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Abstract

In humans, finely tuned g synchronization (60–90Hz) rapidly appears at movement onset in a motor control
network involving primary motor cortex, the basal ganglia and motor thalamus. Yet the functional consequen-
ces of brief movement-related synchronization are still unclear. Distinct synchronization phenomena have also
been linked to different forms of motor inhibition, including relaxing antagonist muscles, rapid movement inter-
ruption and stabilizing network dynamics for sustained contractions. Here, I will introduce detailed hypotheses
about how intrasite and intersite synchronization could interact with firing rate changes in different parts of the
network to enable flexible action control. The here proposed cause-and-effect relationships shine a spotlight
on potential key mechanisms of cortico-basal ganglia-thalamo-cortical (CBGTC) communication. Confirming or
revising these hypotheses will be critical in understanding the neuronal basis of flexible movement initiation,
invigoration and inhibition. Ultimately, the study of more complex cognitive phenomena will also become more
tractable once we understand the neuronal mechanisms underlying behavioral readouts.
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Significance Statement

Despite tremendous progress in describing how neuronal activity unfolds before and during movements,
the mechanisms that trigger the switch from movement preparation to execution, regulate movement vigor
and enable movement inhibition remain unknown. Brief synchronization of neural activity within and be-
tween cortical sites and the basal ganglia (BG) may be a key factor in controlling these mechanisms. Here, I
review the evidence and describe in detail how synchronization may shape firing rates in distinct sites of the
cortico-basal ganglia-thalamo-cortical (CBGTC) network to enable flexible action control.

Introduction
Distinct motor control operations
One key role of our nervous system is to interpret sen-

sory information to guide movements enabling us to pur-
sue goals shaped by past experiences. Dyskinetic
patients are striking examples of how the ability to move
when and how we want should not be taken for granted
(Mink, 2003).
Despite tremendous progress in describing how neural

activity unfolds before and during movements, the mech-
anisms that allow neural networks to switch from move-
ment preparation to execution remain unknown (Kaufman
et al., 2014; Ames et al., 2019). Here, I will argue that the
degree of synchrony and relative timing of ensemble
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activity in motor networks will be a key puzzle piece in
understanding how network communication enables the
following functions that are essential for flexible behavior:

Selective movement initiation
Sensory inputs cause constant streams of spiking activ-

ity enabling us to perceive our surroundings, yet sensory-
evoked spikes do not cause movements when we intend
to sit still. One essential task of an adaptive motor control
system thus is to prevent unselective responses to sen-
sory inputs, and instead control movements in response
to higher level cognitive commands.

Regulation of movement vigor
What mechanisms regulate how fast we move?

Considering that unnecessarily vigorous movements
would deplete energy stores quickly, an optimally behav-
ing organism needs to regulate movement vigor continu-
ally depending on the conditions that yield rewards.

Motor inhibition
Motor inhibition can take on various forms, including re-

laxing antagonist muscles during movement execution or
inhibiting actions in response to new sensory information.
Rapid interruption or adjustments of ongoing actions are
essential, for example, when hunting prey or escaping
predators. Finally, easing into stable muscle contractions
and maintaining them also requires a process that con-
strains or inhibits network dynamics from evolving be-
yond a target range of dynamics.

The basal ganglia (BG)’s involvement in movement
control
The BG are a set of subcortical structures that play

a key role in movement invigoration as evidenced by
clinical, lesion and stimulation studies (Turner and
Desmurget, 2010; Yttri and Dudman, 2016; Park et al.,
2020). Discussions about their potential involvement in
gating (Klaus et al., 2019) or even selecting actions
(Suryanarayana et al., 2019) are ongoing, but particularly
the latter is strongly contested (Turner and Desmurget,
2010; Park et al., 2020).
The subthalamic nucleus (STN) and the striatum are the

two main input structures of the BG and are innervated to
varying degrees by widespread cortical and subcortical
areas, resulting in prefrontal, limbic, and sensorimotor in-
puts that seem to enable interactions between contextual
information and motor control operations (Nambu, 2011;
Shipp, 2017).
At rest, intact BG output provides tonic uncorrelated in-

hibition of the thalamus and brainstem structures (Inase et
al., 1996; Wilson, 2013; Higgs and Wilson, 2016; Park et
al., 2020). Tonic BG output thus is thought to have a sup-
pressive effect on motor output. Such a general motor-
suppressive function also seems to play a role in BG-as-
sisted rapid action cancelation (Aron et al., 2016; Chen et
al., 2020). Additionally, BG output also appears to be in-
volved in promoting explorative actions if reward attain-
ment is low (Sheth et al., 2011; Humphries et al., 2012),
for example, if an animal is hungry and previous actions
have not yielded food, BG output may help generate new

movement patterns or invigorate old patterns until obtain-
ing a reward. Depending on the motivational state and
context, the BG thus seem to control whether movements
are held back and how vigorously a movement should be
performed.
Classically, the term “action channels” has been widely

used when describing hypotheses about BG function, po-
tentially evoking the picture of two actions engaging two
physically separate sets of cells. But considering that the
same cells can be recruited to perform different actions,
such as bringing food to the mouth, displacing a lever or
holding a tonic position (Iansek and Porter, 1980; Mink
and Thach, 1991a), all involving elbow flexion, this notion
may be misleading. Sensorimotor loops in the cortico-
BG-thalamo-cortical (CBGTC) network are somatotopi-
cally organized (Nambu, 2011; Shipp, 2017), but some
cells even respond to both contralateral and ipsilateral
movements (Iansek and Porter, 1980), possibly improving
bilateral coordination, highlighting that the segregation is
blurred. The sheer unlimited combinations of muscle acti-
vations to generate new actions can only be controlled by
simultaneously activating groups from a finite pool of neu-
rons and adjusting their activation strength. The alterna-
tive to having segregated action channels thus are
temporary ensembles of spatially dispersed neurons that
emerge intermittently to control movements as a result of
flexible changes in functional connectivity (Klaus et al.,
2019; Carrillo-Reid and Yuste, 2020). In the following, I
will thus refer to neurons that are activated during distinct
actions as different ensembles.
The classical box-and-arrow model of the BG posited

that a pathway from the striatum!external globus pal-
lidus (GPe)!STN!internal globus pallidus (GPi), also
called indirect pathway, should intensify inhibition of the
thalamus (Mink, 1996). This is because cortical activation
of striatal medium spiny neurons (MSNs) projecting to the
GPe and activation of STN neurons projecting to the GPi
should lead to increased GPi activity (Fig. 1). Conversely,
activation of the direct pathway from the striatum to the
GPi is thought to oppose the indirect pathway and result
in movement facilitation. However, experimental evidence
is inconsistent with a strictly movement-suppressive role
of the indirect pathway (Klaus et al., 2019) and has led to
speculations that the indirect pathway may also be able
to take on a movement-facilitatory role (Calabresi et al.,
2014; Mosher et al., 2021). Yet the detailed mechanisms
on how this is possible are still unclear.
The STN is a central point of convergence for cortical

and subcortical activity (Nambu et al., 1996; Haynes and
Haber, 2013; Wilson, 2013) and seems to be involved in
both movement invigoration and inhibition (Anzak et al.,
2012; Tan et al., 2013; Rae et al., 2015; Wessel et al.,
2016; Fischer et al., 2017; Schmidt and Berke, 2017;
Lofredi et al., 2021). A recent review highlighted that “a
confusing but consistent finding is that most transient [STN]
responses can result in both increases and decreases in fir-
ing rates [...] for both stop and movement responses”
(Bonnevie and Zaghloul, 2019). During movement, the ma-
jority of movement-responsive STN cells increase firing
(Georgopoulos et al., 1983; Pasquereau and Turner, 2017;
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Pötter-Nerger et al., 2017; Mosher et al., 2021), which
quickly subsides when the action is cancelled (Pasquereau
and Turner, 2017; Mosher et al., 2021). If STN activity would
purely serve to inhibit competing actions (as posited by the
classical BG model), it seems counterintuitive that activity of
a substantial number of STN cells subsides during action
stopping, which is accompanied by broad motor suppres-
sion (Wessel et al., 2019).
If the consequences of firing rate changes alone are dif-

ficult to understand, what additional features of neural ac-
tivity could we study? Recently, Park et al. (2020)
highlighted in a review on BG function that “it is unclear
whether rate models that consider average modulation of
output activity [...] are sufficient to describe the activity
underlying movement execution, and [...] BG output may
play an even more critical role in modulating precise tim-
ing of activity.” In this article, I will thus focus on the as-
pect of the precise timing of bouts of activity propagating
through the CBGTC network and accompanying distinct
motor control operations.

