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Abstract

Background: Subcortical ischemic vascular cognitive impairment (SIVCI) is the most common form of vascular
cognitive impairment. Importantly, SIVCI is considered the most treatable form of cognitive impairment in older
adults, due to its modifiable risk factors such as hypertension, diabetes mellitus, and hypercholesterolemia. Exercise
training is a promising intervention to delay the progression of SIVCI, as it actively targets these cardiometabolic risk
factors. Despite the demonstrated benefits of resistance training on cognitive function and emerging evidence
suggesting resistance training may reduce the progression of white matter hyperintensities (WMHs), research on
SIVCI has predominantly focused on the use of aerobic exercise. Thus, the primary aim of this proof-of-concept
randomized controlled trial is to investigate the efficacy of a 12-month, twice-weekly progressive resistance training
program on cognitive function and WMH progression in adults with SIVCI. We will also assess the efficiency of the
intervention.

Methods: Eighty-eight community-dwelling adults, aged > 55 years, with SIVCI from metropolitan Vancouver will be
recruited to participate in this study. SIVCI will be determined by the presence of cognitive impairment (Montreal
Cognitive Assessment < 26) and cerebral small vessel disease using computed tomography or magnetic resonance
imaging. Participants will be randomly allocated to a twice-weekly exercise program of (1) progressive resistance
training or (2) balance and tone training (i.e., active control). The primary outcomes are cognitive function
measured by the Alzheimer’s Disease Assessment Scale-Cognitive-Plus (ADAS-Cog-13 with additional cognitive
tests) and WMH progression.
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Discussion: The burden of SIVCI is immense, and to our knowledge, this will be the first study to quantify the
effect of progressive resistance training on cognitive function and WMH progression among adults with SIVCI.
Slowing the rate of cognitive decline and WMH progression could preserve functional independence and quality of
life. This could lead to reduced health care costs and avoidance of early institutional care.

Trial registration: ClinicalTrials.gov NCT02669394. Registered on February 1, 2016

Keywords: Randomized controlled trial, Vascular cognitive impairment, Resistance training, Cognitive Function,
Mobility, Exercise, White matter hyperintensities

Introduction
Worldwide, one new case of dementia is detected every
4 s [1]. Cerebrovascular disease, such as stroke, is the
second most common cause of dementia after Alzhei-
mer’s disease (AD) [2–5], accounting for up to 38% of
all dementia cases [6]. Much of stroke research to date
has focused on overt ischemic strokes. However, covert
ischemic strokes may outnumber overt strokes by five to
one, and approximately 25% of people over 80 years of
age have one or more silent brain infarcts [7]. Conse-
quently, the prevention of covert ischemic stroke is now
a recognized research priority [8].
Vascular cognitive impairment (VCI) encompasses all

levels of cognitive decline, from mild cognitive deficits
to dementia, due to both overt and covert cerebrovascu-
lar disease [9]. The most common cause of VCI is
cerebral small vessel disease, in which covert ischemic
damage to the brain leads to the development of
subcortical ischemic vascular cognitive impairment
(SIVCI) [10–12]. In SIVCI, cerebrovascular damage pre-
dominantly manifests as white matter hyperintensities
(WMHs) of presumed vascular origin and lacunes.
Symptoms include prominent impairment in processing
speed and executive functions, but can also include im-
paired memory, language, and visuospatial functions [13,
14]. Functional impairments such as gait disturbance,
unsteadiness, and frequent, unprovoked falls are also
present [15]. Overall, the clinical consequences of covert
ischemic strokes are substantial.
Fortunately, SIVCI may be the most treatable form

of cognitive dysfunction in older adults because its
key risk factors, which include hypertension, diabetes
mellitus, and hypercholesterolemia, are modifiable.
Exercise is a promising approach to delay the pro-
gression of SIVCI [16–20], as it can effectively modify
key cardiometabolic risk factors [16–20], improve vas-
cular function, and alter response during ischemia
[21, 22]. Middleton and colleagues [23] demonstrated
in the Canadian Study of Health and Aging cohort
that physical activity reduced the risk of SIVCI. A
cross-sectional study of 1238 people with no history
of overt stroke found that those in the highest quar-
tile of physical activity were almost 50% less likely to

