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N E U R O P H Y S I O L O G Y

Spatially structured inhibition defined by polarized 
parvalbumin interneuron axons promotes head 
direction tuning
Yangfan Peng1†, Federico J. Barreda Tomas2,3†, Paul Pfeiffer3,4, Moritz Drangmeister3,4, 
Susanne Schreiber3,4‡, Imre Vida2*‡, Jörg R.P. Geiger1*‡

In cortical microcircuits, it is generally assumed that fast-spiking parvalbumin interneurons mediate dense and 
nonselective inhibition. Some reports indicate sparse and structured inhibitory connectivity, but the computational 
relevance and the underlying spatial organization remain unresolved. In the rat superficial presubiculum, we find 
that inhibition by fast-spiking interneurons is organized in the form of a dominant super-reciprocal microcircuit 
motif where multiple pyramidal cells recurrently inhibit each other via a single interneuron. Multineuron recordings 
and subsequent 3D reconstructions and analysis further show that this nonrandom connectivity arises from an 
asymmetric, polarized morphology of fast-spiking interneuron axons, which individually cover different directions 
in the same volume. Network simulations assuming topographically organized input demonstrate that such 
polarized inhibition can improve head direction tuning of pyramidal cells in comparison to a “blanket of inhibition.” 
We propose that structured inhibition based on asymmetrical axons is an overarching spatial connectivity principle 
for tailored computation across brain regions.

INTRODUCTION
Local excitatory synaptic connectivity between pyramidal cells (PCs) 
is sparse and specific (1, 2), while perisomatic inhibition particularly 
by fast-spiking (FS), parvalbumin-positive interneurons (PV INs) is 
generally assumed to be dense and random (3). According to 
“Peters’ rule,” which suggests that axodendritic overlap determines 
synaptic connectivity (4, 5), a “blanket of inhibition” could emerge 
from the overlap of a symmetrical, dense PV IN axon with neighbor-
ing neurons (6). Such inhibition could mediate gain control and 
maintain balance of excitation and inhibition (7–9).

This principle has been challenged by reports of nonrandom 
structured inhibitory connectivity in several brain regions (10–12), 
revealed by motif analysis applied to multineuron recordings (13). 
However, the determinants and the computational implications 
underlying these nonrandom network motifs are not yet resolved, 
as illustrated by the controversial debate on the role of PV IN con-
nectivity for feature tuning in the visual cortex (14–19). Here, 
spatially organized connectivity between INs and PCs has recently 
been identified as a key principle for computation of direction 
selectivity (20). Whether such spatially structured inhibition is 
relevant for directional tuning in other cortical areas remains to 
be established.

The presubiculum (PrS) is the main cortical recipient of head 
direction (HD) information, integrating spatial and visual input 

from areas such as the anterodorsal thalamus, hippocampus, and 
retrosplenial cortex (21–24). It processes HD signals before passing 
them to the downstream medial entorhinal cortex (mEC), which are 
lastly critical for the generation of grid cell firing (25–28). HD and 
grid cell activity are hypothesized to rely on continuous attractor 
networks based on either recurrent excitation or inhibition (29–33). 
While such models use a specific connectivity in abstract feature 
spaces, they largely ignore constraints from the anatomical space. 
Recent studies have shown that spatially defined connectivity for 
HD in Drosophila melanogaster is implemented as a compass-shaped 
network (34). In addition, structured inhibition allows mapping of 
visual directional cues onto this HD circuit (35, 36). Such direct 
correspondence between feature and anatomical space prompts the 
question of whether structured connectivity in mammals follows 
similar organizations (37).

As the superficial PrS exhibits prominent recurrent inhibition while 
lacking recurrent excitation (32, 38), it is the ideal network to identify 
the organization principles of inhibitory connectivity and their im-
pact on local HD computation. Therefore, we studied its connectivity, 
cellular anatomy, and computational capacity through multineuron 
patch-clamp recordings in combination with detailed morphological 
reconstructions. We found super-reciprocal motifs organizing peri-
somatic inhibition along a polarized PV IN axon morphology, a 
functional principle that also largely applies to other IN types. In 
spatial network simulations assuming topographically organized 
thalamic input, this specific structure-function principle demon-
strated a stronger HD tuning of PCs than a blanket of inhibition.

RESULTS
Multipatch recordings reveal heterogeneous distribution 
of synaptic IN connections
In our previous study, we first described the network topology in the 
superficial PrS through multineuron patch-clamp recordings (38). 
In this study, we extended the analysis, focusing on 61 previously 
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recorded clusters (762 neurons), containing various INs and PCs 
patched in close proximity. Upon detailed examination, we found 
that while individual INs in these clusters presented reciprocal con-
nections to multiple PCs, others lacked such high interconnectivity 
(Fig. 1, A and B). To further explore this apparent unequal distribution 
of connectivity, we separated the INs in groups with either zero, one, 
or more than one observed incoming or outgoing connection and 

counted these connections for each group. Out of 132 recorded INs 
in the superficial layers, 42% had zero connections, 20% had one 
connection, and 38% had more than one connection. The latter 
highly connected group of INs accounted for 87% (173 of 199) of all 
detected connections (Fig. 1D). Such a heterogeneous distribution 
could emerge from an IN subtype–specific connectivity. To rule out 
IN diversity as a major source for this heterogeneity, we analyzed FS 
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Fig. 1. Second-order motifs highlight recurrent inhibitory connectivity. (A) Schematic of a cluster of two INs (in blue) and three PCs (in red) with their firing patterns. 
(B) Matrix of current-clamp traces of neurons of the cluster. Four action potentials (AP) were evoked in each neuron consecutively to detect correlated postsynaptic 
responses in the other neurons. Dark blue and dark red traces indicate reciprocal connections of IN #1. Light red and light blue traces indicate absent connections of IN #5. 
PSP, postsynaptic potential. (C) Lines indicate the outgoing (left) and incoming (right) connection probabilities of all INs (blue), FS INs (green), and NFS INs (orange) for 
different distance bins (number of tested connections in each bin: 0 to 50 m, n = 96; 50 to 75 m, n = 121; 75 to 100 m, n = 100; >100 m, n = 94). (D) Stacked bar plots 
show the relative fraction of INs belonging to groups with either zero, one, or more than one connection (left bar). Numbers indicate the number of cells in each group. 
The adjacent bar shows the relative fraction of connections assigned to each group; numbers indicate the number of connections. (E) Gray box plots indicate the distribution 
of motif counts generated by the distance-dependent random model normalized to the mean random count; outliers beyond the whiskers are not visualized. Note that 
the random median count for the super-reciprocal motif for FS and NFS is zero due to its low probability and skewed random distribution. Framed colored bars indicate 
the ratio of observed motifs in the data relative to the mean number of simulated motifs for different subtypes of INs. Numbers above bars indicate the count of the 
respective motif in the dataset. *P < 0.05, **P < 0.01, and ***P < 0.001; see Materials and Methods for rank-based statistical test.
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INs and non-FS (NFS) INs separately. The classification as FS was 
based on electrophysiological parameters trained on the PV staining 
of a subset of neurons (38). Regardless of whether the INs were FS 
(n = 43) or NFS (n = 89), we still observed that a minority of neurons 
of the respective subtype (FS, 47% and NFS, 34%) were responsible 
for most of the observed outgoing and incoming connections (FS, 
90% and NFS, 85%; Fig. 1D). We further excluded that the probabil-
ity of an IN being weakly or highly connected depended on the 
intersomatic distance or cell depth, i.e., soma distance to slice 
surface, and also excluded slice variability as the major cause for 
the inhomogeneous distribution (fig. S1). Together, the apparently 
skewed inhibitory connectivity is a feature of both IN subsets in the 
superficial PrS.