Movement-related synchronization in the CBGTC
network
Neurons in the healthy primate BG fire in a temporally

relatively uncorrelated fashion (Wichmann et al., 1994;
Nini et al., 1995; Bar-Gad et al., 2003) with resting firing
rates of ;50–80Hz in the GPe and GPi and 15–25Hz in
the STN (Boraud et al., 2002; Wilson, 2013). At movement

onset, studies in humans have shown a rapid increase in
g-band synchrony between 60–90Hz in the contralateral
motor cortex (Cheyne and Ferrari, 2013), the STN, the
GPi, and the thalamus (Kempf et al., 2009; Anzak et al.,
2012; Brücke et al., 2012; Litvak et al., 2012; Singh and
Bötzel, 2013; Tan et al., 2013; Lofredi et al., 2018). The
spatial site of synchronization is distinct for upper and
lower limb movements in line with the known somatotopy
in motor cortex (Cheyne et al., 2008) and even in the STN
(Tinkhauser et al., 2019).
Combined STN LFP and cortical MEG/EEG recordings

further suggest that g coupling between the STN and
cortex is driven by the STN (Litvak et al., 2012; Sharott
et al., 2018), indicating that the BG may play a key role
in synchronizing neural activity. Simultaneous STN and
GPi recordings furthermore showed increased g phase
coupling in Parkinson’s patients in response to dopami-
nergic medication (Brown et al., 2001; Cassidy et al.,
2002), suggesting a potential movement-facilitatory
role considering that medication greatly improves their
ability to move. In dystonia patients, g coupling was
also observed between the GPi and the thalamus
(Kempf et al., 2009).
Another striking characteristic of movement-related g

oscillations is that synchronization is stronger when
movements are performed more vigorously (i.e., faster,
with more force, or bigger; Anzak et al., 2012; Brücke et
al., 2012; Singh and Bötzel, 2013; Tan et al., 2013; Lofredi
et al., 2018; Fig. 2). Additionally, patients suffering from in-
voluntary movements, such as dystonia and medication-
induced dyskinesia also exhibit pronounced cortical g
synchrony and coupling between the STN and motor cor-
tex, raising speculations that g oscillations may be a
causal factor in the generation of dyskinesia (Swann et al.,
2016; Miocinovic et al., 2018). This link was recently also
confirmed in a rodent model of Parkinson’s disease
(Güttler et al., 2021).
Further support for the idea that g synchronization is

closely linked to active movement generation is the obser-
vation that movement preparation and passive limb dis-
placements, which both do not involve active muscle
contractions, are accompanied by firing rate changes
(Crutcher and DeLong, 1984; DeLong et al., 1985; Jaeger
et al., 1993; Wichmann et al., 1994), but no pronounced g
synchronization (Cassidy et al., 2002; Liu et al., 2008;
Muthukumaraswamy, 2010; Brücke et al., 2012). Considering
that g synchronization specifically peaks at the onset of
movements but subsides for the remaining duration of longer
movements (Muthukumaraswamy, 2011; Lofredi et al., 2018),
it could possibly pose a mechanism that pushes neural dy-
namics from a preparatory trajectory onto a movement-gen-
erating trajectory. What exactly this might entail will be
discussed in detail below.
Finally, although most of the studies on human BG ac-

tivity have been performed in patients with Parkinson’s
disease, movement-related g oscillations in the CBGTC
network have also been shown in healthy humans
(Cheyne et al., 2008; Muthukumaraswamy, 2010), dysto-
nia patients (Brücke et al., 2008, 2012; Tsang et al., 2012;
Singh and Bötzel, 2013), essential tremor patients

Figure 1. BG architecture. The STN is the only excitatory nu-
cleus within the BG. STN activity excites the GPi and substantia
nigra pars reticulata (SNr), the two BG output structures, via di-
rect projections, but also has an indirect inhibitory impact on
the GPi via the GPe (Smith et al., 1994; Shink and Smith, 1995;
Nambu et al., 2000). The projections between the STN and the
GPe, as well as the GPe and the striatum form two recurrent
loops potentially promoting oscillations. Excitatory projections
are shown in red, inhibitory projections in blue.
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(Brücke et al., 2013), and healthy rats (Brown et al., 2002;
Masimore et al., 2005; von Nicolai et al., 2014; Beli�c et al.,
2016), suggesting that they are a universal phenomenon
(Jenkinson et al., 2013; see also Box 1 for more details on
the nature of movement-related g activity).

Altogether, these observations suggest that rate-based
models alone likely are insufficient to understand how
CBGTC network activity contributes to movement control.
Synchronization of neural activity locally within sites and
coupling of synchronous activity between sites, which is

Figure 2. Stronger g synchronization coincides with increased movement vigor. A, A larger proportion of cells engages in move-
ment-related STN g synchronization when movements are larger. The task required Parkinson’s patients to perform cued forearm
pronation movements. The peak frequency of the movement-related g increase is similar for small, medium and large movements
in the STN (B) and in the GPi (D). A 1 B are adapted from Lofredi et al. (2018), and D is adapted from Brücke et al. (2012). In both
studies the peak of g synchronization seems to follow movement onset. Although not visible here, more subtle changes in synchro-
nization may already occur earlier, similar to the increase in STN-GPi g coherence as shown in C. C, An early increase in g coher-
ence (highlighted by the rectangle) was visible between simultaneously recorded STN and GPi LFP activity already after the warning
signal (W), which preceded the go signal (G) and movement onset (M) by 2.5 s. This early increase was only apparent on dopa-
minergic medication in one patient. The sample size was small as simultaneous STN and GPi LFP recordings in humans are
very rare. Note that the y-axis is vertically flipped compared with B 1 D. C is adapted from Cassidy et al. (2002) by permission
of Oxford University Press.
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commonly assessed with phase coupling metrics, will
thus have a central role in this article (Fig. 3). Although
here I will focus on the CBGTC network, it is important to
note that the BG also directly project to brainstem areas
(Mink, 1996; Park et al., 2020), which constitutes another
route via which millisecond differences in spike timing
may have a substantial effect on muscle control (Sober et
al., 2018).

Which Network Interactions May
Coordinate Movement-Related Neural
Dynamics?
Changes in firing rates, synchrony and coupling often

co-occur, but how do they affect each other? Single- or
multi-unit recordings often focus on rate changes, where-
as LFP activity recorded from macroelectrodes in patients
undergoing deep brain stimulation (DBS) surgery measure
fluctuations of population synchrony in the wider vicinity
but cannot capture individual spikes. Simultaneous re-
cordings of both LFP and spike activity in multiple sites
of the CBGTC network are difficult to obtain in human
participants but will be essential to allow investigations
of interactions between spike timing, changes in popu-
lation synchrony and spike rates. In the following, I will
discuss four potential mechanisms of network interac-
tions that may be key in facilitating or suppressing
movements by manipulating both the timing and rate of
spikes.
First, gating of movements may be mediated by a

shift in spike timing of cortical cells such that their activ-
ity converging in BG sites depolarizes recipient cells
more strongly to trigger the firing cascade that causes
muscle activation. Second, movement invigoration may
depend on coincident activation and temporally clus-
tered inhibition of the relevant ensembles to maximize
their impact downstream, generating brief (;10 ms)

synchronized pauses in GPi firing that may promote
postinhibitory thalamic activity to boost thalamo-corti-
cal firing rates. Third, incidental co-activation of non-
target effector ensembles that are loosely connected
with the target-effector ensembles may be avoided by
staggering bouts of rhythmic activity, such that incom-
ing non-target-related surround activity would be de-
layed and thus suppressed by strong local inhibition
(potentially occurring at multiple levels of the network).
Fourth, rapid suppression of ongoing movements may
be enabled by rapid phase or frequency shifts within
one of the coupled oscillator networks that are present
throughout the CBGTC network to allow an efficient ac-
tivity reset.