present evidence of covert stroke compared to those
who reported no regular weekly exercise [24].
However, the best type of exercise intervention for per-

sons with SIVCI is unknown. Broadly, the two most com-
mon forms of exercise training are (1) aerobic training
(e.g., running) and (2) resistance training (e.g., lifting
weights). Current research efforts in SIVCI and exercise
focus primarily on aerobic training [25, 26] despite
evidence that suggests resistance training has important
benefits for cardiometabolic health [27–30], cognitive
function [31–34], and notably, WMH progression [35,
36]. Resistance training may also benefit individuals with
SIVCI by directly moderating muscle loss (i.e., sarcopenia)
whereas aerobic exercise does not. Sarcopenia is a risk fac-
tor for impaired mobility and falls [37], which are associ-
ated with WMHs [15, 38, 39]. Preliminary evidence
suggests that resistance training may be beneficial for
people with SIVCI. A 12-month randomized controlled
trial (RCT) with community-dwelling older women
showed progressive resistance training (PRT) significantly
improved executive functions [32] and slowed WMH pro-
gression [35], compared with an active control group [35].
The mechanisms by which resistance training may

promote cognitive function are not well established. One
potential mechanism is through the upregulation of
neurotrophic factors such as brain-derived neurotrophic
factor (BDNF), vascular endothelial-derived growth fac-
tor (VEGF), and insulin-like growth factor-1 (IGF-1) [40,
41]. These neurotrophic factors are thought to mediate
the beneficial effects of exercise on brain plasticity and
cognitive function [40, 41]. Notably, resistance training
is especially effective for increasing levels of serum IGF-
1 in older adults [33]. IGF-1 in the periphery can pass
through the blood–brain barrier where it is involved in
vascular maintenance and remodeling [42]—reductions
in IGF-1 are associated with decreased cerebral vascular
density and blood flow [43]. IGF-1 is also associated with
increased myelination [42], which may reduce the pro-
gression of white matter damage. Overall, evidence sug-
gests that resistance training may be particularly
protective for people with SIVCI.
Therefore, we propose a proof-of-concept, single-blind

RCT to primarily examine the efficacy of a 12-month,
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twice-weekly PRT program to improve cognitive func-
tion and reduce WMH progression in community-
dwelling adults with SIVCI. The secondary objective is
to assess the effect of PRT on regional brain volumes,
white matter integrity, myelin content, functional con-
nectivity, specific cognitive processes, physical perform-
ance, cardiometabolic risk factors, sleep, physical
activity, mood, quality of life, blood biomarkers, and cor-
tisol from saliva. The tertiary objective is to explore the
underlying mechanisms by which PRT may promote
cognitive function.

Methods
Design
We will conduct a 12-month, parallel group, proof-of-
concept RCT of 88 community-dwelling adults with
SIVCI, aged 55 years and older. Participants will be ran-
domly assigned to receive 12 months of (1) twice-weekly
PRT or (2) twice-weekly balance and tone training
(BAT; active control). There will be three measurement
points occurring at baseline, 6 months, and 12months
conducted by blinded assessors (Fig. 1). The experienced
research team will implement standardized protocols
and train study personnel (Fig. 2).

Recruitment
We will recruit adults with SIVCI through general news-
paper advertisements and four clinics: (1) University of
British Columbia (UBC) Hospital Clinic for Alzheimer
Disease and Related Disorders, (2) Vancouver General
Hospital (VGH) Stroke Clinic, (3) VGH Falls Prevention
Clinic, and (4) VGH Geriatric Internal Medicine Teach-
ing Clinic. Individuals that appear eligible will be mailed
an information package regarding the study, including a
consent form. Those that are interested will be invited
to a screening and consent session. This session will in-
volve the administration of (1) the Physical Activity
Readiness Questionnaire [44] to assess physical readiness
for exercise and (2) the Mini-Mental State Examination
(MMSE) [45] and Montreal Cognitive Assessment
(MoCA) [46] to assess cognitive function. When a par-
ticipant reports a relevant health concern or condition
(e.g., arterial fibrillation), they will be provided a form to
be completed by their family physician to confirm their
current health status and suitability to start an exercise
program (Fig. 1).