Presubicular INs form reciprocal connections with PCs 
constituting building blocks of a recurrent inhibitory network
To further investigate this heterogeneously distributed connectivity, 
we focused on the neurons with more than one connection and used 
an advanced motif analysis to quantify the occurrence of distinct 
connectivity patterns (13). We analyzed second-order motifs com-
prising any possible combination of two synaptic connections 
(inhibitory or excitatory and incoming or outgoing) made by an 
individual neuron (10, 39). By comparing motifs from our dataset 
with simulations based on a distance-dependent random connectivity 
(11), we found that the reciprocal, convergent, divergent, and chain 
motifs involving a single IN with two PCs were significantly over-
represented (observed count versus mean random count ± SD: 
reciprocal, 39 versus 18 ± 4, P < 0.001; convergent, 59 versus 27 ± 7, 
P < 0.001; divergent, 59 versus 25 ± 7, P < 0.001; chain, 87 versus 
52 ± 10, P = 0.001; see Materials and Methods for random simula-
tion and statistical test; Fig. 1E). In contrast, complementary motifs 
involving a PC at the center and two INs as partners were found as 
often as expected in random simulations (convergent, 17 versus 
15 ± 5, P = 0.17; divergent, 20 versus 15 ± 5, P = 0.11; chain, 31 versus 
28 ± 6, P = 0.29; Fig. 1E). As the overrepresented second-order motifs 
can be combined into a specific super-reciprocal motif—one IN 
connecting reciprocally to two PCs—we investigated its occurrence 
in the dataset. We found 15 instances of this super-reciprocal motif, 
which is significantly more than expected (observed count versus 
mean random count: 15 versus 3, P = 0.005; Fig. 1E) and present 
in both IN subtypes (FS, 6 versus 1, P = 0.008; NFS, 9 versus 1, 
P = 0.006).

Together, we have found a prominent occurrence of specific re-
current inhibitory motifs in a subset of INs that does not arise from 
subtype-specific or distance-dependent connectivity. In contrast, a 
large fraction of INs does not seem to participate in the local micro-
circuit, which is biologically implausible. Therefore, we hypothesize 
that this could result from a deviation of the principle of blanket of 
inhibition. The observed unequal distribution of IN connectivity may 
arise from a specific directional axon morphology and the sampling 
bias of our multipatch approach that provides recordings from one 
geometrical plane. To investigate this hypothesis in a homogeneous 
population of INs with regard to morphology, physiology, and 
molecular profile, we primarily focused on PV-positive FS cells.

Overlap of PCs with an asymmetrical PV IN axon determines 
synaptic connectivity
We performed additional recordings from FS INs and confirmed 
their neurochemical identity through immunolabeling against PV.  

We showed that almost all were PV positive (28 of 32 recorded FS 
INs, 15 in cluster, 12 in paired, and 5 in single-cell configuration). 
In these experiments, we recorded clusters with multiple PCs but 
only a single IN, optimized to obtain detailed three-dimensional 
(3D) reconstructions (see Materials and Methods and Fig. 2A). The 
axonal arbor of reconstructed PV INs exhibited dense areas of 
collaterals nonuniformly distributed around the PV-positive cell 
body (Fig. 2A). We calculated the density distribution of the axonal 
arbor (Fig. 2B) and observed substantial differences in its overlap 
with PC dendrites and cell bodies (Fig. 2D and fig. S2A). Since this 
heterogeneity in axodendritic overlap likely determines local con-
nectivity between PV IN and PCs, we calculated an axonal overlap 
score based on the colocalization of soma and dendrites of PCs with 
the PV IN axon.

We found that pairs with inhibition, including those with recip-
rocal excitation, were associated with a high axonal overlap score 
(overlap score > 0.1; Fig. 2E). In contrast, pairs with no inhibition 
showed a low overlap score (overlap score < 0.1; Fig. 2E). This pattern 
of inhibitory connectivity is in good agreement with Peters’ rule. 
We observed that pairs with high IN axonal overlap scores also ex-
hibited a markedly higher excitatory connectivity (high versus low 
overlap: 69% versus 19%, P = 0.002, Fisher’s exact test; Fig. 2F). 
Furthermore, most excitatory connections were found in the presence 
of inhibition (71% versus 16%, P < 0.001; Fig. 2F). We hence hypoth-
esize that the establishment of excitatory connections is largely pro-
moted by the inhibitory connectivity and the underlying IN axonal 
overlap, forming the basis for the overrepresented super-reciprocal 
motif found in the network (Fig. 1C).

Presubicular PV INs exhibit a polarized morphology oriented 
toward different directions
To further investigate the asymmetrical axonal distribution, we 
reconstructed PV INs from L2/3 of the mEC (n = 10), which also 
contains spatially modulated cells but exhibits a dense and random 
inhibitory connectivity (29, 40), and compared their axonal mor-
phology to our set of presubicular PV INs (n = 10). Visual examination 
indicated that presubicular PV IN axons showed a polarized spatial 
distribution in contrast to a more radially symmetrical axon of mEC 
PV INs (Fig. 3A and fig. S2, B and C). To quantify these differences, 
we generated 3D polar plots, from which we could calculate mea-
sures of the axons’ deviation from a spherical shape: a polarity index 
and the measure of eccentricity. Both of these demonstrated that 
axons of PV INs in the PrS had a more polarized structure than in 
the mEC (polarity index PrS versus mEC, means ± SD: 10.5 ± 3.6 
versus 6.5 ± 2.8, P = 0.007; eccentricity: 0.7 ± 0.1 versus 0.5 ± 0.1, 
P = 0.009, Mann-Whitney U test; Fig. 3B). The finding of axonal 
polarization poses the question of whether all PV INs are aligned in 
the same direction or whether there is a broad distribution of orien-
tations. To address this question, we recorded and filled six pairs of 
neighboring PV INs in five slices of the PrS (Fig. 3C). Reconstructions 
of these pairs revealed that the long axes of the polarized axons showed 
independent orientations (Fig. 3C). Moreover, when the polar plots 
for 12 PV INs were superimposed (7 from cluster, 2 from paired, 
3 from single-cell recordings), aligned according to anatomical 
landmarks, the axonal distributions evenly covered all directions in 
3D space (Fig. 3D). In summary, while the axons of individual PV 
INs show a high level of polarization, at the population level, they 
can mediate perisomatic inhibition across the presubicular space by 
covering all possible directions.
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Polarized morphology and overlap-dependent connectivity 
rule also largely applies to the heterogeneous group NFS INs
To investigate whether the same structure-function principle applies 
to NFS INs, we reconstructed recorded clusters with a single NFS 
IN and multiple PCs and calculated the IN axonal overlap scores of 