Mechanism 1: Shifts in spike timing to boost activity
What could mediate the switch from uncorrelated spik-

ing activity at rest to g-synchronous activity during move-
ment execution? What could be the mechanism that
signals “go now” or “go faster,” particularly when no ex-
ternal cues are present?
A considerable fraction of cells that show movement-

related increases in firing rates in the CBGTC network
tend to fire at higher rates when the movement is per-
formed more vigorously. This has been observed in motor
cortex (Cheney and Fetz, 1980; Moran and Schwartz,
1999), the striatum (Kim et al., 2014), the STN
(Georgopoulos et al., 1983; Pötter-Nerger et al., 2017),
the GP (Georgopoulos et al., 1983; Turner and Anderson,
1997; note that both studies also detected negative corre-
lations between movement amplitude and firing rates in
some cells), the substantia nigra (Magarinos-Ascone et
al., 1992), and motor thalamus (Gaidica et al., 2018). If the
BG indeed control movement vigor, they seem to incorpo-
rate a mechanism that regulates local and downstream fir-
ing rates.

Figure 3. Synchronization within and between sites. A, Synchronization between individual neurons can happen intermittently in
bursts of variable lengths within one site. Large-scale local synchronization is reflected as oscillation in the local field potential
(LFP). B, I will refer to synchronization between sites as phase coupling. Measures of phase coupling can be obtained by recording
LFP activity (or EEG/MEG activity) in two anatomically separate sites and by testing whether the phase of the two oscillatory signals
is consistently aligned. In this example, the subcortical sites are driven by cortical activity, with the phases being systematically off-
set, reflecting conduction delays. Only the green cells representing selected ensembles are synchronized and coupled; the gray
cells are not recruited to join the oscillating activity. Directed coherence, Granger causality or dynamic causal modeling (DCM) can
be used to make inferences about the directionality of coupling, asking what region is the driver. However, it is important to keep in
mind that two recorded sites can be phase-coupled also as a result of being driven by a third site that may have not been recorded
(Buzsáki and Schomburg, 2015). Note that phase coupling can but does not need to be accompanied by amplitude coupling. In the
example shown in B, the amplitude in subcortical sites increased as the cortical amplitude increased. However, in sites that show
strong oscillatory activity at baseline, the EEG/MEG amplitude may decrease when a subset of cells becomes coupled with another
site.
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Figure 4. Spike timing-dependent mechanisms of interactions. A, If the spike timing of cortical neurons becomes synchronized, they maxi-
mize their impact on downstream cells where their outputs converge, resulting in stronger and faster depolarization (mechanism 1: shift in
spike timing). B, g Oscillations reflecting asymmetric periods of excitation and inhibition could result in prolonged thalamic disinhibition and
rebound activity, boosting thalamic firing rates from relatively low baseline firing rates to reach .100Hz (Goldberg et al., 2013). C,
Hypothetical model of surround inhibition through staggered GPi firing. Note that here surround inhibition does not consist of excitation via
the direct pathway and inhibition through the indirect pathway as proposed before (Mink, 1996), but instead emerges from temporal offsets
in rhythmic activity. During movement onset, a substantial number of STN cells synchronously fire at ;70Hz, establishing rhythmic activity
in the GPi, while some striatal direct-pathway MSNs also increase and inhibit the GPi more focally (dMSN channel 1). Spikes resulting in
movement facilitation are coloured in green. The MSN firing rates at movement onset seem to be substantially lower (;20Hz; Alexander,
1987) than those of STN cells, hence GPi target ensembles may not be fully silenced, but instead, their bouts of rhythmic activity, as found
in LFP recordings (Brown et al., 2001; Brücke et al., 2012; Tsang et al., 2012; Singh and Bötzel, 2013), may be shorter and delayed (GPi
Ch1) relative to the bouts of non-target ensembles that receive no dMSN inhibition (GPi Ch2). Inhibitory GPe activity, which can reach rates
of ;120Hz during movement execution, could in principle take on a similar role as the dMSN Ch1 cells in reducing and delaying GPi activ-
ity (not shown in the schematic). The delayed bouts of GPi Ch1 ensembles would allow thalamic spiking activity in the pauses between suc-
cessive GPi spikes to occur earlier in Thal Ch1 versus Thal Ch2. The BG-recipient thalamus projects to cortical L1, modulating pyramidal
neurons in deeper layers by targeting their dendritic tufts (Garcia-Munoz and Arbuthnott, 2015). The earlier activation of Ctx Ch1 cells may
engage a local network of interneurons closing the door to any Thal Ch2 inputs arriving with a delay.
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Box 1: The Fleeting Nature of c Oscillations

Gamma synchrony is variable across trials
A peak in g synchrony shown in the trial average reflects that the probability of reaching peak synchrony across
multiple trials was highest at this point. However, the timing of g bursts and the degree of synchronization can vary
across trials (Lofredi et al., 2018). How meaningful can such synchronization then be? The fact that g synchroniza-
tion has consistently been captured in LFP, EEG, and MEG recordings in all CBGTC structures (Kempf et al., 2009;
Muthukumaraswamy, 2010; Anzak et al., 2012; Brücke et al., 2012; Litvak et al., 2012; Singh and Bötzel, 2013; Tan
et al., 2013; Lofredi et al., 2018) suggests that the actual degree of synchronization between neurons is very large.
The process of ramping synchrony up (even if only reaching comparatively weak measurable levels of synchrony in
one trial), could thus indeed be causal in pushing the system out of the resting state, activating the neural dynamics
resulting in movements. Weak stages of synchronization in spatially distributed neurons that form ensembles may
be difficult to detect in LFP recordings from DBS macroelectrodes, but probes with a finer spatial resolution could
potentially capture synchronization phenomena that may otherwise be hidden.

Gamma synchrony quickly disappears after movement onset
Finely-tuned;60–80 Hz g oscillations only briefly appear at movement onset and are quickly replaced by slower

b oscillations (during relatively stable muscle contractions) or ;40 Hz oscillations (during more dynamic muscle
activation; also called piper rhythm) depending on the movement (Mima et al., 1999; Andrykiewicz et al., 2007;
Omlor et al., 2007; Chakarov et al., 2009; Lofredi et al., 2018). These oscillations tend to be coherent with muscle
activity (Brown et al., 1998), which can even be enhanced with training (Mendez-Balbuena et al., 2012; von
Carlowitz-Ghori et al., 2015). In contrast, finely-tuned 60–90 Hz g oscillations are only coherent within the CBGTC
network, but not with EMG activity (Cheyne, 2013; Jenkinson et al., 2013), suggesting that brief movement-related
g synchronization reflects a central process that drives movement generation or invigoration (Lofredi et al., 2018)
independent of proprioceptive feedback.