Time frame
Participant enrollment began on May 17, 2016, and the
final assessment is anticipated to be completed by March
2022. The COVID-19 pandemic impeded recruitment
for much of 2020. As of October 24, 2020, 69 individuals
(78% of the target sample) have been recruited and
randomized.

Eligibility
Inclusion criteria
We will include community-dwelling adults who fulfill
the criteria for SIVCI, defined as the presence of cogni-
tive impairment [46] combined with cerebral small ves-
sel disease [47]. Cognitive impairment will be
operationalized as a MoCA score < 26 [46], and cerebral
small vessel disease will be defined as the presence of
WMHs and/or lacunes on computed tomography (CT)
or magnetic resonance imaging (MRI) [47]. Additional
inclusion criteria require the participant to: (1) be 55
years or older; (2) have an MMSE score > 20 [45]; (3) be
community-dwelling (i.e., living in their own homes) in
metro Vancouver; (4) be able to comply with scheduled
visits, treatment plan, and other trial procedures; (5)
read, write, and speak English with acceptable visual and
auditory acuity; (6) be on a fixed dose of cognitive medi-
cations that is not expected to change during the 12-
month study period, or, if they are not on any of these
medications, they are not expected to start them during
the 12-month study period; (7) provide informed con-
sent; (8) be able to walk independently; and (9) must be
in sufficient health to participate in the PRT program.

Exclusion criteria
We will exclude individuals who: (1) have an absence of
cerebral small vessel disease on a brain CT or MRI; (2)
are diagnosed with dementia of any type or another type
of neurodegenerative or neurological condition (e.g.,
Parkinson’s disease); (3) are diagnosed with a genetic
cause of SIVCI; (4) are at high risk for cardiac complica-
tions during exercise and/or unable to self-regulate or to
understand the recommended activity level; (5) partici-
pated in regular resistance training in the last 6 months;
(6) have clinically important peripheral neuropathy or
severe musculoskeletal or joint disease that impairs mo-
bility; (7) recently started taking medications (< 3 months
prior to study) that may negatively affect cognitive
function, such as anticholinergics; (8) are planning to
participate, or already enrolled in, a clinical drug trial or
exercise trial concurrent to this study; or (9) are unable
to meet MRI scanning requirements, as specified by the
UBC 3T MRI Research Center.

Sample size calculation
Power analyses were conducted in G*Power 3.1 [48].
We have sized this trial to allow the evaluation of
PRT on the Alzheimer's Disease Assessment Scale-
Cognitive-Plus (ADAS-Cog-Plus) [49] and WMH pro-
gression at trial completion; WMH progression is
considered a valid surrogate marker in therapeutic tri-
als of SIVCI [50]. The ADAS-Cog-Plus is the original
ADAS-Cog-13 with additional measures of executive
functions and verbal fluency, and it is more sensitive
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to subtle cognitive changes than the original ADAS-
Cog-13 or ADAS-Cog-11 [49]. Our prior 6-month
RCT of aerobic exercise on cognitive function, as
measured by the ADAS-Cog-11, in adults with SIVCI
observed an effect size of 0.89 (Cohen’s d) in the
complete-case analysis [51]. We also demonstrated
twice-weekly PRT slowed WMH progression in older
women; the effect size observed was 0.60 (Cohen’s d).
Based on this effect size of 0.60, assuming an alpha
of 0.05 (two-tailed) and a beta of 0.20, 35 participants
per group will provide a power of 0.80 [48]. We are
aiming to recruit a total of 88 participants with SIVCI

(i.e., 44 participants per group), which will accommo-
date a conservative 20% drop-out rate.

Data entry
No personal identifiers will be acquired during data col-
lection. All paper-based data will be stored in locked
cabinets and all alphanumeric data will be entered by a
trained study personnel who will conduct range checks
for data values. All alphanumeric data will be stored on
a secured server hosted by the University of British
Columbia. All data will be deidentified.

Fig. 1 Overview of study design from recruitment to study completion
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Measurements
Descriptors
Body mass will be measured in kilograms using a cali-
brated digital scale and height in centimeters using a
wall-mounted stadiometer. General health, medication
use, and socioeconomic status will be ascertained using
questionnaires. The Functional Comorbidity Index [52]
will be used to estimate the degree of comorbidity asso-
ciated with physical functioning.