these pairs (fig. S3, A and B). Consistent with the findings for FS PV 
INs, inhibitory connections by NFS INs were associated with a high 
overlap score, whereas pairs with no connections showed low 
scores (reciprocal and unidirectional inhibitory versus not con-
nected pairs, means ± SD: 0.35 ± 0.3 versus 0.03 ± 0.02, P < 0.001, 
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Fig. 2. Spatial overlap of PV IN axon and PC somato-dendritic domain correlates with synaptic connectivity. (A) Representative reconstruction of a biocytin-filled 
cluster composed of a single PV IN (soma and dendrites in black and axon in blue) and six PCs (in red, without axon). Inset (top): FS firing pattern elicited by step current 
stimulation. Inset (bottom): High-magnification confocal image of the biocytin labeling (white) (left) and PV immunological signal (green) in the IN soma (right). (B) Density 
distribution of the PV IN axon (blue gradient) superimposed on the reconstruction of the IN soma and dendrites (in black) and PC somata (red gradient). (C) Scheme depict-
ing synaptic connections and corresponding postsynaptic responses recorded from neurons of the cluster in (A). Excitatory connections are in red, and inhibition is in 
blue. Scale bars, 100 ms (horizontal) and 1 mV (vertical). (D) Bar graph of the IN axon overlap scores for the PCs. Synaptic connections of the PCs with the PV IN are schemat-
ically illustrated below the x axis. (E) Summary box plots of the overlap scores for the PC-PV IN pairs from all recorded clusters. The bars represent pairs with reciprocal con-
nection (blue/red, n = 12), only inhibition (blue, n = 5), only excitation (light red, n = 4), or without connections (gray, n = 21). Dotted line indicates the threshold of 0.1 
separating high and low overlap scores, **P < 0.01 and ***P < 0.001, Mann-Whitney U test. (F) Stacked bar plots show the fraction of excitatory connections (light red, only 
excitation; red/blue, excitation and inhibition) among pairs with low versus high overlap scores (left pair of bars) and among pairs with inhibitory connection versus those 
lacking inhibitory connection (right pair of bars). Numbers indicate absolute counts of pairs in these groups. **P < 0.01 and ***P < 0.001, Fisher’s exact test.
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Mann-Whitney U test; fig. S3B). Similarly, a high axonal overlap 
score was also associated with a higher excitatory connectivity (high 
versus low overlap: 50% versus 6%, P = 0.007, Fisher’s exact test; fig. 
S3C). Despite representing a more heterogeneous group, the axon 
morphology of NFS INs also exhibited strong polarization, as found 
in PV INs (polarity index NFS versus FS, means ± SD: 11.1 ± 7.9 

versus 10.5 ± 3.6; eccentricity: 0.7 ± 0.1 versus 0.7 ± 0.1). Superimposed 
polar plots aligned to anatomical landmarks also showed that NFS 
IN axons are broadly distributed along directions in 3D space (fig. 
S3E). These findings indicate that the identified structure-function 
principle is not only exclusive to PV INs but can also be extrapolated 
to INs of the diverse NFS group.
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Super-motifs organized along polarized PV IN axons prompt 
a computational comparison of different network architectures
Following the structure-function connectivity principle established 
experimentally, we constructed spatial network models implementing 
structured recurrent inhibitory connectivity constrained along the 
extent of the respective perisomatic inhibitory IN axon. We simu-
lated the postprocessing of HD input inherited from the upstream 
anterodorsal thalamic nucleus, a prominent function of the PrS. The 
spatial organization of the thalamic input is as of yet unknown; 
therefore, we modeled the topography of HD preference among PCs 
by Perlin (simplex) noise (Fig. 4A). This allowed us to vary forms 
of input organization between “salt-and-pepper”–like and more 
structured maps (fig. S4C). For the spatial network, we placed 3600 

PCs and 400 INs on a uniformly spaced grid onto a 2D neural sheet 
(900 m by 900 m) and connected the cells according to the 
empirically observed connectivity rule (Fig. 4B): PCs within the 
spatial reach of axonal clouds of a neighboring IN were connected 
reciprocally. For the network with spatially structured inhibition, 
we considered polarized IN axons that were approximated by an 
ellipsoid shape with a long axis of 200 m and a short axis of 50 m 
(Fig. 4B, left), resembling the morphological reconstructions of PV 
INs. Each IN could thus target a specific subset of neighboring PCs 
defined by its orientation relative to the thalamic input structure. In 
the model, we assumed that the ellipsoids are oriented to maximize 
the diversity of HDs within their spatial reach (see Materials and 
Methods and fig. S4A). As a comparison, we constructed a blanket of 
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inhibition network with area-equivalent circular IN axons of 100 m 
diameter. We analyzed the different network models to explore the 
potential computational advantage of the microcircuit architecture 
found in the PrS versus a blanket of inhibition.

Simulation of network activity for different HDs reveals that 
ellipsoid axonal clouds mediate stronger tuning than 
circular axons
Polarized INs suppressed PC firing more effectively at nonpreferred 
HDs and less at preferred HDs compared to circular INs, improving 
the signal and reducing the noise, thereby increasing the HD index 
(HDI) (Fig. 4C and fig. S4B). At the network level, this resulted 
in sharper boundaries between PC populations with different HD 
preferences on the neural sheet in the model with polarized INs 
in contrast to the blanket of inhibition model with circular INs 
(Fig. 4D). Polarized INs themselves developed a broader HD tuning 
compared to circular INs as they sampled from more diversely tuned 
PCs (Fig. 4, C and D). Thus, the disparity in HD tuning between 
PCs and INs was substantially increased in networks with polarized 
compared to circular axon morphology (Fig. 4E). The difference in 
HD tuning via polarized INs depended on the relationship of the 
spatial scale of the input topography to the size of the IN axonal 
clouds rather than on the specific input map [see Materials and 
Methods and fig. S4 (D to F) for an alternative input map]. Notably, 
we observed that the polarized model outperformed the circular 
model at correlation lengths between 25 and 100 m, the upper end 
corresponding to approximately half of the long axis of the ellipsoid 
axons (Fig. 4F). Together, our simulations indicate that, for a topo-
graphically organized HD input, polarized perisomatic inhibition 
via PV INs can improve computational performance.

