of the second

kind, their zeros and derivatives (equation (90) in [37]).

From average burst duration profiles to dynamics. The link we established from average

burst duration profiles to drift function suggests that average burst duration profiles are a win-

dow into envelope dynamics. As detailed in the introduction, burst duration has been experi-

mentally identified as an important marker of pathology for PD, and our finding sheds some

light on the dynamical significance of burst duration. The uncovered link (Eq (13)) is valid for

envelope models with a general drift function that can depend on the position, and additive

noise constant in time and space (“complicated dynamics, simple noise”). However, the model

cannot include delays, and dynamics cannot be recovered in the vicinity of thresholds where

the derivative of the MFPT is zero. As is manifest in Eq (13), when the average burst duration

and its derivative are considered only at a given threshold, only local information on the

dynamics is available.

The relationship naturally provides a method to infer envelope dynamics from data, which

we call the “passage method”. We applied the passage method successfully to synthetic data,

and recovered envelope dynamics from patient data for patient 6R, ON and OFF medication.

In this dataset, envelope dynamics OFF medication were found more non-linear (a straight
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line fit would be worse) than ON medication. Comparing the inferred drifts (Fig 11A3 and

11A4) to drifts of the corresponding minimal models obtained from fitting (Patient 6R in Fig

8), shapes are similar, and differences in the scale of μ(x) come from differences in the time

steps used. Other differences may come from the fact that the minimum burst duration of 100

ms considered when fitting envelope models cannot be modelled in the passage method.

The passage method favorably compared to a simple, direct method in the absence of

smoothing. The slightly better performance of the passage method on synthetic data may be

related to a better robustness to noise. The noise parameter has to be estimated and is

accounted for in the passage method, which is not the case in the direct method. This might be

advantageous provided that constant additive noise is a good approximation for the dataset at

hand. Comparison of the passage method with state of the art dynamics inference methods

that account for stochasticity such as dynamical Bayesian inference [70–72] or Langevin

regression [73] is out of the scope of this paper, but would provide more insight into the per-

formance of the passage method. Dynamical Bayesian inference and Langevin regression were

not specifically designed to recover envelope time series, and assume basis functions to repre-

sent dynamics, but could be applied to envelope dynamics inference. Additionally, the direct

method can be improved using multiple linear regressions and derivative estimates with vari-

ous time lags [74], in particular for linear dynamics.

Beyond movement disorders, the bidirectional link between average burst duration and

envelope dynamics may find productive applications in other parts of the neurosciences and

beyond where transient oscillatory dynamics are of interest. In particular, beta and gamma

bursts [68], as well as the duration of sharp wave ripples [75] have been found to be related to

memory. State anxiety was shown to be related to beta burst duration changes in the sensori-

motor and prefrontal cortex [76]. Perception [11] and pain [77] are some other examples of

fields where the importance of transient neural oscillations has been demonstrated.

Methods

We present in this section some methodological details on data analysis, model fitting, the der-

ivation of average burst duration in envelope models, and the passage method.

Extracting power spectra and bursting features

We extracted the PSD and the three bursting features considered (average burst duration pro-

file, average burst amplitude profile, and envelope amplitude PDF) from previously reported

bilateral STN LFP recordings of eight patients with advanced Parkinson’s disease ON and OFF

Levodopa [2]. Recordings were obtained three to six days postoperatively, while leads were

externalized. Patients were withdrawn from antiparkinsonian medication overnight, and

recordings were performed at rest (patients quietly seated). In the ON medication condition, a

dose of Levodopa was administered about one hour prior to the recordings. Recordings ranged

from 137 s to 366 s (mean duration 233 s) and were obtained from adjacent contact pairs. Sig-

nals were amplified and filtered at 1–250 Hz using a custom-made, high-impedance amplifier,

and sampled at 625 Hz or 1 kHz.

Features were obtained from filtered data. For a given patient and hemisphere, the contact

pair with the highest beta peak was selected, and both the ON and OFF medication data were

band-pass filtered ± 3 Hz around the beta peak found in the OFF state (defined as the power

spectrum maximum in the 13 to 35 Hz range). Power spectra were directly obtained from the

filtered data (power spectra of both filtered and unfiltered data are shown in Fig L in S1 Fig).