Primary outcomes
The study will be powered based on expected changes in
cognition and WMH progression. Improvement in either
outcome is considered evidence of efficacy.

Alzheimer’s Disease Assessment Scale-Cognitive-Plus
Change in global cognitive function will be measured by
the ADAS-Cog-Plus using a multidimensional item re-
sponse theory model, which utilizes item scores from

Fig. 2 Schedule of enrolment, interventions, and assessments according to the SPIRIT Checklist
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multiple cognitive assessment instruments to generate a
global cognitive function score and standard error of
measurement for that score. The ADAS-Cog-Plus
includes the original 13-item assessment of memory,
language, and praxis [53] with additional measures of ex-
ecutive functions and verbal fluency. Executive functions
are assessed using the: (1) Trail Making Test (parts A
and B) [54], a measure of set-shifting; (2) verbal digit
span forward and backward [55], a measure of working
memory; (3) Digit Symbol Substitution Test [56], a
measure of working memory and psychomotor speed;
and (4) category fluency [57], a measure of semantic and
working memory. Higher scores on the ADAS-Cog-Plus
indicate poorer cognitive performance.

White matter hyperintensity quantification Brain
MRI scans will be acquired at baseline and trial completion
(12 months) at the UBC MRI Research Center. Neuroimag-
ing will be performed on a Philips 3.0-Tesla Achieva scan-
ner (Best, The Netherlands) with an 8-channel phased
array head coil. Three-dimensional (3D) T2-weighted (T2-
w) and proton density-weighted (PD-w) structural MRI
scans will be acquired to quantify WMH volume.
For detailed information on MRI sequence parameters,

please refer to Table 1.
T2-w and PD-w images will be preprocessed using

standard and publicly available neuroimaging tools that
include: (1) MR intensity inhomogeneity correction
using a multiscale version of the nonparametric non-
uniform intensity normalization method (N3) [58]; (2) a
structure-preserving noise-removal filter (SUSAN) [59];
and (3) all non-brain tissues will be removed using the
brain extraction tool (BET) [60].

WMHs will then be identified and digitally marked by
a radiologist/neurologist with experience in WMH
identification. The radiologist/neurologist will be blinded
to all participant information, including treatment as-
signment. Baseline and 12-month scans will be co-
registered and reviewed together to ensure consistency
of identification of small lesions across time. The radi-
ologist/neurologist will use the following guidelines in
the seeding procedure, which was designed to be effi-
cient and intuitive: (1) mark all distinct WMH regardless
of size; (2) place more than one point on a lesion if the
additional points would help define the extent of the le-
sion; and (3) place at least one point near the center of
each lesion [61].
The seeded images will then be segmented by a

method that automatically computes the extent of each
marked lesion to create a lesion mask [61]. This segmen-
tation method has been validated in large data sets with
a wide range of lesion loads. It was found to be highly
accurate compared to manual radiologist segmentations
and also robust to variations in the placement of seed
points [61]. Full details on the point placement proced-
ure and subsequent automatic segmentation are de-
scribed in previous work [61]. The lesion masks were
then used to quantify WMH volume in cubic millimeters
(mm3). All lesion masks will be reviewed by a trained re-
search assistant to ensure accuracy.

Secondary outcomes

Brain magnetic resonance imaging In addition to
WMH volume, measures of brain structure and function
will be acquired. Following a survey and reference scan,

Table 1 Magnetic resonance imaging protocol

3D T1-w MPRAGEa 3D T2-w PD-w DWIb GRASE rs-fMRI

Resolution acquired/
reconstructed (mm2)

1 × 1/1 × 1 1 × 1/0.8 × 0.8 0.99 × 1/0.98 × 0.98 2.24 × 2.24/2 × 2 0.99 × 2.04/0.96 × 0.95 3 × 3/3 × 3

Slice thickness acquired/
reconstructed (mm)

1/1 1.6/0.8 1/1 2.20/2.20 5/2.5 3/3

Number of reconstructed
slices

170 200 170 70 40 36

Field of view ap/rl/fh (mm) 256 × 200 × 170 256 × 160 × 256 250 × 170 × 250 224 × 224 × 154 230 × 190 × 100 240 × 240 × 143