DISCUSSION
In this study, we have identified a previously unknown spatial con-
nectivity principle of recurrent inhibition in the PrS of the rat. Micro-
circuits of the PrS are dominated by super-reciprocal connectivity 
motifs organized by the polarized axons of PV INs. The individual 
directions of these axons constrain the interaction of PV INs to specific 
subsets of PCs. Thus, multiple subnetworks can be oriented toward 
different directions within a given anatomical space. We investigated 
the role of this network principle in the context of HD representa-
tion, which has been widely described in vivo in the PrS (25, 26). Our 
simulations demonstrate a substantial advantage of this spatial con-
nectivity rule for the tuning of HD activity given a topographical 
organization of HD input. The combined effort of multineuron patch-
clamp recordings, detailed 3D morphological analysis, and spatial 
network simulations identified a spatially defined connectivity princi-
ple that carries implications for microcircuit computation.

A blanket of inhibition by PV INs is generally assumed in cortical 
areas and relies on symmetrical axon distributions as well as a dense 
formation of synapses according to Peters’ rule (3, 6). This concept 
further explains random reciprocal connectivity between PV INs 
and PCs (18, 29, 41). Dense inhibition and random reciprocity have 
also been described in the mEC, a region downstream to the PrS 
(29, 40). In the PrS, we identified that the spatial extent of polarized 
IN axon morphology underlies the prominent reciprocity between 
PCs and PV INs. Our findings highlight that PV INs can target a 
specific subset of neurons by directing their axonal projections without 
violating Peters’ rule. However, the fact that PV IN axonal overlap 

also predicted the reciprocal excitation by inhibited PCs indicates 
additional mechanisms that govern local IN excitation. The tuning of 
morphology and aligned connectivity likely involve further mecha-
nisms, such as developmental (42) or activity-dependent plasticity (43).

Thus, spatial organization of inhibition allows function-specific 
connectivity. In the visual cortex, connections are preferentially 
established between similarly tuned neurons that serve either feature 
amplification (44) or redundancy reduction (45). While evidence for 
the role of PV INs in tuning of visual input has been controversial 
(14–19), a recent study has demonstrated that the spatial offset be-
tween PCs and INs is directly linked to the tuning of direction selec-
tivity (20). However, the corresponding axodendritic morphology 
and the contribution of PV INs are not resolved. Polarized IN axons, 
as found here, can represent a potential anatomical solution to spa-
tially organized function-specific connectivity. In Drosophila, map-
ping of visual cues onto the HD circuit relies on spatially structured 
inhibition (35). Our results suggest a similar integration of allocentric 
visual information with HD signals supported by structured inhibi-
tion in the mammalian PrS (22, 46). Thus, spatially defined inhibitory 
connectivity could represent an overarching principle to encode and 
integrate directionality of external and internal stimuli.

Since the organization of thalamic and retrosplenial input to the 
PrS is still unknown (21), we used different topographical input 
maps to explore the potential advantage of the modeled polarized 
INs for feature computation. In contrast to radially symmetrical axons, 
polarized axons can sample selectively from neighboring PCs. INs 
connecting to PCs with more diverse HD preferences can enhance 
the directional tuning of the individual PCs. As a further consequence, 
polarized INs become more broadly tuned, as they sample from 
diverse HDs, in line with prior reports showing broad tuning of FS 
INs within the PrS in vivo (25, 26). The observed polar morphology 
provides a means by which local IN tuning could differ substantially 
from a simple average of the surrounding PCs as previously suggested 
(8). Specifically, we postulate that the broad HD tuning of INs in vivo 
emerges from selective sampling of their surrounding HD PCs. This 
hypothesis and the underlying assumptions, such as the spatial 
organization of HD input, should be addressed through future in vivo 
high-density electrode recordings (22).

IN subtypes within the PrS receive distinct thalamic input and 
exhibit various forms of synaptic dynamics, suggesting different 
roles in HD computation (27, 32). However, the reported spatially 
asymmetric connectivity rule is not restricted to PV-positive INs but 
rather applies to PrS INs in general. Thus, our model focused on the 
ability of polarized IN axon morphology to structure connectivity 
and thereby improve HD tuning. How diverse IN types in the PrS 
with their structured connectivity contribute specifically to HD and 
other spatial computations remains to be investigated.

Together, we identified a principle for structured inhibitory con-
nectivity that helps to bridge the gap between anatomical and feature 
space. The microcircuit organization of the PrS exemplifies a devia-
tion from a blanket of inhibition paradigm that can be leveraged for 
improved computation. Thus, we propose that anatomically struc-
tured inhibition can offer area-specific tailored computations (47).

MATERIALS AND METHODS
Animals
Patch-clamp recordings and morphological reconstructions were 
performed on acute brain slices obtained from 19- to 35-day-old 
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transgenic Wistar rats expressing Venus–yellow fluorescent protein 
(YFP) under the vesicular gamma-aminobuteric acid transporter (VGAT) 
promoter (48). Animal handling and all procedures were carried 
out in accordance with the guidelines of local authorities (Berlin, 
T0215/11 and T0109/10), the German Animal Welfare Act, and the 
European Council Directive 86/609/EEC.

Multineuron patch-clamp recordings
For the extended network motif analysis, we reanalyzed our previ-
ously published dataset on synaptic connectivity obtained through 
multineuron patch-clamp (multipatch) recordings in the PrS 
(38). As the superficial layer lacks recurrent excitatory connections, 
it represents an ideal system to study recurrent inhibitory con-
nectivity principles. Thus, we focused on 61 clusters with up 
to eight neurons recorded in the superficial layer (distance to 
pia, <600 m). For details on motif analysis and random simulation, 
see data analysis.