Finely-tuned g captured by different recording methods
Whether movement-related g synchronization clearly stands out in the trial average as a peak with a finely-

tuned frequency depends on the recording modality. EEG and MEG sensors measure relatively large spatial
sums of cortical population activity, whereas LFPs recorded with DBS electrodes measure local activity at a
much finer spatial scale. For recordings from patients with DBS electrodes, the recording contacts need to
be close to the g source considering that movement-related g synchronization is spatially specific to the
dorsolateral STN (Trottenberg et al., 2006; Lofredi et al., 2018). But in general, all three recording methods have
been successfully used to capture finely-tuned g (Muthukumaraswamy, 2011; Brücke et al., 2012; Litvak et al.,
2012; Lofredi et al., 2018).
ECoG contacts over motor cortex instead seem to pick up wide broadband activity (50–300Hz, or higher) at

movement onset (Miller et al., 2007; Fischer et al., 2020), likely resulting from sharp local spiking activity, rendering
it more difficult to establish a finely tuned g peak within the broadband increase. Yet, recently, we showed that
even in the presence of superimposed broadband activity, the phase of 60–80 Hz g oscillations measured with
ECoG still carries meaningful information and can provide insights about the spatial localization of cortico-subcorti-
cal g coupling and its relationship to reaction times (Fischer et al., 2020). Hypothesis-driven investigations thus
may reveal links between ECoG g and single-unit activity that have been overlooked so far. Finally, even micro-
electrode recordings, conventionally capturing spikes, can be used to extract information about local population
synchrony after removing individual spikes (Moran and Bar-Gad, 2010; Boroujeni et al., 2020).

One simple mechanism could involve small shifts in the
timing of cortical (and/or thalamic) spikes converging on
BG sites. If cortical inputs would arrive in a synchronized,
or “bundled” fashion instead of being irregularly dis-
persed (Fig. 4A), they could cause joint activation of
thousands of cells, for example, in the STN via the hy-
perdirect pathway, which could kick off g oscillations.
This mechanism could thus act independently from any
apparent changes in cortical firing rates and may poten-
tially require only subtle changes in spike synchronization.
Recordings in monkeys have shown that synchrony be-
tween motor cortical spikes increased several hundred
milliseconds before cortical firing increased when a

movement was initiated (Grammont and Riehle, 2003).
The synchronization process was linked to movement
preparation as it appeared even when the animal only ex-
pected a cue to move without later executing the move-
ment. The fact that the cortical synchronization process
and the subsequent firing increase were temporally sepa-
rated suggests that any process that may translate syn-
chronization into increased firing involves additional steps
that take place elsewhere. Considering that the STN and
the striatum with its expansive cortical inputs are ex-
pected to be highly sensitive to changes in spike timing of
converging inputs, the BG thus may play an important
role in translating synchronization into increased firing
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rates. Further support for this idea comes from a recent
study, in which faster reaction times were preceded
by enhanced STN spike-to-cortical g phase coupling
(Fischer et al., 2020) as if coupling slowly built up during
movement preparation. During ipsilateral gripping, the
timing of STN spikes was clustered around the opposite
point of the cycle of cortical g oscillations, suggesting
that movement-related synchronization, which is spe-
cific to contralateral movements, depends on the pre-
cise timing of STN spikes relative to cortical activity
(Fischer et al., 2020). This finding is intriguing, but only
two sites of the CBGTC network, the STN and motor
cortex, were studied, which makes it impossible to infer
the full sequence of network interactions.
Spike integration within short temporal windows also

appears to be a key factor in regulating transmission effi-
cacy of GPe cells (Jaeger and Kita, 2011). The recurrent
STN-GPe connection (Fig. 1) may have an amplifying role,
translating stronger synchrony of inputs into stronger rate
changes by recruiting more cells (Fig. 2A), potentially
enabling a graded regulation of movement vigor
through graded synchronization (Anzak et al., 2012;
Singh and Bötzel, 2013; Tan et al., 2013; Lofredi et al.,
2018). Any such regulation seems to depend also on
the motivational state signaled by the striatum (Niv et
al., 2007; Liljeholm and O’Doherty, 2012; Crego et al.,
2020) and a sense of urgency, which also affects deci-
sion times (Carland et al., 2019). Dopamine levels seem
to play a key role in invigorating and potentially even
permitting movements (Klaus et al., 2019), and exert
complex effects not only on the striatum but on all BG
nuclei (Mallet et al., 2019). Studies in patients with
Parkinson’s have repeatedly shown that g synchroniza-
tion is weaker after dopamine withdrawal (Brown et al.,
2001; Cassidy et al., 2002; Williams et al., 2002; Alegre
et al., 2005; Lofredi et al., 2018), but currently it is un-
clear how subsecond fluctuations in dopaminergic ac-
tivity interact with the degree of neural synchronization
within the BG and between cortico-BG recording sites.
It is also unknown to which extent striatal activity may
contribute to the process of generating g synchroniza-
tion. Notably, strong external cues, such as loud
sounds, can compensate for dopamine depletion at
least to some extent and result in faster movements as
well as stronger STN g synchronization (Anzak et al.,
2012), indicating that sensory activity can boost sub-
cortical g activity. External cues can also help patients
with Parkinson’s to initiate and maintain walking move-
ments (Ginis et al., 2018). Related to this, a recent study
in rodents showed that auditory go cues triggered pre-
pared movements by activating midbrain reticular and
pedunculopontine nuclei, which drove the thalamus to
rapidly reorganize motor cortical preparatory activity
and kick off movement dynamics (Inagaki et al., 2020).
These midbrain structures thus may be key for execut-
ing externally cued movements. They are also recipro-
cally connected with the BG (Martinez-Gonzalez et al.,
2011).

As an alternative to the hypothesis that the BG receive
temporally structured inputs, the BG may simply receive
higher rates of uncorrelated cortical and thalamic inputs
that trigger g oscillations within internal BG loops purely
because of anatomic constraints. Interestingly, the peak
frequency of movement-related g oscillations tends to be
similar regardless of the movement vigor (Fig. 2B,D),
which suggests that the duration of the windows of brief
depolarization and hyperpolarization remains relatively
stable. If the rate of excitatory inputs to the BG was mark-
edly higher for large versus small movements, then the
peak frequency of the subcortical g oscillations could po-
tentially reflect this change, considering that, for example,
visual cortical g oscillations have a higher peak frequency
when the stimulus-induced excitatory drive is stronger
(Ray and Maunsell, 2010; Orekhova et al., 2020).
However, relatively stable g peak frequencies may poten-
tially also simply originate from intrinsic properties of STN
and GPe cells.
Even if movement-related g synchronization were to

emerge purely because of anatomic constraints, g-rhyth-
mic activity may still entail functional consequences that
will be discussed in the next sections. In comparison to
slower oscillations, the relatively fast fluctuations between
60–80Hz seem more suitable for boosting firing rates,
considering that longer periods of relative inhibition may
limit rates. To shed light on the limits of different oscilla-
tion speeds in shaping firing rates, biologically con-
strained computational models of the CBGTC network
could be used to study interactions between inputs of dif-
ferent frequencies and resulting changes in rates and
synchrony.
To sum up this section, I have proposed that changes in

spike patterns and correlations within cortical but also
between cortico-subcortical sites might be the first meas-
urable phenomenon preceding movement initiation, build-
ing up until a tipping point is reached to trigger a cascade
of firing rate changes that kicks off the movement.
Alternatively, if the role of the BG is limited to regulating
movement vigor without actually gating initiation, g syn-
chronization may still play a mechanistic role in shaping
actions as outlined below.