Orientation Transverse Sagittal Sagittal Transverse Transverse Transverse

Echo time (ms) 3.5 363 30 60 8, 16, 24 … 384 30

Repetition time (ms) 1800 2500 3000 7.1 1073 2000

Flip angle (deg) 8 90 90 90 90 90

Acquisition time (min) 6:34 4:43 10:33 7:27 7:30 5:00

Purpose Anatomical
reference

WMH
quantification

WMH
quantification

White matter
integrity
quantification

Myelin
quantification

Functional
connectivity
assessment

ap anterior-posterior, rl right left, fh foot-head
aAdditional sequence parameters for 3D T1-w MPRAGE: inversion time = 810 ms
bAdditional sequence parameters for DWI: 60 gradient directions at b = 700 s/mm2, 1 unweighted scan
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the following sequences will be collected: (1) 3D T1-
weighted (T1-w) with an inversion recovery
magnetization-prepared rapid acquisition with gradient
echo (MPRAGE) sequence for anatomical reference; (2)
diffusion-weighted imaging (DWI) acquired with high
angular resolution to quantify white matter integrity; and
(3) whole-brain 48-echo gradient and spin echo (GRASE)
for T2 measurement to quantify myelin [62].
In addition, a subset of participants will also undergo

an 8-min resting-state functional MRI (rs-fMRI) to as-
sess changes in the connectivity of large-scale functional
networks. During this scan, participants will be asked to
rest with their eyes open while looking at a fixed point
and to think of nothing in particular. The rs-fMRI scan
will be used to establish the relevance of lesion location
on changes in functional connectivity, in conjunction
with a technique called lesion network mapping [63, 64].
Within this technique, the location of each WMH will
be overlaid onto the functional connectivity of a human
connectome. This will identify the level of overlap be-
tween the functional connectivity associated with the lo-
cation of the WMHs and that of the large-scale
functional networks. For detailed information on MRI
sequence parameters, please refer to Table 1.

Cognitive function The ADAS-Cog-13 is a 13-item as-
sessment of memory, language, and praxis [53]. Scores
range from 0 to 85, with higher scores indicating greater
cognitive impairment. Three key executive processes will
be assessed: (1) set-shifting; (2) working memory; and
(3) selective attention and conflict resolution. We will
measure set-shifting using the Trail Making Test (parts
A and B) [54]. Working memory will be assessed by the
verbal digit span forward and backward tests [57]. The
Digit Symbol Substitution Test will measure psycho-
motor speed and working memory. The Stroop Color-
Word Test [65] will measure selective attention and con-
flict resolution. The Picture Sequence Memory Test
from the National Institute of Health Toolbox [66] will
measure episodic memory. Participants will see a se-
quence of pictured activities presented in a specific order
and are asked to put the pictures back into the order
that was demonstrated. At practice, participants will be
presented with four pictures, and for the main task, they
will be presented with a sequence of 12 and then 16
pictures.

Physical performance Balance and mobility
The Short Physical Performance Battery [67] includes

standing balance (i.e., side-by-side stand, semi-tandem
stand, and tandem stand), 4-m walk test, and repeated
chair stands. Each component is rated from 0 (inability
to perform the task) to 4 (optimal performance), for a

maximum of 12 points. A score < 9 is predictive of sub-
sequent disability [67].
Functional mobility
The Timed-Up-and-Go (TUG) test is a timed assess-

ment that requires participants to stand up from a chair,
walk 3m at their usual speed, turn, walk back to the
chair, and sit back down [68]. We will assess perform-
ance on the standard TUG test and on a dual-TUG test,
whereby participants will be asked to subtract sevens
from a randomly given number, while performing the
task [68, 69]. A subset of participants will also complete
a dual-task walking assessment. Using a GAITRite mat
[70], participants will be asked to: (1) name as many
items from a given category (category fluency) in 30 s
while standing; (2) walk at their usual pace along the
mat; and (3) walk at their usual pace while completing
the category fluency task. Dual-task cost is calculated as
(dual-task time − walking time)/walking time. A lower
score is indicative of better dual-task performance.
Physiological fall risk
We will use the Physiological Profile Assessment©