To correlate detailed morphological reconstructions with electro-
physiological detection of synaptic connectivity, we performed 
additional multipatch recordings with optimized intracellular solu-
tions as previously reported (38): Animals were anesthetized with 
isoflurane and decapitated. The head was submerged in cold artificial 
cerebrospinal fluid (ACSF) slicing solution containing 80 mM NaCl, 
2.5 mM KCl, 3 mM MgCl2, 0.5 mM CaCl2, 25 mM glucose, 85 mM 
sucrose, 1.25 mM sodium phosphate buffer (PB), and 25 mM NaHCO3 
(320 to 330 mOsm), enriched with carbogen (95% O2 and 5% CO2). 
Horizontal 300-m-thick slices 4 to 5.5 mm above the interaural 
plane were cut on a Leica VT1200 vibratome (Leica Biosystems) and 
then stored in the slicing solution under submerged condition heated 
to 30°C for 30 min of recovery. After the recovery, slices were stored 
in the oxygenated slicing solution for up to 5 hours at room tem-
perature. Patch-clamp recordings were performed in a submerged 
recording chamber perfused with ACSF solution (34°C) containing 
125 mM NaCl, 2.5 mM KCl, 1 mM MgCl2, 2 mM CaCl2, 25 mM 
glucose, 1.25 mM sodium PB, and 25 mM NaHCO3 (310 to 320 mOsm), 
enriched with carbogen (95% O2 and 5% CO2). Somatic whole-cell 
patch-clamp recordings were performed with pipettes pulled from 
borosilicate glass capillaries with 2 mm outer diameter and 1 mm 
inner diameter (Hilgenberg, Germany) on a horizontal puller (P-97, 
Sutter Instrument Company). The pipettes were filled with intra-
cellular solution containing 130 mM K-gluconate, 6 mM KCl, 2 mM 
MgCl2, 0.2 mM EGTA, 5 mM Na2-phosphocreatine, 2 mM Na2ATP, 
0.5 mM Na2GTP, and 10 mM Hepes buffer (290 to 300 mOsm, 
pH adjusted to 7.2 with KOH). To enhance contrast between biocytin 
staining of INs and PCs, we added biocytin (0.7 mg/ml) for IN re-
cordings and biocytin (0.1 mg/ml) for PC recordings. Filled pipettes 
had a resistance of 3 to 7 megohms. We did not correct membrane 
potentials for liquid junction potential. Cells were visualized through 
an infrared differential interference contrast microscope (Olympus 
BX-51WI) equipped with a digital camera (Olympus XM10). INs 
were selected before patching by their VGAT-YFP fluorescence ob-
served in epifluorescence illumination using a 490-nm light-emitting 
diode (LED) light source (Thorlabs). We recorded from up to eight 
cells simultaneously, selecting cells up to a depth of 80 m beneath 
the slice surface. Series resistance of the recordings was compensated 
using the automatic bridge balance of the amplifier. Recordings were 
performed using four two-channel MultiClamp 700B amplifiers 
(Molecular Devices) in current-clamp mode. Data were low-pass 
filtered at 6 kHz using the amplifiers built in Bessel filter and digitized 

with a Digidata 1550 (Molecular Devices) at a sampling rate of 
20 kHz. The pClamp 10.4 software package (Molecular Devices) was 
used for data acquisition and analysis. To detect monosynaptic con-
nections, we applied the same protocols as in our previous study (38). 
In brief, we elicited four action potentials in each recorded neuron 
consecutively by injecting 1- to 2-ms current pulses of 1 to 2.5 nA.  
Individual neurons were held in current-clamp mode and stimulated 
sequentially in 1-s intervals. Between 40 and 50 sweeps were averaged 
for the analysis. Monosynaptic connections were identified when 
excitatory or inhibitory postsynaptic potentials were tightly correlated 
with the elicited presynaptic action potential within a latency of 3 ms.

Network motif analysis
Motif counting and random simulation
Motif analysis was performed using custom MATLAB-based scripts 
(https://doi.org/10.5281/zenodo.4670433). We summed the number 
of second-order motifs from all neurons that were calculated on the 
basis of the incoming and outgoing connections of each neuron to 
the respective partner cell types (39)

​Number of convergent motifs  = ​  ​Connection​ in​​ * (​Connection​ in​​ − 1)   ────────────────────  2  ​​

​Number of divergent motifs  = ​  ​Connection​ out​​ * (​Connection​ out​​ − 1)   ─────────────────────  2  ​​

	​ Number of chain motifs  =  (​Connection​ in​​ * ​Connection​ out​​ ) − ​
Connection​ reciprocal​​​

​Number of double reciprocal motifs  =   

                       ​ 
​Connection​ reciprocal​​ * (​Connection​ reciprocal​​ − 1)

    ──────────────────────────  2  ​​	

To determine whether these motifs occurred significantly more 
often than expected by chance, we simulated 50 recorded clusters 
with the same configuration (14 octuples, 6 septuples, 14 sextuples, 
8 quintuples, 3 quadruplets, and 5 triplets), cell types (226 PCs and 
114 INs), and XY coordinates (11 of 61 recorded clusters from the 
superficial layer were excluded due to missing coordinates) 10,000 times 
assuming randomly distributed distance-dependent connectivity 
(10, 11). The connection probability for each independently estab-
lished connection at the specific intersomatic distance was determined 
by the number of found connections divided by the number of tested 
connections of the respective connection type in the respective 
distance bin (0 to 50, 50 to 75, 75 to 100, and >100 m; Fig. 1C) as 
reported previously (38). We counted the number of second-order 
motifs from each of these simulations with the same approach and 
compared the number of simulated motifs with the number of found 
motifs from the empirical dataset.
Statistical comparison and multiple hypothesis correction
P values for statistical comparison between empirically found motifs 
and simulated motifs were calculated according to previous studies 
(10, 11). For each motif, we divided the number of simulations of 
our dataset that yielded a higher motif count than the empirically 
observed motif count by the number of total simulations (10,000). 
This represents the P value indicating the probability of the null 
hypothesis being true (H0: “The observed motif count is equal or 
lower to the predicted motif count by the random simulations”). If 
a motif never occurred in the simulation, we set the motif count to 1, 

https://doi.org/10.5281/zenodo.4670433
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which resulted in a P value of 0.0001. To correct for testing multiple 
hypotheses, we applied the Benjamini-Hochberg method, which 
controls for the false discovery rate (49). We sorted the P values for 
n comparisons in ascending order (P1 < Pi… < Pn). The first P value 
at position i with a lower value than i/n *  was deemed statistically 
significant at the  level ( = 0.05). All comparisons with P values 
lower than Pi were also considered as statistically significant.