Mechanism 2: Brief synchronized pauses reflecting
temporally clustered inhibition
Each g cycle reflects membrane potential fluctuations

capturing successive periods of depolarization and hy-
perpolarization. Cortical g oscillations originating in E:I
circuits have been shown to entail brief periods of excita-
tion (;3–4 ms) followed by prolonged periods of inhibition
(;10 ms; Hasenstaub et al., 2005; Okun and Lampl, 2008;
Buzsáki and Wang, 2012; Fries, 2015). The asymmetry
arises from a fast succession of principal cells that rapidly
activate local inhibitory interneurons, which exert feed-
back inhibition that slowly subsides, allowing another
volley of principal cell activation (Buzsáki and Wang,
2012; Fries, 2015). Whether similar asymmetries exist in
the cycles of excitation and inhibition underlying BG g
oscillations is currently unknown. Characterizing such
asymmetries would be highly informative, considering
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that brief synchronized pauses of GPi activity could
help boost thalamic firing rates by repeatedly removing
GPi-mediated inhibition for the duration of ;10 ms (vi-
sualized in Fig. 4B). Assuming a firing rate of 70Hz,
highly rhythmic firing would result in interspike intervals
of 14ms.
What evidence supports the idea that synchronized and

potentially prolonged pauses play a role in motor control?
Studies in songbirds have demonstrated “paradoxical
co-activation” of connected pallidal and thalamic neu-
rons during singing: simultaneous increases in firing
rates occurred in both neurons despite the inhibitory
nature of the pallidal projection. Pallidal spikes first en-
sued in powerful but very brief inhibition, silencing tha-
lamic firing for 5ms, but reliably triggered spiking
thereafter, resulting in precisely time-locked activity
(Goldberg et al., 2013).
In mammals, individual thalamic neurons receive in-

puts from multiple pallidal cells, including even projec-
tions from the contralateral GPi (Hazrati and Parent,
1991a). Hence, relieving thalamic neurons from BG out-
put-mediated inhibition may depend on coordinated
pausing of a large number of GPi cells. Currently, LFP
recordings in dystonia and Parkinson’s patients have
only provided indirect evidence for this idea. Such re-
cordings consistently showed an increase in move-
ment-related 60–90 Hz GPi synchronization, suggesting
that GPi activity becomes more g-rhythmic (Cassidy et
al., 2002; Brücke et al., 2008, 2012; Liu et al., 2008;
Kempf et al., 2009; Tsang et al., 2012; Singh and
Bötzel, 2013).
One caveat of these studies is that these patients

were selected to receive DBS surgery because of
motor symptoms resulting from pathologic changes in
BG activity. In healthy non-human primates, recent
spike-to-spike coupling analyses showed no clear evi-
dence of synchronization (Schwab et al., 2020;
Wongmassang et al., 2020), but this does not rule out
spike-to-g phase coupling, which was not directly in-
vestigated. Spike-to-g phase coupling assesses the
spike timing relative to population activity, and the ad-
vantage of the population average is that it filters
out the spike timing variability of individual cells.
Moreover, the authors of one of the studies also per-
formed computational simulations, which suggested
that GPi!thalamus communication strongly depends
on the strength of synchronization between GPi spikes
(Schwab et al., 2020).
Two additional points indicate that the movement-re-

lated subcortical g synchronization observed in pa-
tients is not merely pathologic. First, after dopamine
depletion, BG activity becomes more synchronized for
oscillations below 30Hz in both humans and non-
human primates, but oscillations in the g range tend to
be attenuated (Brown et al., 2001; Williams et al., 2002;
Deffains et al., 2016). Second, although we cannot ac-
cess subcortical LFPs in healthy humans, we can still
observe movement-related g synchronization in motor
cortex (Cheyne and Ferrari, 2013), which is reciprocally
connected with the BG-recipient thalamus (Bosch-
Bouju et al., 2013).

In spike recordings of the non-human primate GPi, the
number of cells that increases firing during movement
outnumbers those that decrease (Anderson and Horak,
1985; Nambu et al., 1990; Mink and Thach, 1991a; Turner
and Anderson, 1997, 2005; Schwab et al., 2020). The fact
that the majority of cells in the thalamus also increase
firing despite the inhibitory GPi!Thal connection is still
a conundrum and difficult to reconcile with classical
models of BG functions (Schwab et al., 2020). Notably,
mean interspike intervals seem to remain above 10ms
even when GPi firing increases to 120Hz at movement
onset (Schwab et al., 2020; see their Supporting Fig.
S4). If GPi firing is more synchronized, then the ensuing
pauses of activity also occur together, potentially allow-
ing more time for thalamic cells to fire than when GPi
activity is lower but asynchronous. Pauses following ac-
tivation could even trigger thalamic rebound activity
(Person and Perkel, 2007; Bosch-Bouju et al., 2013;
Kim et al., 2017). Hence, stronger GPi firing including
synchronous pauses could thus not only allow cortico-
thalamic excitation but potentially even actively boost
thalamic firing.
Paying special attention to synchronized pauses may

also be helpful considering that single neurons tend to
skip cycles even when participating in oscillating popu-
lation activity (Hasenstaub et al., 2005). The timing of
joint silence could thus serve as a reliable sign of tem-
porally clustered inhibition. Analysing spikes and
pauses will also be important when trying to understand
the recurrent interactions between the thalamus and
the GABAergic thalamic reticular nucleus (TRN), which
also receives direct inputs from the GPe (Hazrati and
Parent, 1991b; Mastro et al., 2014). The TRN shows
movement-related increases in activity (Saga et al.,
2017), but currently it is not known whether the activity
is g-rhythmic. It seems likely, considering that neurons
of both the TRN and the thalamus can switch between
tonic and bursting firing modes and the reciprocal con-
nections between the TRN and the thalamus appear to
promote reverberating oscillations (Halassa and
Acsády, 2016). Moreover, TRN bursts can also facilitate
postinhibitory spiking (Kim et al., 2017). The TRN is
thought to regulate thalamic firing probability more
broadly, while pauses of GPi activity were postulated to
trigger spatially relatively focal entrainment of thalamic
spikes (Halassa and Acsády, 2016). Relative shifts in
pauses of GPi and TRN activity thus may be another
factor in shaping movement control.

Mechanism 3: Staggered activity to prevent
co-activation of non-selected ensembles
One corollary of boosting firing rates to invigorate

movements may be an increased risk to coincidentally ac-
tivate connected ensembles that are to remain silent. If
cells within the target ensembles fire at high rates, then at
various stages of the network some level of depolarization
likely also spreads to cells that are anatomically con-
nected but target non-selected muscle groups. To pre-
vent them from firing, they may need to be inhibited more
strongly.
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The BG indeed seem to have the potential to regulate
muscle co-activations considering that muscle rigidity is a
hallmark symptom of Parkinson’s disease and MPTP le-
sions, which are both accompanied by altered BG firing
patterns and excessive synchronization between 10–
30Hz (Wichmann, 2019). Muscle co-contractions can
also occur after inhibiting BG output activity by injecting
muscimol into the GPi (Mink and Thach, 1991b; Inase et
al., 1996).
Theories about a role of the BG in surround inhibition

have existed for many years, postulating that the move-
ment-related increase in GPi activity caused by indirect
pathway activity fulfils the purpose of broadly inhibiting
competing motor programs, while direct striatal projec-
tions cause focal GPi inhibition and thus selective move-
ment facilitation (Mink and Thach, 1993; Mink, 1996). But
considering the presence of g oscillations in the GPi and
thalamus at movement onset (Brücke et al., 2008, 2012,
2013; Kempf et al., 2009) and the correlation between
changes in firing patterns and motor impairments
(Neumann and Kühn, 2017), surround inhibition may de-
pend crucially on the relative spike timing of cells engag-
ing in rhythmic firing.
Where multiple inputs, some excitatory, others inhib-

itory, converge onto a cell, the relative timing of these

inputs determines whether and when the cell fires. I
propose a model, in which the STN (together with the
GPe) sets a rhythm that strongly shapes GPi activity,
which is modulated via inhibitory direct-pathway stria-
tal MSNs (dMSNs; Hazrati and Parent, 1992). Instead
of shutting down the selected GPi ensembles fully to
disinhibit the thalamus, dMSN activation may simply
delay spiking within each g cycle, so that the resulting
GPi pauses can trigger earlier thalamic activation en-
tailing local inhibitory mechanisms at subsequent
stages.
Figure 4C shows how delaying activity at the level of the

