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Abstract

The optimal way to make decisions in many circumstances is to track the difference in evidence 

collected in favor of the options. The drift diffusion model (DDM) implements this approach 

and provides an excellent account of decisions and response times. However, existing DDM-

based models of confidence exhibit certain deficits, and many theories of confidence have used 

alternative, nonoptimal models of decisions. Motivated by the historical success of the DDM, we 

ask whether simple extensions to this framework might allow it to better account for confidence. 

Motivated by the idea that the brain will not duplicate representations of evidence, in all model 

variants decisions and confidence are based on the same evidence accumulation process. We 

compare the models to benchmark results, and successfully apply four qualitative tests concerning 

the relationships between confidence, evidence, and time, in a new preregistered study. Using 

computationally cheap expressions to model confidence on a trial-by-trial basis, we find that a 

subset of model variants also provide a very good to excellent account of precise quantitative 

effects observed in confidence data. Specifically, our results favor the hypothesis that confidence 

reflects the strength of accumulated evidence penalized by the time taken to reach the decision 

(Bayesian readout), with the penalty applied not perfectly calibrated to the specific task context. 

These results suggest there is no need to abandon the DDM or single accumulator models to 

successfully account for confidence reports.
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Can the normative and empirically successful drift diffusion model (DDM) of decisions 

and response times (RTs) also account for confidence reports? We address this question—

which we unpack in the proceeding paragraphs—using a range of approaches, including 

trial-by-trial modeling of confidence reports.

Computing confidence, a sense of the probability of being correct, is potentially highly 

beneficial in a wide range of situations. Consider an owl flying after a glimpse of a gray 

object in the grass. The energy it exerts in the chase would sensibly be moderated by the 

probability it saw a mouse. There is strong evidence that human confidence is reliably 

related to objective performance, and that humans do indeed use confidence to regulate 

their decisions and learning in a wide variety of situations (Bahrami et al., 2010; Balsdon 

et al., 2020; Boldt et al., 2019; Carlebach & Yeung, 2020; Desender et al., 2018, 2019; 

Drugowitsch et al., 2019; Harun et al., 2020; Kepecs & Mainen, 2012; Sanders et al., 

2016; van den Berg, Zylberberg, et al., 2016). Changes in the strength of the relationship 

between confidence and objective performance have been linked to psychological disorders 

(Hauser et al., 2017; Rouault et al., 2018). Additionally, an understanding of the mechanisms 

responsible for confidence may illuminate how the brain represents evidence, probability, 

and probability distributions. Because of this importance, there is growing interest in 

understanding the computations responsible for confidence. A great deal of work has already 

gone into building computational models of confidence (e.g., Balsdon et al., 2020; Kiani 

et al., 2014; Pleskac & Busemeyer, 2010; van den Berg, Anandalingam, et al., 2016). 

However, models of confidence have often posited different mechanisms to those found in 

the normative and empirically successful DDM of perceptual decisions (discussed in detail 

below; Ratcliff & McKoon, 2008; e.g., De Martino et al., 2013; Kiani et al., 2014; van 

den Berg, Anandalingam, et al., 2016; Zylberberg et al., 2012). The aim of this article is 

a unifying one: We explore whether confidence reports can also be explained within the 

framework of a normative and successful model of perceptual decisions.

Therefore, we begin this exploration by considering normative models for the integration of 

noisy evidence into categorical decisions. We use “normative model” and “optimal model” 

to refer to models in which the observer achieves the maximum possible reward given the 

information that is assumed to be available to them (Rahnev & Denison, 2018). The fact that 

human behavior is variable given identical perceptual stimuli suggests that measurements of 

perceptual evidence are corrupted by noise (Drugowitsch et al., 2016). Humans can trade 

speed for accuracy (Garrett, 1922; Heitz, 2014; Wickelgren, 1977), suggesting that a stream 

of evidence samples are received over time and can be averaged to reduce noise and increase 

performance (Bogacz et al., 2006; Ratcliff & McKoon, 2008). It is often assumed that given 

two options, two streams of evidence samples are generated. For example, in a binary choice 

regarding which of two arrays contains most dots, the observer might receive two sets of 

noisy evidence samples, one corresponding to the number of dots in the left array and one 

corresponding to the number of dots in the right array. Under certain common assumptions, 

the algorithm that leads to maximal reward involves comparing evidence samples for the 

two alternatives and accumulating this difference over time (Bogacz et al., 2006; Gold & 

Shadlen, 2001; Tajima et al., 2019). This procedure makes intuitive sense: If we have two 

alternatives, evidence for one option should automatically be evidence against the other 

option. When the strengths of the evidence signals for the correct and incorrect option are 

Calder-Travis et al. Page 2

Psychol Rev. Author manuscript; available in PMC 2025 February 24.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



also constant across decisions or are known for a specific decision, the optimal stopping rule 

involves waiting until a specific accumulated difference in evidence is reached (Bogacz et 

al., 2006; Gold & Shadlen, 2007; Moran, 2015; Wald & Wolfowitz, 1948).

One model in which observers compare evidence samples for two alternatives and 

accumulate the difference is the DDM (Figure 1; Bogacz et al., 2006; Ratcliff & McKoon, 

2008). The average rate of accumulation is called the drift rate. The drift rate is determined 

by the difference in mean evidence signals for the two alternatives (rather than the 

noisy samples of those signals). Whilst the drift rate determines the average path of the 

accumulator, noise in evidence samples causes the accumulator to fluctuate randomly 

around this path. The accumulator begins near zero, and a decision is triggered when 

the accumulator reaches either a positive or negative threshold. The threshold reached 

determines the choice, and the time taken to reach it determines the reaction time.