Single-cell patch-clamp recordings
Single presubicular INs were recorded for the comparative polarity 
assessment, as well as the axonal orientation analyses (Fig. 3, A and C). 
For this, animals were anesthetized (3% isoflurane, Abbott, Wiesbaden, 
Germany) and then decapitated. Brains were quickly removed and 
transferred to carbogenated (95% O2/5% CO2) ice-cold sucrose ACSF 
containing 87 mM NaCl, 2.5 mM KCl, 25 mM NaHCO3, 1.25 mM 
sodium PB, 25 mM glucose, 75 mM sucrose, 7 mM MgCl2, 0.5 mM 
CaCl2, 1 mM Na-pyruvate, and 1 mM ascorbic acid. Horizontal 
brain slices (300 m thick) were cut using a vibratome (VT1200 S, 
Leica, Wetzlar, Germany). Slices were collected and placed in a sub-
merged holding chamber filled with carbogenated sucrose ACSF at 
32° to 34°C for 30 min and then at room temperature until recording. 
For recording, slices were transferred to a submerged chamber and 
superfused with carbogenated ACSF containing 125 mM NaCl, 
2.5 mM KCl, 25 mM NaHCO3, 1.25 mM sodium PB, 25 mM glucose, 
1 mM MgCl2, 2 mM CaCl2, 1 mM Na-pyruvate, and 1 mM ascorbic 
acid. The bath temperature was set to 32° to 34°C with a perfusion 
rate of 12 to 13 ml/min. Slices were visualized using an upright 
microscope (BX-51WI; Olympus) equipped with infrared differential 
inference contrast optics and a digital camera (Zyla CMOS, Andor, 
UK). INs were identified by their VGAT-YFP signal visualized by 
epifluorescent illumination delivered via a fixed-wavelength LED 
source ( = 514 nm, OptoLED, Cairn Research, UK). A dataset of 
single L2/3 FS INs of the mEC was reanalyzed to serve as a control 
population for the polarity assessment in this study (40). For the 
orientation analysis, respectively two neighboring INs in close 
proximity (<200 m) in L2/3 of the PrS were recorded and biocytin-
filled. Whole-cell patch-clamp recordings were conducted with 
electrodes from borosilicate glass capillaries (outer diameter, 2 mm; 
inner diameter, 1 mm; Hilgenberg, Germany) produced by a hori-
zontal puller (P-97, Sutter Instruments, CA, USA) and filled with an 
intracellular solution consisting of 130 mM K-gluconate, 10 mM KCl, 
10 mM Hepes, 10 mM EGTA, 2 mM MgCl2, 2 mM Na2ATP, 0.3 mM 
Na2GTP, 1 mM Na2-creatine, and 0.1% biocytin (adjusted to pH 7.3 
and 315 mOsm), giving a series resistance of 2.5 to 4 megohms. All 
recordings were performed with an Axopatch 700B amplifier 
(Molecular Devices, CA, USA), filtered online at 10 kHz with the 
built-in two-pole Bessel filter, and digitized at 20 kHz (National 
Instruments, UK). Following breakthrough into whole-cell config-
uration, we characterized the firing properties in current-clamp mode 
using hyper- to depolarizing current pulses (a family of −500 to 
500 pA in 100-pA steps, followed by a single step to 1.2 nA, 1000-ms 
duration). Cells were excluded if the resting membrane potential 
was more depolarized than −45 mV, initial series resistance of 
>30 megohms, or >20% change occurred in series resistance over 
the course of the recording. The liquid junction potential was not 
corrected. Electrophysiological data were acquired online using the 
open-source WinWCP software package (courtesy of J. Dempster, 
Strathclyde University, Glasgow, UK; http://spider.science.strath.
ac.uk/sipbs/software_ses.htm).

Visualization of recorded neurons and  
PV immunocytochemistry
Slices were immersion-fixed in a solution containing 4.5% para-
formaldehyde, 4% sucrose and 0.1 M PB (pH 7.4) for a minimum of 
12 hours (overnight) at 4°C. Slices were then rinsed extensively in 
0.1 M PB followed by phosphate-buffered saline (PBS; 0.9% NaCl). 
For visualizing the biocytin-filled neurons, slices were incubated in 
a solution containing avidin-conjugated Alexa Fluor 647 (dilution 
1:1000; Invitrogen, Darmstadt, Germany) in PBS with 3% normal 
goat serum (NGS), 0.1% Triton X-100, and 0.05% NaN3 overnight. 
For immunological staining for PV, slices were first blocked in PBS 
containing 10% NGS, 0.3% Triton X-100, and 0.05% NaN3 for 1 hour 
and afterward incubated with a polyclonal rabbit anti-PV antibody 
(1:2000; Swant, Switzerland) in PBS containing 5% NGS, 0.3% Triton 
X-100, and 0.05% NaN3 for at least 72 hours at 4°C. Slices were then 
rinsed, and a fluorescent-conjugated secondary antibody was ap-
plied (1:1000; goat anti-rabbit immunoglobulin G, Alexa Fluor 405, 
Invitrogen, UK) in a PBS solution containing 3% NGS, 0.1% Triton 
X-100, and 0.05% NaN3 overnight at 4°C. Slices were then mounted in 
an aqueous mounting medium (Fluoromount-G, Southern Biotech) 
on 300-m-thick metal spacers to prevent shrinkage in the z plane.

Imaging of the slices was performed on a confocal laser scanning 
microscope (FluoView FV1000, Olympus, Japan). First, a low-
magnification (×4 air immersion, Olympus, Japan) overview image 
was taken to confirm the cellular localization, following a high-
magnification z stack using a 30× silicon oil immersion objective 
[numerical aperture (NA) of 1.05, UPlanSApo, Olympus] for mor-
phological assessment of biocytin-labeled neurons, using a 643-nm 
diode laser to excite the avidin-conjugated Alexa Fluor 647. To con-
firm PV neurochemical identity and YFP immunoreactivity of 
recorded cells, a high-magnification image (60× objective, NA of 1.2, 
Olympus, Japan) was taken over the soma and proximal dendrites. 
We used a 488-nm argon laser for fluorescent excitation of YFP 
and a 405-nm diode laser for excitation of the Alexa Fluor 405–
conjugated secondary antibody. Images were analyzed offline; for 
details on 3D reconstruction and analysis, consult the “Morphological 
analysis” section.

Morphological analysis
Reconstruction and preparation for analysis of  
reconstructed neurons
A total of 20 clusters each containing five to seven PCs and a single 
IN and five pairs of INs were 3D-reconstructed, tracing them with 
the FIJI (“FIJI is just ImageJ”; https://imagej.net/Fiji) software package. 
Image stacks were registered using the Stitching plug-in (50), and the 
reconstructions were made using the Simple Neurite Tracer plug-in 
(51). For the INs, both dendrites and axons were reconstructed, while 
for the PCs, only the somato-dendritic domains were reconstructed. 
We excluded NFS INs based on electrophysiological parameters and 
a linear discriminant analysis as previously described (38). In prepa-
ration for subsequent analyses, reconstructions were processed in 
the NEURON environment (52). Individual cells and clusters were 
rotated with the superficial layers facing the 12 o’clock orientation, 
with the mEC toward the 9 o’clock and the subiculum at 3 o’clock 
positions. Where necessary, the reconstructions were convolved 
with a 3D Gaussian kernel (xy:  = 3; z:  = 5) to smoothen spatial 
artifacts generated by the semiautomatic tracing process. For cell 
clusters, we additionally measured the intersomatic distances be-
tween reconstructed INs and PCs using the measurement tool in 

http://spider.science.strath.ac.uk/sipbs/software_ses.htm
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EL −65 mV Leak reversal potential

EK −90 mV Potassium reversal 
potential
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​ A  =  20 S​ Sodium conductance

gK ​30 ​ mS _ 
c ​m​​ 2​

​ A  =  6 S​ Potassium conductance

VT −63 mV Activation shift
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FIJI. As the individual cells were differentially filled, we considered the 
intersomatic distance center to center of the respective cell bodies.
Analysis of reconstructed neurons
To assess the distribution of the IN axons in the anatomical space, 
we generated a density map based on their axonal arbor. For this, 
we calculated the 3D axon length density (axon length in micrometers 
per cubic micrometer) with a spatial resolution of 1-m3 voxels. The 
center of the cell body was used as the origin of the coordinate system. 
The axodendritic overlap score for neighboring biocytin-filled PCs 
was calculated as the sum of the axonal density values in all 1-m3 
voxels spatially overlapping with the PC cell body and dendrites. 
We plotted the representation of the IN with the density cloud, using 
mayavi 4.5, a 3D visualization package for Python. Specifically, we 
plotted the density cloud as a volume scalar field and the dendrites 
and cell body using the inbuilt “points3d” and “triangular_mesh” 
functions, respectively.