(PPA) [71] to assess physiological fall risk. The PPA has
a 75% predictive accuracy for falls in older adults [71]. It
is composed of five physiological domains: (1) postural
sway, (2) hand reaction time, (3) dominant quadriceps
strength, (4) proprioception, and (5) edge contrast sensi-
tivity. A PPA z-score of 0–1 is indicative of mild fall risk,
1–2 indicates moderate risk, 2–3 indicates high risk,
and > 3 indicates marked risk.
Functional capacity
We will assess functional capacity using the six-

minute walk test [72]. Participants will be asked to walk
as far as they can in 6 min, breaks included. We will rec-
ord blood pressure immediately before and after the
walk, and participants will be asked to rate their walk on
the Borg Rating of Perceived Exertion scale [73]. Per-
formance will be recorded as the number of meters
walked in 6 min.
Muscular strength
We will assess upper body strength using maximal

hand grip strength measured by a dynamometer. For the
lower body, we will measure dominant quadriceps (iso-
metric) strength using a simple strain gauge to the near-
est 0.5 kg. In a subset of participants, lower body
strength will be assessed using a Biodex System 4 Pro™
dynamometer. Maximal torque at a velocity of 60°/s and
180°/s will be recorded for both knee flexion and
extension.

Cardiometabolic risk factors We will assess: (1) resting
systolic and diastolic blood pressure; (2) blood bio-
markers (e.g., serum glucose and lipid profile), collected
from fasted blood samples; (3) body mass index (BMI),
using the formula mass (kg)/(height (m)2); (4) waist-to-
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hip ratio, by measuring hip and waist circumference in
centimeters; and (5) arterial stiffness as measured by
carotid-femoral pulse-wave velocity using the Complior
system (Alam Medical, France).

Sleep and physical activity Subjective sleep quality will
be measured by the Pittsburgh Sleep Quality Index, a
self-rated questionnaire assessing sleep disturbances over
a 1-month period [74]. Objective measures of sleep qual-
ity will be estimated over a 2-week period using the
MotionWatch8© (MW8) wrist-worn actigraphy unit
(CamNtech; Cambridge, UK) to estimate sleep duration,
latency, and fragmentation. Participants will also be
asked to complete the Consensus Sleep Diary each
morning [75]. In addition to sleep quality, the MW8 will
also be used to calculate daily physical activity. The
number of minutes spent in moderate to vigorous phys-
ical activity (> 3.0 METs) is compared to the total time
spent awake and out of bed to determine the percentage
of each day spent in physical activity [76].

Mood and quality of life Mood will be measured using
the Centre for Epidemiologic Studies Depression Scale
[77], which is a 20-part questionnaire that asks how
often over the past week symptoms associated with de-
pression were experienced. It is scored out of 60 with
higher scores indicative of greater depressive symptoms.
The ICEpop CAPability Measure for Older adults [78,
79] will be used to assess wellbeing across five attributes:
(1) attachment (love and friendship); (2) security (think-
ing about the future without concern); (3) role (doing
things that make you feel valued); (4) enjoyment (enjoy-
ment and pleasure); and (5) control (independence).

Economic evaluation measures The EuroQol-5
Dimension-5 Level (EQ-5D-5L) questionnaire [80] com-
piles a composite score (i.e., health state utility value)
from ratings of perceived health across five domains: (1)
mobility; (2) self-care; (3) usual activities; (4) pain/dis-
comfort; and (5) anxiety/depression. A health resource
utilization questionnaire will quantify health care
system-related costs during the study period [81].

Blood and saliva samples In a subset of participants
who consent, fasting blood samples will be collected in
the morning by standard venipuncture at baseline, 6,
and 12 months. Blood will be processed and stored at
– 80 °C as plasma, serum, and whole blood. The main
analytes of interest include pro and mature BDNF, IGF-
1, VEGF, Cathepsin-B, irisin, adiponectin, sex steroid
hormones (estradiol, estrone, testosterone), s100-B, and
pro- and anti-inflammatory cytokines (e.g., IFN-γ, IL-1β,
IL-4, IL-6, IL-10, IL-12p70, IL-13, IL-17, TNF-α, Rantes,
CXCL1, IL-18, TGF-β). To examine potential genetic