There is good reason to think that brains will use decision algorithms with optimal 

properties, such as the DDM: From judging car speed and crossing a road to deciding 

which animal is on the horizon, converting continuous sensory variables into discrete 

decisions is, and always has been, a foundational cognitive ability of animals and humans 

(Green & Swets, 1966). This reasoning is a central motivation of our aim to examine 

whether the DDM can be used to also account for confidence. Note we do not claim that 

perceptual decisions of animals and humans are always (or even often) optimal relative 

to the statistics of a specific task. For example, we are agnostic regarding the question of 

whether humans set decision thresholds with a height that is optimal for the task at hand 

(e.g., Evans & Brown, 2017; Malhotra et al., 2017). Indeed, humans will certainly not 

be optimal if they have not had sufficient time to learn the statistics of the task, or have 

not received sufficient feedback to calibrate their decision making (Evans & Brown, 2017; 

Evans et al., 2020). Instead, we only claim that there are strong theoretical reasons to think 

the decision machinery of the brain will have evolved to use the evidence accumulation 

mechanism, exemplified by the DDM, that is normative for typical perceptual decision-

making situations. This is what motivates our investigation of DDM-based accounts of 

confidence. For confidence itself, as a less foundational cognitive ability, the evolutionary 

push toward optimality has presumably been weaker. Furthermore, whereas for decisions 

there is a clear “reward” to be maximized, for confidence—that is, evaluations of decisions 

to take certain actions—it is less clear what reward should be maximized. Accordingly, we 

consider a range of possible confidence readout mechanisms. In any case, we do not claim 

that confidence will necessarily be optimal for the statistics of a specific task (a point we 

expand further below).

Aside from theoretical support, the DDM also enjoys 50 years of empirical support (Ratcliff 

et al., 2016; although debates over the extent of this success continue; Kirkpatrick et 

al., 2021; Rafiei & Rahnev, 2020; Ratcliff & Kang, 2021). The model and extensions 

account well for the shape of response time distributions, how accuracy changes with task 

difficulty, and how response time changes with task difficulty (Ratcliff, 1978; Ratcliff & 

McKoon, 2008). Assuming trial-to-trial variability in drift rate, and the starting point of the 

accumulator, the model can also explain why in some cases error responses are faster than 

correct responses but in other cases correct responses are faster than errors (Ratcliff et al., 
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1999; Ratcliff & McKoon, 2008). It has proved a unifying framework, explaining data in 

perceptual decisions (Ratcliff & McKoon, 2008), value-based decisions (Lee & Usher, 2021; 

Milosavljevic et al., 2010), and memory tasks (Ratcliff, 1978). Hence, there are additionally 

strong empirical reasons for exploring whether the DDM can account for confidence reports.

Unfortunately, it turns out that for all the success of the DDM explaining patterns in choices 

and response times, the model cannot straightforwardly account for confidence reports 

(Rosenbaum et al., 2022; Yeung & Summerfield, 2014). The reason is that a decision is 

triggered when the accumulator crosses a fixed threshold. Therefore, at the time someone 

commits to a decision, they will always have the same accumulated difference in evidence 

favoring the selected option (Figure 1). This apparently leads to the conclusion that people 

and animals should have equal confidence in all attempts at a task, if we adopt the 

reasonable assumption that a decision maker’s confidence should reflect the strength of 

evidence in favor of their chosen option. In stark contrast, confidence data show a rich set of 

context-dependent patterns (detailed in Models section; Pleskac & Busemeyer, 2010), such 

as a strong negative relationship between confidence and response time in certain settings 

(Pleskac & Busemeyer, 2010; Rosenbaum et al., 2022; Vickers & Packer, 1982).

One successful approach to accounting for confidence within the DDM has focused on the 

idea that people may continue to accumulate evidence following a decision (Moran et al., 

2015; Pleskac & Busemeyer, 2010). These extra evidence samples can drive variability in 

confidence reports even when task difficulty is fixed. Importantly, on trials in which the 

observer was correct, extra samples will tend to support their decision. As a result, people 

will have greater confidence in correct responses than in errors. Research on changes of 

mind, and work exploring how confidence is influenced by evidence at different points 

in time, strongly suggests that evidence accumulation does indeed continue following a 

decision (Charles & Yeung, 2019; Moran et al., 2015; Resulaj et al., 2009; Rosenbaum et al., 

2022; van den Berg, Anandalingam, et al., 2016). Nevertheless, alone, this extension does 

not immediately generate a relationship between confidence and response time.

Pleskac and Busemeyer (2010) included the idea of trial-to-trial variability in drift rate 

in their DDM-based model of decisions and confidence, the two-stage dynamic signal 

detection theory (2DSD). Drift-rate variability allows the model to explain why confidence 

decreases with response time. On a trial in which the drift rate is high, the threshold 

will be reached quickly triggering a quick response, but this high drift rate will also 

drive rapid accumulation following a decision. The accumulator will reach a large value, 

generating high confidence. Note that it does not matter whether this variability in drift 

rate is produced because evidence strength provided by the stimulus varies or because 

the internal representation of constant evidence strength stimuli varies from trial-to-trial 

(Pleskac & Busemeyer, 2010; Ratcliff et al., 1999, 2016). In either case, confidence will 

now decrease with response time. This means that the basic DDM model, coupled with 

evidence accumulation following a decision, can easily account for a relationship between 

confidence and time in contexts where stimulus evidence strength varies from trial-to-trial. 

More challenging is the case in which stimulus evidence strength does not vary on a trial-

by-trial basis (but confidence and response time remain related; e.g., Baranski & Petrusic, 

1998). Unless otherwise noted, we will only consider this more challenging case throughout. 
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In this situation, 2DSD can still account for a relationship between confidence and response 

time by assuming that there is trial-to-trial variability in drift rate, specifically because of 

variability in how constant evidence strength stimuli are processed (Pleskac & Busemeyer, 

2010).