The 3D polar plots were generated using Python 3.7, the astropy 
4.1 Python package, and mayavi 4.5. For this, axonal densities were 
translated from the Cartesian coordinate system into spherical 
coordinates using the inbuilt astropy “cartesian_to_spherical” func-
tion. The axonal representation was normalized by setting the length 
of the longest vector to the surface to 1, and the data were binned at 
10° segments in the elevation and azimuthal planes. The resulting 
plots were visualized using the “mesh” function on mayavi 4.5. We 
calculated the polarity index from the binned data by calculating the 
sum of the variance as the deviation of the calculated direction vectors 
to the surface from those of a perfect sphere of equal volume and 
homogeneous density. To further quantify the spatial polarization 
of the axons, we approximated their distribution as an ellipsoid and 
quantified their eccentricity. This parameter equates to 0 for a perfect 
sphere and is between 0 and 1 for an oval ellipsoid and can be calcu-
lated as the ratio of the distance between foci and the long axis of the 
spheroid (53)

	​ Eccentricity  = ​ √ 

___________________________

   1 − ​​(​​ ​ 
Length of the minor axis

  ───────────────  Length of the major axis ​​)​​​​ 
2

​ ​​	

All statistical tests were done using GraphPad Prism 8. To exam-
ine the distributions of our data samples, we tested for normality 
(Shapiro-Wilk’s normality test) and homoscedasticity (Levene’s F test). 
To determine the significance of our samples, we used parametric 
(Student’s t test) or nonparametric (Mann-Whitney U test) statistic 
tests respectively, as indicated in the text.

Spatial network model
Code for the generation, simulation, and analysis of the spatial net-
work is available at https://doi.org/10.12751/g-node.abju0s.
Neural sheet
The 2D spatial network is constructed by placing 3600 PCs in a 60 × 
60 grid and 400 INs in a 20 × 20 grid on a 900 m by 900 m neural 
sheet. On the basis of this spatial layout, we infer the synaptic con-
nections using the experimentally observed connectivity rule: Each 
PC covered by an IN’s axon is reciprocally connected to the latter 
(Figs. 2 and 4B). We then compare two connectivity structures: 
directional inhibition by the here-reported polarized axons and a 
blanket of inhibition by circular axons. Polarized axons are modeled 
as ellipsoids with a long half-axis of 100 m and a short half-axis of 
25 m approximating the dimensions found in the axonal recon-
structions (see Fig. 3), whereas circular IN axons are represented by 

area-equivalent circles with a radius of 50 m (Fig. 4B). Conservation 
of the axonal area ensures that the number of synapses and therefore 
the overall amount of inhibition and excitation remain the same in 
both networks, simulating a connectivity principle with comparable 
wiring cost.
Neuron models
PCs are simulated by a conductance-based Hodgkin-Huxley model 
with sodium, potassium, and leak channels. In addition, they re-
ceive a HD-dependent input current IHD() and inhibitory synaptic 
currents Iinh

	​​ C​ m​​​v ̇ ​  =  − ​g​ L​​(v − ​E​ L​​ ) − ​g​ Na​​ ​m​​ 3​ h(v − ​E​ Na​​ ) − ​g​ K​​ ​n​​ 4​(v − ​E​ K​​ ) + ​I​ HD​​
( ) + ​I​ inh​​​	

	​​m ̇ ​  = ​  0.32 ─ ms ​ ​  13 mV − v + ​V​ T​​  ───────────  (​e​​ ​
13 mV−v+​V​ T​​ _ 4 mV ​ ​ − 1 ) mV

 ​ (1 − m ) − ​ 0.28 ─ ms ​ ​  v − ​V​ T​​ − 40 mV  ───────────  (​e​​ ​
v−​V​ T​​−40 mV _ 5 mV ​ ​ − 1 ) mV

 ​ m​	

	​​ n ̇ ​  = ​  0.032 ─ ms  ​ ​  15 mV − v + ​V​ T​​  ───────────  
(​e​​ ​

15 mV−v+​V​ T​​ _ 5 mV ​ ​ − 1 ) mV
 ​ (1 − n ) − ​ 0.5 ─ ms ​ ​e​​ ​

10 mV−v+​V​ T​​ _ 40 mV ​ ​ n​	

	​​ h ̇ ​  = ​  0.128 ─ ms  ​ ​e​​ ​
17 mV−v+​V​ T​​ _ 18 mV ​ ​(1 − h ) − ​  4 ─ ms ​ ​  1 ─ 

1 + ​e​​ ​
40 mV−v+​V​ T​​ _ 5 mV  ​ ​

 ​ h​	

INs are modeled as leaky integrate and fire neurons with equilib-
rium voltage veq, threshold voltage vthres, reset voltage vreset, and no 
refractory period

	​​ v ̇ ​  = ​  1 ─  ​ (− v + ​v​ eq​​)​	

 7 ms Time constant

veq −50 mV Equilibrium voltage

vthres −40 mV Threshold voltage

vreset −60 mV Reset voltage

https://doi.org/10.12751/g-node.abju0s
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Synapse models
An inhibitory synapse is modeled as a conductance gSyn, nIE. When 
the corresponding IN spikes, the conductance is increased by 30 nS 
and afterward decays with time constant Syn. The overall synaptic 
input current for a PC is then calculated from the sum over all 
connected INs

	​​ ​g​ Syn,​n​ IE​​​​ ̇  ​  =  − ​ 
​g​ Syn,​n​ IE​​​​ ─ ​​ Syn​​  ​​	

	​​​ I​ Syn​​  =  − ​(​​ ​ ∑ 
​N​ IE​​

​​​ ​g​ Syn,​n​ IE​​​​​)​​(v − ​E​ i​​)​​	

The IN’s synapses are modeled as voltage synapses. At a presyn-
aptic spike, the membrane voltage of the IN is increased by the ex-
citatory synaptic strength vSyn = 2.5 mV.
HD input: Topology and the max entropy rule
A potential topography of HD tuning is modeled by a HD-modulated 
input current to every PC. The preferred direction pref of a PC 
depends on its location on the neural sheet (see Fig. 4B and the Spatial 
organization of HD input: Perlin and pinwheel map section). We con-
sider a static situation, where the HD, i.e., a von Mises distribution