GPi through dMSN inhibition may enable inhibition of
non-selected ensembles surrounding the target ensem-
bles at the motor cortical stage. In this hypothetical
model, selective activation of dMSN channel 1 cells (tar-
geting the intended muscle activation) shortens bouts of
firing of the focally targeted GPi ensembles (GPi channel
1) but not of the surrounding ones (GPi channel 2). The
GPi channel 1 ensembles that facilitate the selected ac-
tion are thus not completely silenced by striatal dMSN
channel 1 cells, but their spiking is only delayed and re-
duced. The shorter GPi channel 1 bouts would then result
in earlier thalamic disinhibition (Thal channel 1), which
triggers earlier cortical activation (Ctx channel 1) that in

Figure 5. Stop-related activity. A, STN power recorded during finger tapping (left) and successful stopping (right). The g in-
crease observed during the last regular tapping movement (= the final tap before the stop signal) peaked at around 90Hz
(shown by the arrow), while the g increase during successful stopping peaked between 60–70Hz. Peaks at 90 and 65Hz corre-
spond to g cycles lasting 11 and 15ms, respectively (including excitation and inhibition). A lower peak frequency could thus in-
dicate slightly prolonged STN spiking within each cycle. The black curve in the lower panels denotes the finger movement
(Left: The finger was first elevated, then it moved down to touch the table at around 300ms and moved up again. Right: After
the auditory stop signal, the downward movement stopped quickly, just after the g increase.) A is adapted from Fischer et al.
(2017). B, Proposed mechanism: increased drive to the STN after the stop signal may result in prolonged excitation and longer
g cycles (red dashed lines) compared with movement-related activity (black lines, also see Fig. 4B). The shifted rhythm is
passed on to the GPi. GPi inhibition, cortical excitation and TRN inhibition converge in the thalamus, where they may cancel
each other out.
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turn triggers local interneurons (Ctx IN). These interneur-
ons then cut off any thalamic inputs arriving during peri-
ods of strong local inhibition (Thal channel 2!Ctx
channel 2), effectively stopping non-selected ensembles
from firing with the activated ones. In this example, the
selected ensembles at the level of the thalamus simply
fired earlier in each g cycle than the non-selected ones.
Note that this schematic does not show that some STN
cells also exhibit a firing decrease, which could also
add to a delay or reduced firing in the GPi. Additionally,
selectively increased GPe firing may also have a similar
effect. The fact that not only the GPi but also the GPe
contains cells that can be negatively or positively corre-
lated with movement amplitude for both movement-re-
lated response types (showing either an increase or
decrease in firing; see Turner and Anderson, 1997; their
Fig. 14) suggests that the dMSN pathway is not the only
pathway via which selective thalamic disinhibition takes
place.
In motor cortex, surround inhibition indeed seems to

aid the selective execution of movements (Beck and
Hallett, 2011), and reports of a disrupted mechanism in
preclinical Parkinson’s disease suggest it depends on BG
signals (Shin et al., 2007). However, currently it is unclear
how exactly BG signals contribute, and to which extent
surround inhibition is coordinated locally within cortex
(Beck and Hallett, 2011). It is also unclear whether the
mechanisms that contribute to relaxing antagonist
muscles, which seem to break down when rigidity
emerges as symptom, overlap with the mechanisms that
prevent random unintended movements, which can be
observed when patients experience dyskinesia. Note that
during movement, a substantial proportion of motor corti-
cal principal cells also decrease activity (27% of cortico-
spinal neurons in one study; Ebbesen and Brecht, 2017;
Soteropoulos, 2018), which may be mediated by lateral
inhibition.
Finally, at the level of the thalamus, for example, the

TRN could take on a similar role to those of cortical in-
terneurons. Hence, timing-based mechanisms to sup-
press co-activation of non-selected ensembles as laid
out in Figure 4C, may be relevant at several network
levels.
The considerations outlined here do not cover all possi-

ble interactions but serve to highlight that investigating
the within-cycle organization and relative shifts of activ-
ity in distinct ensembles may be essential to advance
our understanding of selective movement facilitation
and suppression. Why would shifts in spike timing
and local inhibitory mechanisms be better suited for
selectively facilitating movements than non-rhythmic
changes in activity? The former may simply emerge
from the network architecture and may require less dra-
matic deviations from resting state dynamics than the
latter.
The idea that propagation of spiking activity can be

regulated via small shifts in oscillatory frequencies is also
supported by the following observation of corticocortical in-
formation transmission: selective allocation of visuospatial

attention has been linked to accelerated g oscillations in
ensembles activated by the attended stimulus (Bosman et
al., 2012). Conversely, information about competing stim-
uli is thought to be relatively suppressed as spikes encod-
ing unattended stimuli arrive within periods of local
inhibition (Bosman et al., 2012). Whether similar informa-
tion routing principles can also be found in the CBGTC
network has been largely unexplored, despite growing
evidence for the idea that g oscillations can render neural
communication effective, precise, and selective (Fries,
2015; Rohenkohl et al., 2018).

Mechanism 4: Phase or frequency shifts to cancel or
changemovements
Another remarkable feat of motor network activity is

the flexibility to switch population dynamics midway
through a movement on an unexpected sensory cue to
rapidly cancel or change an action (Ames et al., 2019).
To enable fast action stopping, the STN appears to be
rapidly activated by two cortical areas, the presupple-
mentary motor area (pre-SMA) and right inferior frontal
gyrus (IFG; Aron et al., 2014, 2016; Rae et al., 2015;
Chen et al., 2020; Lofredi et al., 2021). Here, I will de-
scribe how shifts in spike timing could play their part in
this process.
STN LFP and EEG recordings during rapid stopping

of an ongoing movement in response to an unpredict-
able sound showed that local STN g rapidly increased
while STN-to-motor cortical g coupling dropped
(Fischer et al., 2017). The local g increase seems coun-
terintuitive at first, as STN g also increases during
movement initiation, but the simultaneous drop in STN-
to-motor cortical coupling points toward a gating
mechanism that rapidly cancels propagation of g activ-
ity through the network.
When activity that promotes a movement or triggers

movement-promoting dynamics is g-rhythmic, then these
commands could potentially be flexibly and efficiently
cancelled by well-timed brief bursts of inhibition (Fig. 5B).
Specifically, small phase shifts within one part of a net-
work of coupled oscillators may already be sufficient for
excitatory and inhibitory activity to “collide” with each
other and cancel the former out.
At what level of the network might that occur? Figure

4C shows how g synchronization could structure activity
of selected and non-selected action channels during
movement initiation. Once the initiation process has
started, cortico-thalamic activity becomes g-rhythmic.
Thalamic neurons then receive both g-rhythmic excitatory
cortical and inhibitory BG inputs. Depending on the rela-
tive timing, activity in the cortico-thalamic and BG-tha-
lamic oscillators may have an amplifying effect on
movement speed. But if they are suddenly pushed out of
sync, the inhibitory volleys from the BG may cause sud-
den activity cancelation and movement cessation.
Rapid phase and frequency shifts of BG outputs could

be achieved either by strong cortical inputs to the STN
(Rae et al., 2015; Chen et al., 2020) or through g-rhythmic
cortical inputs that shift STN g accordingly. Frequency-
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shifting and/or phase-shifting oscillatory activity may be a
powerful mechanism to rapidly cancel or re-route activity
without spending vastly more spikes. The stop-related
STN g increase seemed to have a lower peak frequency
than the movement-related g increase observed before
the stop signal (Fig. 5A), providing some support for this
idea. The lower g frequency suggests a longer duty cycle,
possibly reflecting prolonged STN spiking within each g
cycle, which could promote prolonged GPi activation
within each cycle and more powerful thalamic inhibition.
Currently it is unclear whether movement-related and
stop-related STN g synchronization involves distinct sets
of cells with different connectivity profiles. Considering
that stop-related increases of STN firing activity seem lo-
cated more ventrally compared with movement-related
activity (Pasquereau and Turner, 2017; Chen et al., 2020),
these ventral cells may be the ones that trigger the g shift
by engaging the GPe (see Box 2 for details on stop-re-
lated activity in the GPe).
Note that STN g activity may potentially only appear dur-