Although the 2DSD model explains an impressive number of patterns in confidence, 

Pleskac and Busemeyer (2010) noted that it could only provide a partial explanation for 

the relationship observed between confidence and response time in data they collected. 

Specifically, 2DSD could not account for the strength of this relationship, predicting a 

weaker relationship than was observed (Pleskac & Busemeyer, 2010, p.881). We will see 

that this is also the case in data collected here. Later work on a closely related model 

did not address this quantitative deficiency either (Moran et al., 2015). Moreover, because 

2DSD relies on evidence accumulation following a decision to account for variability in 

confidence reports, the model struggles to explain such variability when confidence reports 

are given simultaneously with a decision (e.g., Kiani et al., 2014). Additional assumptions 

are required, for example, the assumption that observers make covert choices without 

immediately responding (Ratcliff, 2006). Similar considerations apply to the closely related 

model put forward by Moran et al. (2015).

Thus, although substantial progress has been made in developing DDM-based models 

of confidence, important limitations remain. Many researchers have therefore considered 

models that provide clearer explanations of confidence, but that rely on alternative decision-

making mechanisms to the empirically successful and normative DDM (De Martino 

et al., 2013; Kepecs et al., 2008; Kiani et al., 2014; Moreno-Bote, 2010; van den 

Berg, Anandalingam, et al., 2016; Vickers, 1979; Vickers & Packer, 1982; Yeung & 

Summerfield, 2014; Zylberberg et al., 2012). Examples of such alternatives are the race 

model and the partially correlated accumulators model, in which two evidence accumulators 

simultaneously accumulate (at least partially) distinct information (Kiani et al., 2014; 

Moreno-Bote, 2010; Ratcliff & Smith, 2004; Smith & Ratcliff, 2009; Teodorescu & Usher, 

2013; Vickers, 1970). If a decision is triggered by either one of the two accumulators 

crossing a threshold, then the difference in evidence between the alternatives—which 

can only be calculated by taking into account the value of both accumulators—is no 

longer constrained to a fixed value at decision time (contrasting with the DDM) and can 

naturally explain confidence reports (Vickers & Packer, 1982; Yeung & Summerfield, 

2014). Although the standard race model itself (one independent accumulator for each 

stimulus; van Ravenzwaaij et al., 2020) exhibits deficits in its account of choice and 

response time data (Kirkpatrick et al., 2021; Miller & Ulrich, 2003; Ratcliff & Smith, 

2004; Teodorescu & Usher, 2013), variants of the standard race model have performed 

well on choice and response time data (Kirkpatrick et al., 2021; Usher & McClelland, 

2001; van Ravenzwaaij et al., 2020). Another line of research has explored models with 

multiple simultaneous evidence accumulators, one for each possible combination of choice 

and confidence, with the winning accumulator determining both (Ratcliff & Starns, 2009, 

2013). Again, such a framework naturally generates variability in confidence reports, and 

such models have provided a good account of responses and response times for tasks where 

choice and confidence are reported simultaneously. Nevertheless, all such models remain 

nonnormative with regards to the two-alternative perceptual decision itself: As discussed, 
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a single accumulation of the difference in evidence is optimal under common assumptions 

(Bogacz et al., 2006; Gold & Shadlen, 2001; Tajima et al., 2019).

A further alternative, arguably nonnormative approach, is to consider models in which 

separate evidence accumulation mechanisms are responsible for decisions and for 

confidence (Fleming & Daw, 2017). For example, such models may postulate one evidence 

accumulation for decisions and a different evidence accumulation for confidence (Balsdon et 

al., 2020; Ganupuru et al., 2019; Jang et al., 2012). Even if each accumulation individually 

uses the DDM, there is a clear sense in which two separate accumulators are nonnormative: 

The brain would then effectively have two perceptual systems, both accumulating evidence 

about the same thing, while costing twice as much in terms of energy consumption (Lennie, 

2003). Moreover, if the observer did have two noisy versions of an accumulator, the observer 

could improve performance by averaging the information in these two accumulators, leading 

to a single accumulator with reduced noise.

In this context of a range of successful confidence models relying on nonnormative decision 

mechanisms, the present research was motivated by a desire to build on the work of Pleskac 

and Busemeyer (2010) and Moran et al. (2015), to explore how far we can account for 

qualitative and precise quantitative patterns in confidence data using normative perceptual 

decision mechanisms. Specifically, we aim to explore single accumulator models—that 

is, models in which both decisions and confidence are generated by the same evidence 

accumulator—featuring the DDM’s accumulation mechanism, that is known to be optimal 

under certain common assumptions (Bogacz et al., 2006; Tajima et al., 2019). In comparison 

to previous work, we attempt a more systematic and broader exploration of the performance 

of such models.

Motivated by the strong relationship between confidence and response time, and by the 

struggle of previous DDM approaches to account for the strength of this relationship, we 

consider two key ways in which confidence might depend on decision times: first, if the 

threshold for committing to a choice varied over time and, second, if decision time itself was 

directly factored into the computation of confidence. Before turning to these ideas, which 

can both be motivated on normative grounds, we briefly address a simpler possibility: As 

part of a heuristic approach to producing confidence reports, observers use time as a cue 

for confidence (Audley, 1960; Pleskac & Busemeyer, 2010; Ratcliff, 1978; Zakay & Tuvia, 

1998). While this could clearly generate a strong relationship between confidence and time, 

the relationship between confidence and time is more complex than that which would be 

predicted by a simple heuristic model (Pleskac & Busemeyer, 2010). As we will see later, 

the direction of this relationship is known to reverse depending on the context. Furthermore, 

confidence varies with other factors over and above response time (Kiani et al., 2014). These 

considerations do not rule out a sophisticated heuristic observer who flexibly combines cues 

depending on the context, and we return to this possibility in the discussion.