moderation of exercise efficacy, we will examine the
BDNF Val66Met polymorphism, a common single-
nucleotide polymorphism within the pro-domain region
of the human BDNF gene resulting in an amino acid
substitution of valine (Val) to methionine (Met) at pos-
ition 66. We will also obtain the apolipoprotein E geno-
type. DNA will be extracted from whole blood by
standard protocol and genotype will be determined by a
TaqMan by-design assay. Remaining blood samples will
be stored for future analyses.
In a subset of participants who consent, saliva samples

will be taken to assess hypothalamic–pituitary–adrenal
axis activity. Specifically, we will examine: (1) total corti-
sol concentration over the day (area under the curve);
(2) cortisol awakening response, a distinct aspect of the
circadian cortisol profile; and (3) changes in cortisol re-
sponse to engaging in an exercise class with time of day
held constant. Free cortisol levels will be assessed in sal-
ivary samples (Salivette®) collected 5× each day (at awak-
ening, 30 min after awakening, 2 pm, 4 pm, and
bedtime) for 2 consecutive days at each measurement
point. Also, salivary samples will be collected immedi-
ately before and immediately after the first exercise class
and the last exercise class to examine cortisol response
to exercise.

Treatment allocation

Randomization Participants will be randomly assigned
(1:1) to either the 12-month, twice-weekly PRT program
or the 12-month, twice-weekly BAT program. The
randomization sequence will be generated and held by a
central web-based randomization service. Permuted
blocks of varying sizes will be used to ensure balance
over time.

Allocation concealment Participant recruitment and
enrollment will be managed by research personnel who
will screen for eligibility, acquire consent, and conduct
baseline assessments. Randomization to an intervention
group will occur after completion of the baseline assess-
ments. Research personnel conducting assessments and
data analysis will be blinded to group allocation so
unblinding will not occur. We will not be able to blind
participants or personnel delivering the interventions
and obtaining the monthly physical activity data (see
intervention compliance). Blinding will be supported by
providing explicit instructions to the research personnel
and participants not to discuss issues related to physical
activity during the assessments.

Experimental groups
All classes will be led by certified instructors with a par-
ticipant to instructor ratio of 4:1. Each 60-min class will
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include a 10-min warm up (i.e., stretching of the major
muscles and walking on the spot), 40-min of training,
and a 10-min cool down (i.e., stretching and relaxation
techniques). Every instructor will be audited on a
monthly basis by the exercise class coordinator to ensure
consistent protocol delivery.

Progressive resistance training The PRT program will
consist of a combination of free weight exercises includ-
ing mini-squats, mini-lunges, and lunge walks and
pressurized air system exercises including biceps curls,
seated row, latissimus dorsi pull downs, triceps exten-
sion, leg press, hamstring curls, and calf raises. The
intensity of training will begin at 50–60% of their 1 repe-
tition maximum (1RM) and progress to 2 sets of 6–8
repetitions at 75–85% 1RM by week 4. The 7RM
method will be used to increase the training load when 2
sets of 6–8 repetitions are completed with the correct
form. The number of sets completed and the load lifted
will be recorded for each participant at each class.
To meet the public health mandates of COVID-19,

when it is necessary, training will occur at home, with
the use of resistance bands of various weights. Partici-
pants will be provided access to instructional videos by
either YouTube or DVD. They will be called on a weekly
basis to monitor progress and compliance.

Balance and tone training The BAT program will con-
sist of stretching, basic core/kegal exercises, deep breath-
ing, and relaxation techniques. Other than body weight,
no additional loading will be applied to any of the exer-
cises. This training has not been shown to improve cog-
nitive function [82] and thus will serve as a control for
confounding variables such as physical training received
by traveling to the training centers, social interaction,
and changes in lifestyle secondary to study participation.
To meet the public health mandates of COVID-19,

when it is necessary, training will occur at home, with
the use of small equipment (e.g., Pilate ball). Participants
will be provided access to instructional videos by either
YouTube or DVD. They will be called on a weekly basis
to monitor progress and compliance.

Intervention compliance
Class attendance will be recorded by the instructors and
compliance will be defined as the percentage of the total
classes attended. To promote adherence to the exercise
program, we will implement strategies including: (1) regu-
lar contact; (2) developing coping and action plans; (3) set-
ting implementation intentions and concrete plans; and
(4) encouraging participants to self-monitor their pro-
gress. Monthly monitoring of extracurricular physical ac-
tivities will also be performed by an unblinded assessor
using the Physical Activities for the Elderly [83, 84]

questionnaire throughout the study. In addition, at each
measurement point, physical activity over 14 days will be
quantified using data acquired by the MW8 [76].