ing stopping or switching of an ongoingmovement, consid-
ering that conventional stopping paradigms, which require
abortion of a planned button press, have rarely reported g
synchronization and mostly focused on slower b oscilla-
tions [13–30Hz; Aron et al., 2016; Wessel, 2020; and refer-
ences therein; exceptions are broadband g increases at the
cortical level (Swann et al., 2012; Fonken et al., 2016) or
STN g changes that were temporally strongly smoothed
(Ray et al., 2012)]. However, recent studies found that b os-
cillations appeared only after the stopping process and are
thus unlikely part of the causal chain of cortico-STN-medi-
ated stopping (Chen et al., 2020; Mosher et al., 2021).
Rather it seems as if pre-SMA and IFG work together to
evoke an STN response (Rae et al., 2015; Chen et al., 2020)
triggering the switch in the neural dynamics to cancel a
movement, which may then be followed by increased b
synchronization reflecting stabilization of network dynamics
and thus the motor state.

Understanding the role of slower oscillations
Bursts of CBGTC b oscillations have not only been hy-

pothesized to have a role in stopping but also in sensori-
motor integration, updating motor predictions, preserving
the current motor state and clearing out previous motor
plans (Schmidt et al., 2019). In the context of cortico-
cortical information processing, a (8–12Hz) and b os-
cillations, have also been associated with top-down
control of working memory, allocation of attention and
pattern categorization (Fries, 2015; Miller et al., 2018;
Wutz et al., 2018).
Here, I would like to propose that instead of linking the

phenomenon of b oscillations to labels describing distinct
behavioral functions, their functional relevance may be
better understood by investigating their role in shaping
concurrent and subsequent network dynamics.
In a continuous force control task, STN b synchroni-

zation was positively correlated with slowing of a force
adjustment as well as more accurate completion
(Fischer et al., 2019), suggesting that b synchronization
may be beneficial for ending a dynamic adjustment in a

controlled fashion. Also in motor cortex, sustained
isometric contractions tend to be accompanied by in-
creased b oscillations and cortico-muscular b coher-
ence (Brown, 2000; Omlor et al., 2007). Local b
synchronization and long-range b coupling thus may
engage distributed cells to shape activity such that the
neural dynamics remain within a certain range and do
not cross a threshold that would kick off movement
dynamics. This fits with the observation that b synchro-
nization in motor cortex and the STN emerges inde-
pendently of changes in firing rates (Rule et al., 2017;
Cagnan et al., 2019; Confais et al., 2020).
The idea that b synchronization may be relevant for

reining in evolving activity that would have led to changes
in motor output is also in line with b oscillations appearing
when a movement plan is interrupted. An extreme form of
stabilization can again be seen in Parkinson’s disease,
where excessive b synchrony as a result of dopamine de-
pletion is strongly linked to rigidity and bradykinesia,
pathologic overstabilization of motor activity (Little and
Brown, 2014; Neumann and Kühn, 2017; Wichmann,
2019).
Linking b synchronization merely to functional conse-

quences that are time-limited to the brief periods of syn-
chronization is difficult to reconcile with the observed
trial-to-trial variability of the precise timing of intermittent
bursts of b synchronization relative to movement initia-
tion (Feingold et al., 2015; Torrecillos et al., 2018). My key
prediction instead is that the effect of intermittent b syn-
chronization on motor network dynamics is longer lasting. If
this hypothesis is true, then future studies may confirm that
a minimum duration of b -free activity is needed in motor
cortices and/or subcortical structures to kick off movement
initiation. Only recently, thalamo-cortical recordings in
essential tremor patients showed that coupling be-
tween the phase of thalamic ,30Hz activity and the
amplitude of cortical high-frequency activity consis-
tently dropped before a hand movement was made, as
if it reflected movement gating by releasing the cortical
high-frequency activity from the thalamic ,30 Hz oscil-
lations (Opri et al., 2019). Understanding how the im-
pact of b bursts on prolonged network dynamics differs
depending on whether they appear in the BG, the thala-
mus or motor cortex, may help us pin down the condi-
tions that permit or even promote the onset of
movement-related neural dynamics.
Finally, the probability of b bursts is known to increase

again after movement completion, particularly if the
movement resulted in the expected outcome (Tan et al.,
2014; Torrecillos et al., 2015). It suggests that b oscilla-
tions may also play a role in maintaining current sensori-
motor predictions either by maintaining the current
network dynamics or by preventing updating of synaptic
weights.
In summary, to advance our understanding of the net-

work interactions leading to movement generation we
may need to study not only concomitant but also longer
lasting effects of b synchronization on network
dynamics.
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Box 2: Outstanding Questions

� Are movement-related c oscillations triggered by loops within the BG in response to an increased temporally
unstructured (asynchronous) cortical drive or are they caused by synchronized inputs?

� Do inputs to the BG have different temporal structures depending on whether their purpose is to (1) invig-
orate actions, (2) cancel an ongoing action, or (3) stabilize movement dynamics, for example, during sus-
tained contractions or when remaining still when an action is cancelled before it was initiated?

� Which types of cells engage in movement-related c synchrony?
Different cells throughout the BG can exhibit action-specific (specific to an effector and the movement direction)

or non-specific increases or decreases in firing rates or multi-phasic responses. It is currently unclear to which ex-
tent these subsets are coupled to LFP g rhythms at movement onset and if they are all locked to the same phase.
To understand interactions between different ensembles and different sites, it will be key to quantify the coupling
strength and the preferred phase relative to local synchronization captured by the LFP. It will also be important to
test to which extent cells that show no changes in firing rates contribute to g synchronization.

� Can we detect asymmetries in the duration of relative periods of excitation and inhibition in the BG?
Asymmetries may help us infer how activity propagates through the network.

� What cortical inputs are required to execute isometric contractions or limb displacement?
Are the same action-specific cells recruited during sustained contractions versus ballistic movements, but

coupled to b versus g oscillations depending on the task?

� What is the cascade of activity changes during rapid stopping?
Previous research has shown that rapid stopping entails significant cortical activity in the pre-SMA and IFG (Aron et

al., 2014, 2016; Chen et al., 2020; Rae et al., 2015), providing a good starting point for assessing the effects of cortical
inputs on context-dependent information routing. Currently, it is unclear whether the movement-related and stop-re-
lated STN g increase involve the same, overlapping or entirely different populations of STN cells and whether they are
triggered by increased asynchronous firing or by synchronized activity. In non-human primates, a population that rap-
idly increased firing during action cancelation was located within the ventral part of the STN (Pasquereau and Turner,
2017). A separate population quickly decreased firing in the midst of a movement-related increase. Does the decrease
result from GPe inhibition or from a sudden reduction in cortical drive?
The GPe contains multiple cell types, two of which have distinct communication routes. (1) Prototypic cells that

are more active at rest and project to all BG nuclei, including the STN, the striatum, the GPi (Abdi et al., 2015), and
the TRN (Mastro and Gittis, 2015). And (2) arkypallidal cells that fire more sparsely and project exclusively to
the striatum. In rodents, arkypallidal cells are strongly activated during stopping (Mallet et al., 2016) but also
increase during movement (Dodson et al., 2015). Prototypic cells instead are less strongly and rapidly acti-
vated during stopping and show both movement-related increases and decreases (Dodson et al., 2015). Non-
human primate recordings will be essential in revealing the functional roles of these cell types for rapid action
adjustments in the primate basal ganglia.
Finally, movement inhibition may not merely be mediated by decreasing motor cortex activity but may even involve
engaging parts of it, considering that motor cortex activation also seems to have a role in movement suppression
(Ebbesen and Brecht, 2017).