If decision thresholds decrease over time, meaning a smaller value of accumulated evidence 

is required to trigger a decision for later versus earlier decisions (Drugowitsch et al., 2012; 

Malhotra et al., 2017), then a clear relationship between confidence and response time would 

arise: Later decisions will be made with a smaller balance of evidence in their favor, and 
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so confidence will be lower. Within the DDM framework, decreasing decision thresholds 

can be optimal when the difficulty of the task is unknown to the observer, whether this is 

due to external factors such as variability in stimuli across trials or internal factors such as 

variability in the processing of constant evidence strength stimuli, generating trial-to-trial 

drift-rate variability (Drugowitsch et al., 2012; Malhotra et al., 2018; Moran, 2015; Tajima 

et al., 2016, 2019). The intuition here is that if little evidence has been accumulated after a 

lengthy period of deliberation, the task is likely to be very difficult (Malhotra et al., 2018). 

When a task is very difficult, there is little to gain from accumulating evidence, and doing 

so would cost the observer time. There is some evidence that decision thresholds do in fact 

decrease in some situations (Glickman et al., 2019; Glickman & Usher, 2019; Malhotra et 

al., 2017; Palestro et al., 2018), although there is also conflicting evidence (Hawkins et al., 

2015; Pardo-Vazquez et al., 2019; Voskuilen et al., 2016) and mixed results (Evans et al., 

2020).

While a subtlety, it is very important to distinguish two effects of time on confidence: within 

and between conditions (Vickers & Packer, 1982). Within a condition, decreasing thresholds 

will mean that the balance of evidence supporting decisions decreases with decision time, 

and therefore confidence may also follow this pattern. This contrasts with the relationship 

expected when comparing two conditions with different emphasis on speed versus accuracy. 

Consider a new experimental condition in which we ask participants to emphasize accuracy 

over speed. From the perspective of the model, participants can achieve slower and more 

accurate responses by shifting their decision thresholds outward, requiring more evidence 

to be gathered before a response is triggered (Ratcliff & McKoon, 2008). Consequently, 

participants will be more confident in their choices, because they will have gathered more 

evidence for them. The overall effect is that in this new condition, on average, response 

times are slower, while accuracy and confidence are greater (Pleskac & Busemeyer, 2010; 

Vickers & Packer, 1982). This example shows that a condition associated with slower 

response times may generate higher confidence. Only within a single condition do we expect 

decreasing thresholds to generate a strong negative relationship between response time and 

confidence.

A clear relationship between confidence and response time could also arise if confidence 

reflects a Bayesian readout of the probability of being correct, based on the final state 

of the DDM accumulator and total deliberation time (Aitchison et al., 2015; Kiani et al., 

2014; Meyniel et al., 2015; Pew, 1969; Sanders et al., 2016; Vickers & Packer, 1982; under 

standard assumptions, only time and the final state of the DDM accumulator are relevant, 

and the accumulator’s path up to that point adds no relevant information; Moreno-Bote, 

2010). If the difficulty of the task is unknown to the observer, and if we consider a fixed 

value of the accumulator, then in a range of settings Bayesian confidence decreases with 

the time spent accumulating that evidence (Moran, 2015; Moreno-Bote, 2010). An intuition 

for this effect is the following. The average rate at which you have accumulated evidence 

gives you information about the difficulty of a trial. If you accumulate 10 units of evidence 

in 1 s you are accumulating faster than if you accumulate 10 units in 2 s. Hence, in 

the first case you are more likely to be on an easier trial than in the second case. As a 

result, you can be more confident in your response in the first case. This line of reasoning 

applies equally to a situation in which the observer is free to respond when they like, 
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and a situation in which response time is determined by the researcher: In either case, 

beyond the quantity of accumulated evidence, the amount of time it took to accumulate that 

evidence is also relevant (Moreno-Bote, 2010). If, in a free response situation, response time 

determines the amount of time the observer spends accumulating evidence, then confidence 

will also decrease with response time. We refer to the effect of time spent accumulating 

evidence as the “time penalty for confidence.” An important point is that difficulty can 

be unknown to the observer—and hence the time penalty for confidence applied—either 

because the evidence strength provided by the stimulus varies on a trial-by-trial basis or 

because the quality of information extracted from constant evidence strength stimuli varies 

on a trial-by-trial basis (Moran, 2015; Ratcliff et al., 1999, 2016). As discussed above, 

throughout we only consider the more challenging case for confidence models, namely the 

case of constant evidence strength stimuli. Nevertheless, it is worth noting that either case 

generates trial-by-trial variability in drift rate, and a Bayesian readout for confidence that 

depends not just on evidence accumulated but also time.

We take these ideas, motivated theoretically and empirically and combine them to build a 

number of variants of a core DDM model that we then compare against new experimental 

data. Building on the work of Pleskac and Busemeyer (2010) and van den Berg, 

Anandalingam, et al. (2016) showing that postdecision evidence has an important role to 

play, we include postdecision evidence accumulation in all model variants. Other features 

are only included in subsets of the model variants. First, we consider the possibility that, 

as in 2DSD, drift-rate variability helps account for the relationship between confidence and 

time to some extent (Pleskac & Busemeyer, 2010). Second, we consider the possibility that 

the decision threshold used to trigger a decision may decrease over time (Drugowitsch et al., 

2012; Malhotra et al., 2017). Finally, we consider different ways confidence could be read 

out: Confidence could reflect only the final state of the accumulator (Pleskac & Busemeyer, 

2010), or it could also feature a time penalty for confidence. Bayes rule prescribes a specific 

relationship between evidence, time, and confidence. This relationship is sensitive to the 

strength of various sources of variability in the evidence accumulation. The time penalty 

could match that used by a calibrated Bayesian observer who has perfect knowledge of the 

statistics of the task (such a time penalty could possibly be learnt by association; Kiani et 

al., 2014; Pew, 1969; Vickers & Packer, 1982). Alternatively, the time penalty could reflect 

a miscalibrated Bayesian readout (Drugowitsch et al., 2014), a Bayesian readout of the 

probability of being correct, but one based on imperfect estimates for the strength of the 

various sources of variability.