As in [12], we exclude one patient reported in [2] who had an outlier response to treatment

with Levodopa (relative difference between filtered PSD OFF and ON medication 2.5 standard
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deviations from the mean, more beta power ON medication). Next, the filtered data were indi-

vidually z-scored to remove amplitude differences that could arise simply from a difference in

mean beta power between the ON and OFF states, and highlight instead any possible differ-

ences in the temporal dynamics of beta amplitude. This z-scoring step has no effect on burst

duration profiles as thresholds considered are individual to each time series. Beta envelopes

were obtained as the smoothed modulus of the analytic signal of the filtered, z-scored data

(smoothing span of 5 ms, about a tenth of a beta cycle). To allow for statistical analysis, time-

series were then divided into five parts of equal length. For each segment, beta envelope PDFs

were estimated, and burst duration and burst amplitude profiles were built as the average

burst duration and amplitude for thresholds ranging from the 20th to the 95th percentiles of

the envelope in steps of 5%. This range includes the typical 75th percentile used in previous

studies [12–15]. Thresholds lower than the 20th percentile were not included since they are less

characteristic of bursting (the measured average burst duration at the 0th percentile is the dura-

tion of the recording). The 100th percentile was left out as it corresponds to an average burst

duration of zero and an average burst amplitude given by the maximum value of the envelope

(only one value). We used the definition of bursts given in “Choice of bursting features”

(including the minimum burst duration of 100 ms), and burst amplitude was defined as the

maximum amplitude recorded during a burst.

FDR control

Multiple statistical tests were performed in this study under FDR control at 5%. This ensures

that the expectation of the number of false positives over the total number of positives is less

than 5% when many statistical tests are performed. The null hypothesis was rejected relatively

frequently in this study (for example 13 out of 25 times in the linear surrogate analysis section).

Thus, the total number of tests is not a good estimator of the number of true null hypotheses

in this study. The total number of tests is the estimator used in the original Benjamini and

Hochberg procedure [78]. Instead, we rely on a better estimator of the number of true null

hypotheses [79], and use an FDR control procedure based on it (adaptive linear step-up proce-

dure, reviewed in [80]).

From FT surrogates to GWR surrogates

FT surrogates are the most straightforward implementation of the linear surrogate idea: the

Fourier phases of the data Fourier transform are randomized, but its Fourier amplitudes are

kept, which ensures that upon inverse Fourier transform, the generated time series will share

the same linear properties as the data but none of their potential non-linear properties. This

corresponds to generating surrogates according to a stationary linear Gaussian process

(ARMA in discrete time) that shares the same power spectrum as the data. Note that the coeffi-

cients and the order of the model need not be estimated and are not determined by the

procedure.

IAAFT surrogates improve on FT surrogates by providing an exact match of the values in

the surrogates and the values present in the data [81]. This corresponds to generating surro-

gates according to a stationary linear Gaussian process rescaled by an invertible, time-indepen-

dent, non-linear measurement function:

yn ¼ hðznÞ; ð14Þ

where h is the measurement function, zn an ARMA model as described in “Linear surrogates”

(Results Section), and yn is constrained by the procedure to have the same PDF as the data,

and approximately the same power spectrum. Due to h, the FT surrogate requirement that yn
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has a Gaussian noise structure is relaxed. The IAAFT surrogate method in particular, but also

a number of other linear surrogate methods, have been successfully applied in various fields.

For in-depths reviews of the methods available and their applications, see [82–84].

As mentioned in the Results Section, FT and IAAFT surrogates assume that the data is sta-

tionary. This shortcoming can be addressed by using GWR surrogates instead. The GWR

method is based on a maximal overlap discrete wavelet transform (MODWT) implementation

of the IAAFT algorithm first described in [85] and later refined in [86]. The algorithm details

are available in [30], but the basic ingredients are fixing a proportion of the MODWT wavelet

coefficients, and applying the IAAFT algorithm to each scale and to the dataset as a whole. Sur-

rogates can be computed along a continuum parametrised by ρ, where ρ = 0 corresponds to

IAAFT surrogates, and ρ = 1 corresponds to the data. The fixed coefficients are related to ρ as

follows. The energy of a signal of length N = 2J is proportional to

X ¼
XJ

j¼1

XN

i¼1

W2

j;i; ð15Þ

whereWj,i is the wavelet coefficient at scale j and temporal position i. Let us define an energy

threshold X0 = ρX. Going from the largest to the smallest, squared wavelet coefficients are

summed irrespective of scale and position until X0 is reached. Coefficients that contributed to

the sum are fixed for this level of ρ, i.e. left out of the IAAFT phase randomization. An example

of surrogates for a range of ρ values is given in Fig 13.