	​​ I​ HD​​( ) = ​I​ baseline​​ + ​I​ HD​​ ​ ​e​​ *cos(−​​ pref​​)​ ─ 
​e​​ ​

  ​​	

We choose a broad input profile with dispersion  = 2.5 (corre-
sponding to 2 = 0.4), a peak amplitude IHD = 0.6 nA, and an addi-
tional uniform baseline of 0.05 nA.
Choosing the directionality of polarized IN axons: Max entropy rule
The spatial orientation of a polarized IN provides an additional 
degree of freedom. We propose that this axonal orientation is opti-
mized to enhance competition between PCs with different HD pref-
erences and thereby increase the PC’s HD tuning. In principle, this 
poses a complex global and functional optimization problem: Given 
an input map and the locations of all neurons, find the set of axonal 
orientations that maximizes the HD tuning of the PC population. 
Here, we resort to a simpler local and structural optimization. We 
assume that an IN’s axon orientation maximizes the diversity of HD 
preferences within the group of PCs connected to it. In this way, the IN 
mediates reciprocal inhibition between a large set of HD preferences. 
To find the corresponding axon orientation, we maximize the entropy 
of HD preferences among the connected PCs (fig. S4A). To calculate 
this entropy for a specific axonal orientation , we first determine the 
set of preferred HDs within the connected PCs. From this set of HD 
preferences, we then determine the binned, normalized histogram 
of present HD preferences p. We use 30 bins, corresponding to a 
bin width of 20°. Next, we calculate the entropy of this distribution

	​​ S​ ​​  =  ∑ − ​p​ ​​ log ​p​ ​​​	

The entropy S gives a measure for uniformity of probabilities and 
therefore diversity of preferred tuning directions. For each IN, this 

entropy measure is calculated for 30 equally spaced orientations , 
and the direction of maximum entropy is chosen.
Spatial organization of HD input: Perlin and pinwheel map
As the spatial structure of the thalamic HD input to the PrS is not 
known, we resort to artificially generated HD preference topologies. 
These input topologies are represented as spatial maps of HD pref-
erence: The location of a PC in the neural sheet determines its 
preferred HD. We tested two such spatial maps: a Perlin and a 
pinwheel map.

Perlin/simplex noise is a spatial map originally developed for 
computer-generated imagery of natural textures (54). The organic 
nature of these textures with local correlations has also found appli-
cations in neuroscience (47). By introducing a scaling parameter, a 
Perlin map allows us to vary from a salt-and-pepper topography to 
a spatially structured input topography (fig. S4C). In the used sim-
plex noise implementation (OpenSimplex for Python), neighboring 
points on the simplex grid are a distance of ​​√ 

_
 2 ​ m​ apart, setting an 

upper bound for spatial correlation on the map. The size of spatial 
structures is varied by scaling the input coordinates of the noise 
function noise2D(x/scale, y/scale). Since simplex noise is centered 
on zero, certain HD preferences are strongly overrepresented. A 
uniform distribution of HDs is achieved by reassigning the sorted, 
previously generated noise values to equidistant values between − 
and  (47).

To show that the results are robust with respect to the choice of 
spatial map, we also tested a pinwheel map (fig. S4D), originally 
developed as a model for the topology of orientation preference in 
the visual cortex (55). This pinwheel map is generated by assigning 
each PC on the 60 × 60 grid a randomly oriented vector of length 
​​√ 
_

 2 ​ / 100​. The orientation of the vector represents the preferred tuning 
direction of the PC. Spatial correlations are created by iteratively 
comparing and adjusting the vectors to their neighbors in a certain 
region, similar to the alignment of nearby magnets. For each vector 
zi, every other vector zj is added if its distance on the grid is closer 
than c/2, subtracted if its distance is within c/2 and c, and disregarded 
otherwise, with c as the scaling parameter. Larger c value leads to 
larger patches of similar HD tuning, while low values of c essentially 
lead to a salt-and-pepper topography. If the length of a vector 
reaches 1, it remains unchanged. This is repeated for five iterations. 
The map is subsequently adjusted in the same way as the simplex 
map to guarantee a uniform distribution of tuning values.
Correlation length
To quantify the size of spatial structures on these input maps, a cor-
relation length of HD preference is calculated (fig. S4, C and D). For 
every possible grid-wise displacement of the map to itself, a circular 
correlation is calculated from the overlapping region (Python package 
pingouin). Note that the distribution of input directions is uniform 
at least for the entire map and close to uniform for large subsections, 
requiring an adaptation of the circular mean for uniform distribu-
tions (56). The acquired correlation values are binned by their re-
spective displacement distances and averaged per bin with a binning 
width of 3 m. The resulting mean autocorrelation per distance is 
fitted by a single exponential function, leading to the correlation 
length. Averaging the correlation length for the 10 different input 
maps generated per grid scale leads to the correlation length scale 
in Fig. 4F.
Analysis of HD tuning
The full network of 3600 PCs and 400 INs is simulated for 1 s using 
the spiking network simulator Brian 2 (57) in conjunction with the 

Syn 1 ms Synaptic time constant

gSyn 30 nS Synaptic strength

https://pypi.org/project/opensimplex/
https://pingouin-stats.org/
https://brian2.readthedocs.io/en/stable/


Peng et al., Sci. Adv. 2021; 7 : eabg4693     16 June 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

12 of 13

parameter exploration package pypet (58). Three different network 
setups are compared: polarized INs, circular INs, and a control net-
work without synaptic connections (Fig. 4B). We test 24 spatial input 
map scales resulting in input maps from a correlation length of zero 
with salt-and-pepper topography up to a correlation length of 125 m 
where the spatial topography is larger than the long axis of the 
polarized INs. Note that, for each input map, the axonal directions 
of the polarized INs have to be adjusted according to the maximum 
entropy rule. For each input map scale, the three networks are sim-
ulated for 12 different HDs and 10 input map instances each (fig. S4). 
From the interspike intervals, a firing rate is calculated for each 
neuron. The tuning of the network is analyzed by calculating the 
HDI (see the “HD index” section) for each individual neuron (Fig. 4C), 
excluding those with a distance of less than 100 m from the edge of 
the sheet to counteract border effects. Next, the distribution of HDIs 
of the excitatory and inhibitory populations with their respective 
means is computed for each map (Fig. 4E). Last, for each input scale, 
10 different input maps are used to determine the average and SD of 
these mean HDIs and compare their behavior when varying the input 
topography (Fig. 4F). The correlation length corresponding to this 
input scale is also averaged across the 10 maps, as described above.
HD index
The HDI is used as a measure of the sharpness of individual cell 
tuning (59). It is calculated by constructing a vector in each of the 
12 input directions i with its length equal to the associated firing 
rate of the cell fr(i) in that direction

	​​​ z​ i​​  =  fr(​ϕ​ i​​ ) ​(​​​
cos(​ϕ​ i​​)​ 
sin(​ϕ​ i​​)

 ​​)​​​​	

The vectors are normalized by the sum of all firing rates and 
added together, forming a tuning vector that points in the direction 
of preferred tuning

	​ z  = ​  
​∑ i​​ ​z​ i​​​ ─ 

​∑ i​ ​​ fr(​​ i​​)
 ​​	

The tuning vector length ∣z∣ indicates the sharpness of this par-
ticular neuron tuning, increasing from zero (no tuning to HD) to one 
(only firing in one direction).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/25/eabg4693/DC1

View/request a protocol for this paper from Bio-protocol.
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