Our goal is to determine (a) which DDM model variant fits confidence data best and (b) 

whether any of the models can explain the range of qualitative and quantitative effects 

observed in confidence data. In this way, we aim to answer the overarching question 

that we posed at the outset, of whether a normative and successful model of decisions, 

the DDM, can also account for confidence reports, specifically in relation to previously 

described empirical challenges that have led many models of confidence to depart from 

this normative framework. Of particular interest will be whether any of the variants can 

overcome the limitation of 2DSD in accounting for the strength of the relationship between 

confidence and decision time. One of the variants we consider is closely related to the 2DSD 

model. To test the power of the models, we first consider how the models fare against 
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benchmark findings and whether they can account for findings that have previously been 

difficult to explain using a single framework. Next, we note qualitative predictions of the 

model variants, which we test in a preregistered study. We then use newly developed, 

computationally cheap expressions to fit the models using trial-by-trial predictions for 

confidence (Calder-Travis et al., 2023). This approach allows us to examine whether any 

DDM model can account for the precise quantitative effects observed in confidence data. If 

one of the DDM models considered can provide a better account of the patterns observed 

than previous DDM-based models of confidence, it will strengthen support for the view that 

one of the most basic cognitive functions, perceptual decision making, is generated through 

a mechanism with optimal properties. A corollary would be that we do not need to abandon 

the idea that animals and humans use decision mechanisms with normative properties for the 

sake of accounting for confidence reports. While this is the main goal, we will end with a 

parsimonious account of decisions and confidence that will provide a unified explanation for 

a large range of empirically observed effects.

Although our assessment of DDM models of confidence will be multifaceted, encompassing 

consideration of previous findings and benchmarks, qualitative predictions, and quantitative 

modeling, we do not attempt to simultaneously model confidence, choices, and response 

times. Instead, our approach is to model confidence given choice and response time. By 

not modeling choices and response times directly, trial-by-trial modeling of time-varying 

stimuli and time-varying decision thresholds becomes possible using recently derived 

expressions (Calder-Travis et al., 2023). Modeling choices, response times, and confidence 

simultaneously on a trial-by-trial basis is an important ultimate goal. However, such an 

approach is currently not feasible due to the excessive computational cost of producing 

trial-by-trial predictions for response and response times (some existing approaches are 

given by Ratcliff, 1980; Shinn et al., 2020; Smith, 2000; Smith & Ratcliff, 2022). Only 

limited cases are covered by existent fast mathematical solutions that make trial-by-trial 

modeling possible, such as the case where decision thresholds and evidence strength are 

fixed throughout a trial (Navarro & Fuss, 2009), or if evidence accumulation only occurs 

at a limited number of time points (Park et al., 2016). Perhaps due to these limitations 

in the kinds of trial-by-trial modeling of decisions and response times that are possible, 

previous studies of confidence in evidence accumulation models have either ignored trial-

by-trial data or used stimuli without such richness and have instead modeled data on a 

condition-by-condition basis (e.g., one likelihood function is produced for high stimulus 

evidence trials and a second likelihood function is produced for low stimulus evidence 

trials), approximating all trials from the same condition as the same (Moran et al., 2015; 

Pleskac & Busemeyer, 2010; Ratcliff & Starns, 2013; van den Berg, Anandalingam, et al., 

2016).

Here, our goal was to exploit the rich information available in single-trial data to adjudicate 

between competing models of confidence. Thus, our analysis allows for complexities such 

as time-dependent thresholds and fluctuating stimuli that provide evidence that varies within 

trials, fitting models to trial-by-trial varying individual confidence reports (more than 30,000 

in our case), rather than the conventional alternative of condition-by-condition modeling of 

choices, response times and confidence. In this regard, we chose to limit the breadth of our 

modeling approach (focusing on confidence, rather than fitting also choices and response 
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times), so that we could make a substantial advance in the depth of our modeling, by 

modeling DDM-based confidence in a fluctuating-stimulus task on a trial-by-trial basis. This 

takes us a step closer to the ideal of broadly applicable trial-by-trial modeling of choices, 

response times, and confidence, and allows us to model confidence to a degree of precision 

that would not otherwise be possible.

This approach represents a methodological advance that we wish to highlight. Nevertheless, 

our ultimate aim is to explore whether a DDM-based model can also account for confidence 

in addition to choices and response times, not instead of choices and response times. To 

some extent we take for granted the extensive body of evidence showing that the DDM is 

a good model of both decisions and response times (Lee & Usher, 2021; Milosavljevic et 

al., 2010; Ratcliff, 1978; Ratcliff et al., 1999, 2016; Ratcliff & McKoon, 2008). Indeed, the 

success of the DDM in accounting for decisions and response times is a major motivation 

for this work exploring DDM-based models of confidence. Furthermore, we do not aim 

to answer the question “what is the best combined model of decisions and confidence?” 

but rather we work from the perspective that the DDM is a theoretically and empirically 

important model and aim to answer the currently open question of whether it can be 

extended to account for confidence reports. Notwithstanding these considerations, a DDM 

variant that can only account for confidence reports in a parameter range that produces poor 

predictions for choices and response times would not be a DDM model that can also account 

for confidence. Hence, once we have completed our trial-by-trial fitting to confidence, we 

will assess whether the parameters from fitting to confidence lead to reasonable predictions 

for choices and response times. In the course of this assessment, we will perform a form of 

hybrid fitting, fitting to confidence on a trial-by-trial basis, but additionally fitting to some 

aspects of choices and response times. This will produce a DDM variant that fits well to 

choices and response times, with almost no compromise in the ability of the model to fit 

confidence. We will return to this point throughout, and in General Discussion section. In 

General Discussion section, we also discuss how our field could work toward simultaneous 

trial-by-trial modeling of choices, response times and confidence in rich, dynamic-stimuli 

tasks, and where our work fits in to progress toward that goal.