Fitting procedure

We describe in this subsection the fitting procedure used to fit all the models of this study to

data. Differences between models will be highlighted when applicable. The general fitting pro-

cedure is similar to what was used in [87]. For each fit, random sets of model parameters are

generated from uniform distributions with appropriate bounds. For envelope models, all

parameters are accepted. For WC models, parameters impacting the PSD and the average

burst duration profile are coupled, and to improve optimisation efficiency, parameters are

accepted when the PSD peak of the corresponding model is within 1 Hz and 30% in magnitude

of the data PSD peak. The first 5000 sets of accepted parameters for WC models and 200 sets

of parameters for envelope models are optimised in parallel on a supercomputer with the gen-

eralized pattern search algorithm [88, 89]. We use Matlab’s implementation of the algorithm

with the “positive basis 2N” poll method. Parameters are put on a similar scale to improve

search robustness. A mesh size of 10−5, and a function call budget of 600 calls are used.

At each optimisation step, the optimiser returns the cost

c ¼
1

Nf

XNf

n¼1

PNn
i¼1
ðydatan;i � y

model
n;i Þ

2

PNn
i¼1
ðydatan;i � ydatan Þ

2

 !

; ð16Þ

where Nf is the number of features, yn the features considered, Nn the length of yn, and ydatan the

mean of the data feature n. For envelope models, the PSD is not considered in the optimisa-

tion, while for WC models both the PSD and the average burst duration profiles are consid-

ered. At the end of the procedure, we reject fits with an envelope PDF very different from the

data if any (specifically, when the envelope PDF R2 is smaller than zero), and the fit with the

highest R2 = 1 − c is deemed the best fit.
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Model simulations are performed with a Euler–Maruyama scheme, except for the OU

model which is simulated according to the exact updating equation [90]

xðt þ dtÞ ¼ xðtÞe� ydt þ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z

2

2y
1 � e� 2ydt
� �

r

; ð17Þ

where n are independent samples of the standard normal distribution. In the simple OU case,

the envelope is prevented from being negative by shifting it by the absolute value of its 0.1th

Fig 13. Filtered LFP for patient 6L OFF (black), and corresponding GWR surrogates for a range of ρ levels (blue).

Most of the data temporal variability is already accounted for at ρ = 0.1. The plots share the same time axis.

https://doi.org/10.1371/journal.pcbi.1009116.g013
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percentile, and setting values below that to zero. This shift does not affect average burst dura-

tion profiles (with thresholds expressed as percentiles), and makes OU models equivalent to

the form given by Eq (7), with nP = 1 and d0 > 1, which is the form we use to report fitted OU

model parameters. For higher degree models, a positive envelope is enforced by retaining only

the absolute value of the next point at each integration step, which has a negligible impact on

positive thresholds. The time step used in all cases was 10−3 s, roughly equivalent to the data

sampling rate. At each optimisation step, the features (average burst duration for all models,

plus PSD for WC models) are computed on five repeats of 1000 s and are averaged over the

five repeats. The average burst duration profiles are computed from the model envelope

(model output for envelope models, modulus of the analytic signal of the model output for

WC models), based on the same thresholds and minimum burst duration as for data analysis

(see “Extracting power spectra and bursting features”).