Data and adverse event monitoring
A Data and Safety Monitoring Committee will be estab-
lished by co-investigators who will be independent from
the day-to-day conduct of the study. They will review all
adverse events on a monthly basis and stop the study if
the data are of sufficient concern (e.g., increased rate of
falls as a result of the intervention). All adverse events
will be reported to this committee and to the relevant
university and health authority ethics boards by the
study coordinator. There is no anticipated harm and
compensation for trial participation.

Statistical analyses
The analyses will follow the intention-to-treat principle
(i.e., all individuals will be analyzed according to their
group allocation regardless of compliance). We will
evaluate between-group differences (PRT vs. BAT) in
ADAS-Cog-Plus and WMH volume, adjusted for base-
line score, using mixed linear models. Restricted max-
imum likelihood estimation will be used in order to
include all randomized participants to estimate treat-
ment effects, regardless of loss to follow-up. Time since
baseline (6 months versus 12 months) will be considered
as a repeated variable and will be included as a fixed ef-
fect in addition to group and group-by-time interaction.
Baseline score on the outcome variable and participant
baseline characteristics will be included as fixed covari-
ates. The intercept will be specified as a random effect.
Primary and secondary outcomes will be analyzed using
this same analytic model.
The intention-to-treat analysis will be followed by a

complete-case analysis, in which only participants with
valid data at all time points will be included. Moreover,
we will compare participants in the PRT group who are
compliant with the intervention (defined as attending at
least 60% of the total exercise sessions) with the BAT
group.
To explore underlying mechanisms, we will assess the

association between changes in cognitive function with
changes in: (1) neuroimaging outcomes; (2) cardiometa-
bolic risk factors; (3) blood biomarkers; and (4) saliva
biomarkers.
The economic evaluation will examine the efficiency

of the 12-month PRT program compared with BAT.
The outcome of our cost–utility analysis is the incre-
mental cost–utility ratio (ICUR): ICUR =ΔCost/Δ
quality-adjusted life years (QALYs); QALYs, estimated
from the EQ-5D-5L, represent time spent in given health
states [85, 86].

Liu-Ambrose et al. Trials          (2021) 22:217 Page 9 of 12



Discussion
Although previous research has highlighted the benefit
of aerobic training for people with SIVCI [25], further
research is required to determine the effect of resistance
training in this population. Consequently, the findings
from this RCT will provide important insight into the ef-
ficacy of resistance training on improving cognitive func-
tion and slowing WMH progression in adults with SIVC
I. In addition, our findings will provide greater under-
standing of the underlying mechanisms by which PRT
promotes cognitive function in SIVCI.

Public health
The 2020 Lancet Commission on dementia prevention,
intervention, and care reports a small, beneficial effect of
physical activity on normal cognition, with a possible ef-
fect in mild cognitive impairment. This conclusion was
mostly based on studies of aerobic exercise, and it was
noted that evidence about the effect of other types of ex-
ercise, specifically PRT, on dementia risk is scarce [87].
Given the dearth of high-quality studies of PRT, the
findings from this RCT will provide new insights into
the efficacy of PRT on improving cognitive function and
slowing WMH progression in adults with SIVCI. In
addition, our findings will aid understanding of the
underlying biological mechanisms by which PRT may be
exerting its effects in SIVCI. Strategies to improve
cardiovascular and cerebrovascular health will preserve
independent functioning and quality of life in adults with
SIVCI. Moreover, establishing the efficacy of different
types of exercise training will add substantially to op-
tions for exercise prescription for adults with SIVCI.
These efforts are critical at this point in time as cogni-
tive impairment and dementia pose an enormous
socioeconomic burden, negatively affecting families,
communities, and health care systems.

Trial status
This protocol is version nine, updated February 21, 2021.
Participant enrollment began on May 17, 2016, and re-
cruitment is anticipated to be completed by March 2021.
Any changes to the protocol will be documented by the
principal investigator and all research personnel will be
notified. The clinical trial registration will be amended for
all updates to the protocol.
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