Models

We start by setting out in detail the models that we will investigate. We then assess whether 

the models can explain benchmark findings and account for results that have previously been 

difficult to explain. We finish the section by describing four qualitative tests of the models 

that we will apply in the next sections.

Prior to setting out the models, we will describe two different contexts that we will apply 

the models to. These contexts are termed the “free response” (also known as “information 

controlled”) and “interrogation” (also known as “time controlled” or “response signal”) 

conditions (Bogacz et al., 2006; Moran, 2015; Ratcliff, 1978, 1980, 2006). Under “free 

response,” an observer is free to set the time of response, while in the “interrogation” 

condition the observer does not have control over the time of the response or the duration 

of stimulus viewing. As implemented here, in the interrogation condition the observer 

must monitor the stimulus until it clears, at which point the observer can respond. 
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The interrogation condition and variants have been extensively used in the study of 

evidence accumulation and decision-making mechanisms, including through the modeling of 

choices (e.g., Dosher, 1976, 1982; McElree & Dosher, 1989; Meyer et al., 1988; Ratcliff, 

1980, 1988, 2006; Reed, 1973; Schouten & Bekker, 1967; Usher & McClelland, 2001; 

Wickelgren, 1977). Here, we use this condition to explore the mechanisms responsible for, 

and aim to model, confidence judgments (Rosenbaum et al., 2022). Note that we define 

“response time” in the interrogation condition to be the time from the onset of the stimulus 

to the response (Meyer et al., 1988).

We consider 10 models that are all variants of a core model. The core model has as its 

central assumption the idea from the DDM (Ratcliff & McKoon, 2008) that observers track 

the total difference in evidence between alternatives. In the interrogation condition, the 

observer does not need to set a criterion for stopping evidence accumulation and responding, 

as the end of the trial is determined for them. Performance can be maximized by observing 

and using all information presented: The observer should simply pick the option favored 

by all presented evidence (Figure 2A; Bogacz et al., 2006). To be precise, we assume 

that evidence accumulation lasts for precisely the same amount of time as the stimulus is 

presented for, with the final accumulator state both determining responses and being used 

for the readout of confidence (described below).

In the free response condition, the observer decides themselves when to respond. Given this 

flexibility, they must use some policy to determine when to stop accumulating evidence 

and make a decision. Following the DDM, we assume the observer sets thresholds on the 

accumulated evidence, one for each response option (Figure 1). A response is triggered 

when the accumulator reaches either threshold. There is some lag between stimulus 

presentation and the time that the corresponding information enters the observer’s evidence 

accumulation (Resulaj et al., 2009). This corresponds to the time that sensory processing 

of incoming information takes. Similarly, there is some lag between the decision at the 

time of threshold crossing and the motor response to indicate the decision (Resulaj et al., 

2009). This corresponds to the time that motor processing takes. Due to sensory processing 

delays, at the time of the decision some information that has already been presented in 

the stimulus is undergoing sensory processing and has not yet contributed to the evidence 

accumulation (Resulaj et al., 2009). Similarly, due to motor processing delays, additional 

sensory information will be received in the time between commitment to a decision and 

the motor response. We use the term “pipeline” evidence to refer to all information that 

is either undergoing stimulus processing at the time of the decision, or which is received 

during the motor processing delay. “Pre-decision” evidence refers to evidence that has 

entered the accumulation prior to the time of the decision (and therefore contributed to that 

decision). Although pipeline evidence will not contribute to the initial decision (Ratcliff & 

McKoon, 2008; Resulaj et al., 2009; van den Berg, Anandalingam, et al., 2016), it will 

be processed immediately following the decision and can therefore inform any subsequent 

confidence report that is given (Figure 2A; Moran et al., 2015; van den Berg, Anandalingam, 

et al., 2016). (We will use the fact that pipeline evidence does not influence the decision 

to estimate the duration of the sensory and motor processing delays, i.e., the duration of 

the “pipeline,” and from this we will be able to divide up the evidence presented in the 

stimulus into predecision and pipeline evidence; Experimental Method section.) Note that 
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even if the stimulus terminates at the time of the response, if confidence reports are collected 

later, confidence will be informed by more information than the response. Namely it will be 

additionally informed by the pipeline evidence.

In neither of the conditions that we consider is there any time pressure on the confidence 

report: Participants have as long as they wish to report their confidence. Furthermore, in 

the free response condition, the stimulus is cleared at the time of a response, whereas 

in the interrogation condition, the stimulus clears before the participant is permitted to 

respond. Hence in both cases, the stimulus information available to the participant to inform 

their confidence report is fixed while confidence is being reported. In this situation, and 

with no time pressure on the confidence report, the normative strategy is to fully process 

all information that was received prior to the end of the stimulus (including all pipeline 

information; Bogacz et al., 2006; Moran et al., 2015) and base the confidence report on 

this fixed pool of information. This means that in the free response condition, just as in the 

interrogation condition, evidence accumulation lasts for exactly the same amount of time 

as the stimulus duration, with the final state of the accumulator being used to determine 

confidence. For example, if it takes 400 ms for information to pass through sensory and 

motor processing pipelines, and the stimulus clears on response, information presented in 

the stimulus in the 400 ms prior to response will not have been processed. Therefore, in the 

free response condition, evidence accumulation continues for 400 ms following the crossing 

of the decision threshold, before confidence is read out (Figure 2A).