Average burst duration in an envelope model

Continuous model MFPT. To derive the average burst duration of the time discretization

of the stochastic process described by Eq (8), we start by drawing on classic results pertaining

to the continuous-time stochastic process itself. We consider the MFPT problem on [L, +1)

with a single boundary at x = L, and a reflective boundary at x = +1. The backward Fokker-

Planck operator corresponding to the continuous-time stochastic process reads

L�x0 ¼ mðx0Þ@x0 þ
z

2

2
@

2x0: ð18Þ

As reviewed in [37], the MFPT from x0 to L which we denote tx0 ;L can be found as the solution

of the differential equation

L�x0tx0 ;L ¼ � 1; ð19Þ

where L�x0 is the backward Fokker-Planck operator acting on the starting point x0. Eq (19) is a

first order differential equation in Tðx0Þ ¼
@tx0 ;L

@x0
given by

@T
@x0

þ
2mðx0Þ

z
2
T ¼ �

2

z
2
; ð20Þ

whose solution reads

Tðx0Þ ¼ A �
2

z
2

Z x0

þ1

e
2

z2

R x1
mðxÞdxdx1

� �

e�
2

z2

R x0
mðxÞdx

; ð21Þ

where A is an integration constant, which is zero in the continuous case (reflective boundary

at +1). We can therefore write T as

Tðx0Þ ¼
2

z
2

Z þ1

x0

e
2

z2

R x1
x0

mðxÞdx
dx1: ð22Þ

Integrating T(x0), we obtain the MFPT as

tx0 ;L ¼

Z x0

L
TðxÞdx; ð23Þ

where we have used the absorbing boundary condition at L (τL,L = 0). This leads to the expres-

sion for the MFPT in the continuous model presented in the Results Section (Eq (9)). Finally,

for x0 = L + δ and δ� L, the continuous-time MFPT close to the boundary τL+δ,L can be
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approximated by

tLþd;L � dTðLÞ: ð24Þ

Discretized model. We now consider a time discretization of the stochastic process

described by Eq (8) with time step dt, and derive an expression for the average burst duration

of the discretized model in three steps. We correct for the systematic bias of the continuous

model MFPT and MFPT derivative in steps 1 and 2, respectively. In step 3, we relate average

burst duration and MFPT. As a reminder, we use a tilde to distinguish quantities that can be

readily measured in a discretized system from the continuous system quantities introduced

earlier. For clarity of exposition, we also denote with a hat and double hat intermediate quanti-

ties that will be introduced as the derivation progresses. The three steps will make use of the

transition probability for small dt = t − t0 to first order in
ffiffiffiffiffi
dt
p

,

pðx; t0 þ dtjx0; t0Þ �
1
ffiffiffiffiffiffiffiffiffiffi
2pdt
p

z
exp �

ðx � x0Þ2

2dtz2

� �

: ð25Þ

Step 1: MFPT bias. When close to the boundary x = L, the continuous-time model is more

likely to cross the boundary earlier, which makes for a systematic under-estimation of the dis-

crete MFPT by the continuous model. The first correction to the continuous MFPT tx0 ;L is

therefore to add a constant correction t̂L;L to it, which describes the average additional time

taken by the discrete model once close to the boundary:

t̂x0 ;L ¼ tx0 ;L þ t̂L;L: ð26Þ

Another way of looking at it is that in the continuous model, all trajectories starting from the

threshold will cross the boundary in vanishingly short times, which is reflected by the bound-

ary condition τL,L = 0. This is not the case for the discrete model, as some trajectories starting

at L will end up above L a time step later. In fact, by considering trajectories starting at L and

the transition probability for one time step dt, t̂L;L can be estimated as

t̂L;L ¼

Z 0

� 1

dt
2
p0ðzÞdz þ

Z þ1

0

ðt̂Lþz;L þ dtÞp
0ðzÞdz; ð27Þ

where px(z) = p(L + x + z, t0 + dt|L + x, t0), and the burst duration of a trajectory starting at L
but ending below L a time step later has been approximated by dt

2
. Using Eq (26), we find

t̂L;L ¼ ð1 � aÞ
dt
2
þ

Z þ1

0

tLþz;Lp
0ðzÞdz þ at̂L;L þ adt; ð28Þ

with a ¼
R þ1

0
p0ðzÞdz. We therefore have

t̂L;L ¼
1þ a

1 � a

dt
2
þ

1

1 � a

Z þ1

0

tLþz;Lp
0ðzÞdz: ð29Þ

As p0 decays quickly away from L for small dt, we use Eq (24), and obtain to first order in
ffiffiffiffiffi
dt
p

t̂L;L ¼
TðLÞ
1 � a

Z þ1

0

zp0ðzÞdz: ð30Þ

To first order in
ffiffiffiffiffi
dt
p

, p0(z) = p(L + z, t0 + dt|L, t0) is an even function of z (see Eq (25)) and
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1 − α = α. Therefore,

t̂L;L ¼ TðLÞ
R þ1

0
zp0ðzÞdz

R þ1
0
p0ðzÞdz

¼ �GTðLÞ; ð31Þ

where �G is the average step above L starting from L. To first order in
ffiffiffiffiffi
dt
p