� What is the role of slow oscillations in proactively shaping network dynamics?
One possible mechanism to flexibly enable or disable a rapid response to a specific stimulus could be to pro-

actively modulate effective connectivity between the neural ensembles that will be activated by the stimulus
and the relevant action-related cortical and subcortical ensembles via temporal coupling or short-term synap-
tic plasticity. Some evidence for task-dependent coupling between cortical and STN activity in the b and u
range was previously shown in humans (Herz et al., 2017; Zavala et al., 2018), but reports are scarce, raising
the question whether the functional relevance of these effects is still underexplored. The thalamus also ap-
pears to play an important role in goal-directed behavior (Bolkan et al., 2017; Nakajima et al., 2019) and will
thus likely be relevant for understanding proactive changes in network dynamics.

� What tasks are suitable for studying the BG’s involvement in action control?
If a habitual response has been established through extensive training that has created a strong direct link be-

tween a sensory stimulus and a motor response, the BG seem to be less involved (Piron et al., 2016; Klaus et
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al., 2019). Overtrained movements thus may be accompanied by different neural interactions compared with
self-paced movements or actions requiring more sophisticated cognitive control. Another relevant observa-
tion is that the BG’s functional role in boosting movement vigor seemingly can be aided by sensory stimuli,
such as loud sounds (Anzak et al., 2012). Finally, life-threatening situations seem to be yet another example
triggering mechanisms compensating for BG dysfunction, resulting in “paradoxical kinesia,” where patients
suddenly regain mobility when their life is at risk (Bonanni et al., 2010).

� How do cortical inputs from associative, limbic and sensorimotor regions, interact to coordinate different
behaviors? And more generally, how are intrinsic motivations and external factors integrated for online
movement control? What are the mechanisms enabling BG involvement in online movement control versus
learning?

� Is movement-related c synchronization not only present in human but also in non-human primate CBGTC
networks?
It is currently unclear to which extent the findings in humans translate to non-human primate recordings.

Two recent studies performing spike-to-spike correlation analyses in non-human primates found no marked
increase in movement-related correlations between pallidal spikes (Wongmassang et al., 2020) or spikes re-
corded from the GPi and the thalamus (Schwab et al., 2020). Yet, a more direct test for the presence of brief
movement-related g synchronization in non-human primates would be a spike-to-LFP phase coupling analy-
sis, particularly during self-guided and vigorous movements.

� What tools can be used to probe the causality of rhythmic activity?
Caution is warranted when interpreting electrical or optogenetic stimulation studies that often

have network-wide knock-on effects (Wolff and Ölveczky, 2018). Applying stimulation without ensemble-
specificity may disrupt the cross-effector channel balance that likely is key for retaining the full range of
motor control functions. Broad stimulation automatically also causes synchronization, which may not be
representative of physiological activation. Alternative approaches could involve optogenetic activation of
sets of cells associated with distinct ensembles (Carrillo-Reid and Yuste, 2020) or neurofeedback training
to prompt volitional upregulation and downregulation of oscillatory activity in a more physiological way
(Khanna and Carmena, 2017; Chauvière and Singer, 2019).

Conclusion
Based on recent findings, I described a set of hypothe-

ses about the network interactions that may underlie flexi-
ble movement control in the human CBGTC network,
hopefully serving as a starting point for further studies and
further debate (see also Boxes 1, 2). I have proposed that
during movement initiation, small temporal shifts of corti-
cal activity trigger g synchronization in the BG, kicking off
the network dynamics that control movement initiation or
at least regulate the movement vigor. Particularly vigorous
movements seem to involve more widespread ;70 Hz
population synchrony of STN and GPe cells, causing a
larger population of GPi cells to fire and pause synchro-
nously. The idea that synchronized pauses in GPi firing
may boost thalamic firing suggests that increases in STN
firing could be movement-facilitatory as long as cells fire
and pause synchronously, which provides a new per-
spective on the role of the indirect pathway in movement
control.
Note that much of the evidence presented here is corre-

lational. However, the difference in STN spike-to-cortical
g phase coupling, which was related to faster reaction
times in Fischer et al. (2020), appeared already straight
after the GO cue, which preceded the movement on aver-
age by half a second. Similarly, Figure 2C suggests that
STN-GPi g synchronization can occur 1–2 seconds be-
fore the movement. As third point, the presence of finely
tuned g activity is not only limited to movement tasks, but
can also be observed when Parkinson’s patients receive

clinically effective STN DBS at rest (Muthuraman et al.,
2020; Wiest et al., 2021), reflecting a condition that allows
them to move more easily.
Moving on to mechanism 4, I further described that dur-

ing stopping of an ongoing movement, a strong cortical
drive to the STN (which may also be g-rhythmic) may shift
subcortical g-rhythmic firing. I have proposed that shifted
activity could propagate to the GPi, resulting in prolonged
bouts of inhibition arriving onto thalamic cells and de-
synchronization of thalamo-cortical g coupling.
But what regulates the relative timing of activity for se-

lective movement invigoration or stopping? Does the key
lie in the preceding dynamics of ongoing activity or could
a shift in spike timing in itself be the master command that
suddenly emerges without traceable links to prior activ-
ity? What is the role of short-term synaptic plasticity?
Theories about the role of prefrontal cortex in controlling
working memory are rapidly evolving (Miller et al., 2018;
Lundqvist et al., 2020; Sherfey et al., 2020) and will likely
be key in closing the explanatory gap between movement
generation and internal states.
Finally, studying b oscillations may help us understand

the mechanisms underlying volitional top-down control of
movement state stabilization. The intermittent nature of
bursts suggests that b synchronization affects network
dynamics not only for the limited duration of a burst, but
potentially acts to restrict or guide how network dynamics
evolve for longer periods, possibly outlasting peak syn-
chronization for several hundreds of milliseconds.
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From these hypotheses it follows that understanding
cortico-BG interactions will depend not only on careful
monitoring and manipulation of behaviors, but also on a
detailed consideration of intrasite and intersite synchroni-
zation and resulting interactions with changes in firing
rates. Moving forwards quickly will require a cross-spe-
cies approach combining intraoperative recordings in pa-
tients and non-human primate studies. Already existing
data could help accelerate the progress if synchronization
phenomena were analyzed in more detail. Investigating
directionality metrics and coupling of individual cells to
LFP rhythms will hopefully help us understand what in-
puts drive distinct ensembles, and what input-dependent
operations are performed by different BG nuclei on dis-
tinct ensembles, some of which may be movement-facili-
tatory or -suppressive. More detailed investigations into
the synchronous nature of activity thus can provide highly
valuable insights into the computations performed within
the CBGTC network regardless of what causes the fluctu-
ations in synchronous oscillations. Because of the rela-
tively low internal complexity of the STN and the GPi, one
promising approach could be to record jointly from the
STN and connected sites. Computational models could
then be fitted to the relationships emerging between neu-
ronal firing, oscillations, and behavior.
Neurophysiological recording techniques have ad-

vanced such that large-scale and multi-site recordings
could finally allow us to link interactions between spike
patterns, synchrony and rates to understand the building
blocks underlying flexible motor control, the basis of com-
plex human behavior. Taking this approach may even
allow us to improve the specificity and flexibility of neuro-
stimulation techniques, although some neural control
mechanisms may remain intractable once they go awry.
The much wider implication of this approach is that fully
understanding simple action control tasks may also open
doors to understanding more complex cognitive func-
tions. If a cognitive operation is probed by an immediate
behavioral readout, we can work our way back from there.
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