On the basis of this parsimonious assumption, which requires no further parameters to 

be added governing the postdecision accumulation process, we are already able to make 

completely precise predictions for the confidence reports themselves. The time spent 

accumulating evidence following a decision and prior to a confidence report has itself 

been investigated (Baranski & Petrusic, 1998; Chen & Rahnev, 2023; Moran et al., 2015; 

Pleskac & Busemeyer, 2010), however, here we focus solely on the confidence reports rather 

than the time taken to make them. Our question is whether the DDM can be extended to 

account for detailed quantitative and qualitative patterns in confidence reports. This focus 

was motivated by a number of factors, that we detail in General Discussion section.

In the core model, confidence is based on a readout of the final state of the accumulator 

that tracks the difference in evidence between the two choices (Pleskac & Busemeyer, 2010; 

Vickers, 1979). In all models, we allow the possibility that the readout is corrupted by 

metacognitive noise (Bang et al., 2019; De Martino et al., 2013; Maniscalco & Lau, 2012; 

van den Berg et al., 2017). We assume normally distributed metacognitive noise corrupts 

the value of the accumulator as it is read out (note that normally distributed metacognitive 

noise is likely to only approximate the true form of metacognitive noise; Shekhar & Rahnev, 

2021). Additionally, a subset of confidence reports are assumed to result from “lapses.” That 

is, instead of being generated by the usual mechanism, a random confidence report is given 

(further details in Modeling Method section).

In all analyses, we treat confidence as an ordinal variable (Yu et al., 2015), and only study 

the ordering within-participants. The great strength in this approach is that we do not have to 

make any assumptions about how observers use confidence reporting scales, or whether they 
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scale, shift, or stretch their readout before reporting confidence (Ais et al., 2016; Aitchison 

et al., 2015; Festinger, 1943; Vickers & Packer, 1982), which seems to vary from person to 

person and from context to context (Ais et al., 2016; Vickers & Packer, 1982). Instead, we 

simply assume that the noisy internal confidence readout is mapped monotonically to the 

confidence report given (Figure 2; Aitchison et al., 2015). No further assumptions about the 

form of this mapping need to be made. While this is certainly a strength, it does mean that 

we will not be able to study the mapping between observers’ estimates of probability, and 

objective probability (Lichtenstein & Fischhoff, 1977). Furthermore, by definition, we are 

side-stepping important but complex questions regarding between-participant differences in 

average confidence (Ais et al., 2016; Pallier et al., 2002), the role of confidence in social 

contexts (Hertz et al., 2017), and how observers set confidence criteria (Charles et al., 2020). 

Instead, by studying only the ordering of confidence reports, we can focus in great detail on 

the perceptual component of confidence.

The core model, based on the DDM, struggles to account for confidence reports for the 

reasons described above. Principally, with a drift rate of fixed magnitude (but unknown 

sign), flat decision thresholds, and a confidence readout that directly reflects the strength 

of accumulated evidence, the model has no way of accounting for the relationship between 

confidence and response time (Pleskac & Busemeyer, 2010). We consider three features 

that could be added to the core model to better account for observed patterns in human 

confidence reports (Figure 2B): drift-rate variability (as in the 2DSD model), decreasing 

decision thresholds, and time penalties for confidence.

The first feature is drift-rate variability (Introduction section; Pleskac & Busemeyer, 2010; 

Ratcliff et al., 1999). A subtle but important point mentioned in Introduction section is 

that drift-rate variability can arise either because stimulus evidence strength varies from 

trial-to-trial or because there is trial-to-trial variability in the quality of processing constant 

evidence strength stimuli (Moran, 2015; Ratcliff et al., 1999, 2016). Throughout, we focus 

on the case in which stimulus evidence strength does not vary on a trial-by-trial basis, 

because this provides the greatest challenge for models of confidence (Introduction section). 

In this situation the only possible source of drift-rate variability is trial-to-trial variability 

in the quality of information processing. To capture the idea that trial-to-trial quality of 

information processing varies, such that the effect of presented evidence on the accumulator 

varies, we included a variable that we term “drift-rate scaling.” This variable changes from 

trial-to-trial and has a multiplicative effect on the strength of the relationship between 

evidence presented and changes in the accumulator (Appendix A and Calder-Travis et al., 

2023). The driftrate scaling follows a normal distribution. When the drift-rate scaling is 1 

(mean value), the effect of evidence on the accumulator is at its average level. When the 

drift-rate scaling is higher (or lower), evidence presented in the stimulus has a larger (or 

smaller) effect on the evidence accumulation.

The second feature that we used to extend the core model is decision thresholds that are 

not constant but rather decrease over time (Figure 2B; Drugowitsch et al., 2012). Decreasing 

decision thresholds can generate clear relationships between confidence and time for the 

reasons discussed in Introduction section.
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The third feature considered is that, instead of confidence reflecting simply the state of 

the accumulator, confidence is a Bayesian readout of the probability of being correct 

(Figure 2B; Kiani et al., 2014; Pew, 1969; Vickers & Packer, 1982). That is, using all the 

information they have gathered, the observer infers the probability that they made the correct 

response and uses this to determine their level of confidence. As discussed in Introduction 

section, a Bayesian readout prescribes a specific relationship between time, evidence, and 

confidence and specifically features a time penalty for confidence when the difficulty of 

the task is unknown to the observer (Moran, 2015; Moreno-Bote, 2010). Time is taken into 

account because the average rate at which evidence has accumulated conveys information 

about the difficulty of the task. For the task we consider below, the readout takes the 

following form (Appendix A and Calder-Travis et al., 2023):

X
1 − γ + γt .