, �G does not depend

on μ and L and is given by

�G �

ffiffiffiffiffiffiffi
2dt
p

r

z: ð32Þ

Step 2: MFPT derivative. As the discrete model is less likely to cross the boundary when

close to it, the derivative of the MFPT at the boundary will also be affected. We model this

effect with a correction to the continuous model through a non-zero A (integration constant

in Eq (21)). We define

A0 ¼ A
2

z
2

Z þ1

L
e

2

z2

R x1
mðxÞdxdx1

� �� 1

; ð33Þ

in such a way that the corrected MFPT derivative at the boundary ~TðLÞ equals (A0 + 1)T(L).

To show that A should not be zero in the discrete-time case and provide an approximation of

the value of A0, we are going to approximate ~TðLÞ by

@^̂tLþd;L
@d

�
�
�
�
d¼0

;

where ^̂tLþd;L is defined next and will explicitly take into account the distribution of the first

time step from L + δ, similarly to what was done in the previous paragraph. We are assuming

here that most of the difference in the derivative with the continuous case comes from the

first time step, and that the MFPT will subsequently evolve according to Eq (26). Starting from

L + δ and considering explicitly the first time step and its associated transition probability, we

can write

^̂tLþd;L ¼

Z � d

� 1

dt
2
pdðzÞdz þ

Z þ1

� d

ðt̂Lþdþz;L þ dtÞp
dðzÞdz: ð34Þ

With the change of variable x = δ + z, we obtain to first order in
ffiffiffiffiffi
dt
p

^̂tLþd;L ¼

Z þ1

0

t̂Lþx;Lp
dðx � dÞdx: ð35Þ

Making use of t̂Lþx;L ¼ xTðLÞ þ �GTðLÞ (see Eqs (24), (26), and (31)), we express

^̂tLþd;L ¼

Z þ1

0

ðxþ �GÞTðLÞpdðx � dÞdx: ð36Þ

From there, we obtain to zeroth order in
ffiffiffiffiffi
dt
p

(A0 + 1 will multiply a
ffiffiffiffiffi
dt
p

factor in the final

expression)

@^̂tLþd;L
@d

�
�
�
�
d¼0

¼
1

2
þ

1

p

� �

TðLÞ; ð37Þ

which yields A0 ¼
1

p
� 1

2
� � 0:18. This provides a rationale for a non-zero A0 in the discretiza-

tion and a good approximation of the optimal value of A0, which was found empirically to be
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A0 ¼
p� 4

pþ4
� � 0:12 (the discrepancy may come from considering only the contribution from

the first time step). We use this latter value in what follows, and for x� L, the MFPT in the

discretized model is obtained as

~tLþx;L � x~TðLÞ þ �G ~TðLÞ ¼
2p

pþ 4
ðxþ �GÞTðLÞ; ð38Þ

with T(L) given by Eq (22).

Step 3: Overshoot distribution. We have just obtained an approximation for the MFPT in

the discretized model (Eq (38)), and the last step is to derive from this result the average burst

duration for the discretized model as a function of the threshold L. In the discretization, unless

simulations are started exactly at L before every single burst is analysed (which is not compati-

ble with modelling data), the distribution of boundary overshoots from below has to be taken

into account (see Fig 9 in the Results Section). Averaging Eq (38) over the overshoot distribu-

tion of density χ gives the average burst duration ~tL that can be measured from one long time

series of the discretized model as

~tL ¼

Z þ1

L
~tx0 ;LwLðx0Þdx0: ð39Þ

Contrary to ~tL;L, the notation ~tL does not refer to an exact start of trajectories from L before

each burst. We also note that the contribution of boundary overshoots from above when get-

ting back to L at the end of the burst is negligible compared to stopping exactly at the threshold

as it cannot change ~tL by more than a time step. This is not the case at the beginning of a burst

as the further away from the threshold, the less likely a premature end of the burst is, which

has a drastic influence on burst duration. As χL decays quickly away from L for small dt (the

average overshoot scales with
ffiffiffiffiffi
dt
p

as we will see in Eq (43)), Eq (39) can be approximated by

~tL �
~TðLÞ

Z þ1

0

dwLðLþ dÞddþ ~tL;L ¼ ð
�DL þ

�GÞ~TðLÞ; ð40Þ

where �DL is the average overshoot at threshold L. An approximation for the average overshoot

can be obtained by considering the probability of the state x given that dt before, the state was

anywhere below L, which is given by

pLðx; dtÞ ¼
Z L

� 1

pðx; t0 þ dtjx0; t0Þp1ðx
0Þdx0; ð41Þ

where p1(x) is the stationary probability density of the process normalised by its integral over

(−1, L] and p is the transition probability to first order in
ffiffiffiffiffi
dt
p

introduced earlier (Eq (25)).

The overshoot density is

wLðx0Þ ¼
pLðx0; dtÞR þ1

L pLðx; dtÞdx
: ð42Þ

For small dt the stationary probability density contribution reduces to a constant that cancels

out in the overshoot density. The average overshoot is obtained to first order in
ffiffiffiffiffi
dt
p

as

�DL �
1

2

ffiffiffiffiffiffiffi
pdt
2

r

z; ð43Þ

which does not depend on the drift function μ (to first order in
ffiffiffiffiffi
dt
p

) and as a result does not
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depend on L either. We will therefore drop the subscript L and simply denote the average

burst duration by �D.

This leads to a direct relationship between ~tL and T(L),

~tL � ð
�D þ �GÞ~TðLÞ �

ffiffiffiffiffiffiffi
pdt
2

r

zTðLÞ; ð44Þ

and the full expression presented in the Results Section for the average burst duration of a dis-

cretized envelope model to first order in
ffiffiffiffiffi
dt
p

is

~tL �

ffiffiffiffiffiffiffiffiffiffi
2pdt
p

z

Z þ1

L
e

2

z2

R x1
L

mðxÞdxdx1:

Application to two envelope models. OU. We are considering here the time discretiza-

tion of an OU process centered on zero (Eq (5)). To highlight the dependence of average burst

duration on parameters, we are going to express Eq (11) with L as a percentile of the time series

values. Eq (11) is found in the Results section, and is a direct application of the previous result.

The stationary probability density for our centered OU process is

p1ðxÞ ¼

ffiffiffiffiffiffiffi
y

pz
2

s

e�
yx2

z2 ; ð45Þ

and the associated CDF F reads

FðxÞ ¼
1

2
1þ erf

ffiffiffi
y
p
x
z

 !( )

; ð46Þ

where erf is the error function. Let us denote by L% the percentile rank (between 0 and 1) cor-

responding to the threshold L. By definition, F(L) = L%, and therefore

ffiffiffi
y
p
L
z
¼ erf � 1 2L% � 1

� �
: ð47Þ

This leads to an expression for the average burst duration of the time discretization of an OU

process as a function of threshold percentile rank:

~tL � p

ffiffiffiffiffiffiffi
2dt
y

r

ð1 � L%Þeferf
� 1ð2L% � 1Þg

2

:

Third degree polynomial. We are considering here the time discretization of a third degree

polynomial envelope model (Eq (7) with nP = 3). The direct application of the general expres-

sion for ~tL obtained previously provides an approximation for the average burst duration of

this model to first order in
ffiffiffiffiffi
dt
p

, which reads

~tL �

ffiffiffiffiffiffiffiffiffiffi
2pdt
p

z

Z þ1

L
e

2

z2
ðLðxÞ� LðLÞÞdx; ð48Þ

with

LðxÞ ¼
d3

4
x4 þ

d2

3
x3 þ

d1

2
x2 þ d0x:
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The average burst duration expression for a third degree polynomial model is not as simple as

in the OU case, but can easily be evaluated numerically.

Passage method

From average burst duration profile to envelope dynamics. We are concerned here with the

time discretization of the continuous-time stochastic process described by Eq (8), where we

are assuming that the real valued drift function μ can depend on x, and the diffusion term z is

constant in time and space. Provided that the derivative of the first passage time T(x0) is never

zero, the differential equation satisfied by T (Eq (20)) can be re-arranged into

mðx0Þ ¼ �
1þ 1

2
z

2 @T
@x0

Tðx0Þ
: ð49Þ

We have shown previously that in the discrete-time system considered, there is a simple rela-

tionship to first order in
ffiffiffiffiffi
dt
p

between the average burst duration ~tL at threshold L and T(L)

(Eq (44)). Thus, to first order in
ffiffiffiffiffi
dt
p

,

mðLÞ � � z

ffiffiffiffiffi
pdt
2

q

þ z

2

@~tL
@L

~tL
;

which we discuss in the Results Section.

Data preparation. Simulation of the synthetic data used to test envelope dynamics recovery

was performed with the same methods as in “Fitting procedure”. Synthetic data were gener-

ated by an OU model (same parameters as patient 3L ON minimal model, see Table I in S1

Table) and a fifth degree polynomial envelope model (Eq (7), with nP = 5, and parameters

given in Table K in S1 Table). OU synthetic data were shifted as before, while for the fifth

degree model, only the absolute value of the next point was retained at each integration step.

For patient data the envelope was obtained as the modulus of the analytic signal of the filtered

data as in “Extracting power spectra and bursting features”.

Envelope dynamics recovery. Three hundred thresholds equally spaced from one fiftieth to

90% of the maximum envelope value are considered (extreme thresholds will not yield reliable

measures). At each threshold, the average burst duration ~tL is obtained, and the resulting

curve is smoothed across thresholds (LOWESS method, which stands for locally weighted scat-

terplot smoothing, smoothing span of the threshold range divided by eight). The derivative of

~tL is then estimated numerically and smoothed (LOWESS, smoothing span of the threshold

range divided by five). In the case of patient data, the first 10% to 20% of both ~tL and its deriva-

tive are not smoothed as the fast decay of ~tL at the left edge of the profile is not handled prop-

erly by the smoothing function. Finally, the drift function μ is reconstructed based on Eq (13).

The noise parameter z is simply taken as the known value used to generate the envelope for

synthetic data, and is estimated for data (24% and 27% of the time series standard deviation

for OFF medication and ON medication, respectively). These values were obtained for patient

data by adjusting the noise parameter so the burst duration profile and the envelope inverse

CDF of the inferred dynamics best match the data. The time step dt is taken as the time step

used for forward simulation for synthetic data, and as the time scale of variation of the enve-

lope for patient data (roughly a beta cycle, 0.05 s). The mean of the drift function is inferred by

considering all the data available, while SEM error bars are obtained by dividing all the data

available in four segments and repeating the process on each segment (noise parameter fixed

to the value used for the mean).
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Simulation of inferred envelope dynamics. The inferred dynamics are known at 300

equally spaced points between xmin and xmax, so we define

mðxðiÞÞ ¼

mðxminÞ xðiÞ < xmin;

mðxmaxÞ xðiÞ > xmax;

minterpx otherwise;

8
>>><

>>>:

ð50Þ

where minterpx is the linear interpolation of μ between the closest x points framing x(i) at which μ
is known. Forward simulations of the inferred envelope dynamics are then performed accord-

ing to Eq (8) with a Euler–Maruyama scheme (the time step is taken as dt). Additionally, at

each integration step, only the absolute value of the next point x(i + 1) is retained to prevent

the envelope from becoming negative. Five repeats of ten times the data duration are simu-

lated. The resulting envelopes are used to compute the mean and SEM error bars of the average

burst duration profile and the inverse CDF of the inferred envelope dynamics.

Supporting information

S1 Text. Average burst rate. The derivation of the relationship between average burst rate and

average burst duration is presented here, as well as an expression for the average burst rate of

an OU envelope model.

(PDF)

S1 Fig. Supplementary figures. Supplementary Figures pertaining to data analysis are pre-

sented here.

(PDF)

S1 Table. Supplementary tables. Supplementary Tables pertaining to fits, and testing of the

passage method are presented here.

(PDF)
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