(1)

This quantity is monotonically related to the probability of being correct and hence 

completely determines the ordering of confidence reports. Here t is time spent accumulating 

evidence, while X represents the evidence accumulated for the choice made. γ is a 

parameter that determines to what extent decision time reduces confidence. γ takes a value 

between 0 and 1 that is determined by Bayes rule and reflects the observer’s estimate of 

the magnitude of various sources of variability (Appendix A). In particular, it reflects the 

level of drift-rate variability compared to a weighted sum of accumulator noise, stimulus 

variability, and drift-rate variability. An important case is when the observer believes there 

is no trial-to-trial variability in drift rate—neither from trial-to-trial variability in stimulus 

evidence strength nor from variable processing of constant evidence strength stimuli—and 

therefore they believe they know the difficulty of the task. In this situation, the rate of 

evidence accumulation conveys no information about difficulty by definition, time spent 

accumulating evidence is therefore irrelevant, γ = 0, the readout in Equation 1 no longer 

depends on time, and the time penalty for confidence does not apply. Instead, the readout 

becomes identical to a readout of the state of the accumulator (when confidence is treated as 

an ordinal variable; Bogacz et al., 2006; Moran, 2015).

There are some further details regarding the readout (Equation 1) that are helpful to 

note. First, the readout is the same regardless of whether observers set the time spent 

accumulating evidence through their response time (i.e., free response), or whether time 

spent accumulating evidence is set by the experimenter (i.e., interrogation; Introduction 

section; Calder-Travis et al., 2023; Moreno-Bote, 2010). Because the rate at which evidence 

has accumulated provides information about task difficulty, accumulation time is relevant 

for inferring task difficulty even when accumulation time is not determined by the observer 

(Introduction section). Second, the specific divisive form of the readout is prescribed by the 

observer’s beliefs about the statistics of the task and noise corrupting incoming evidence, 

together with Bayes rule (Appendix A and Calder-Travis et al., 2023). Heuristic readouts 

utilizing a different form for the time penalty—for example, a subtractive penalty—could be 

designed to give plausible confidence reports. In the specific case of a subtractive penalty, 
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after a long time spent deliberating the penalty would grow to become greater than the 

accumulated evidence itself (at least in the free response condition where accumulated 

evidence cannot grow past the decision thresholds). In this case, the penalty would outweigh 

the evidence, leading to a strong negative evaluation of any choice made, and a paradoxical 

situation in which observers would make choices they believe to be wrong. Therefore, some 

limit to the size of a subtractive penalty would need to be built in. Note that such a limit is 

automatically built into a divisive penalty: After lengthy deliberation, time, t, in Equation 1 

is very large, so accumulated evidence, X, is divided by a very large number. This produces 

a very small but positive number, implying negligible support for the choice made (i.e., a 

guess), rather than negative support for the choice (i.e., suggesting an error). Differentiating 

between a sophisticated heuristic that approximates an optimal readout and a Bayesian 

readout itself is beyond the scope of this work, as we acknowledge in General Discussion 

section.

We consider two variants on the Bayesian readout, a calibrated and a miscalibrated readout 

(Drugowitsch et al., 2014). For a calibrated Bayesian observer, γ reflects the true magnitude 

of the various different sources of variability mentioned. A miscalibrated observer is not 

assumed to have perfect knowledge of the statistics for these different sources of variability. 

As a result, γ differs from the value used by a calibrated Bayesian observer, and the 

dependence of the confidence readout on evidence and time is altered. In particular, the 

strength of the time penalty for confidence is altered. The idea of incorrect variability 

estimates is consistent with the finding that human observers are poor at learning and 

dealing with noise associated with stimulus variability (de Gardelle & Mamassian, 2015; 

Herce Castañón et al., 2019; Zylberberg et al., 2014, 2016) and with the fact that in the task 

we use, we do not provide trial-by-trial feedback, preventing observers from calibrating their 

estimates. In the case of Bayesian confidence, both calibrated and miscalibrated, we assume 

normally distributed metacognitive noise corrupts the observer’s readout (Appendix A).

Although miscalibrated, the confidence readout remains a “Bayesian” readout here in the 

crucial sense that the calculations performed by this observer are exactly those performed 

by the calibrated Bayesian observer. Hence, the algorithm and implementation used for 

both the calibrated and miscalibrated readout will be identical—the two differ only in 

whether their representation of the task context is perfectly accurate (calibrated) or not. 

In general, Bayesian observers need not be omniscient observers, in that they may not 

immediately know the statistics of all the tasks that they perform. Like any observer, the 

Bayesian observer requires the opportunity to learn the statistics of a new task, and in 

situations in which feedback is limited, they will necessarily have to rely on their estimates 

for task statistics, which may well deviate from the true values. In any case, we are 

not strongly committed to the view that confidence itself is normative. As discussed in 

Introduction section, there are principled reasons for expecting decisions to be produced 

through normative mechanisms, even if confidence reports are not. We are motivated by the 

theoretical arguments for normative decision mechanisms to explore DDM-based models of 

confidence, including plausible variants of Bayesian confidence.

We constructed a range of models by combining the core model with different combinations 

of these features. We considered all possible combinations of the features, which led to 2 
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(drift-rate variability yes or no) × 2 (flat or decreasing decision thresholds) × 3 (confidence 

reflects accumulator or calibrated Bayesian readout or miscalibrated Bayesian readout) = 12 

models. A calibrated Bayesian observer correctly believes there is no drift-rate variability 

when it is absent. As discussed, in this case γ = 0, so the time penalty for confidence 

does not apply. Instead, confidence reflects a simple readout of the state of the evidence 

accumulator. Consequently, we removed the two Bayesian models that exactly duplicated 

the predictions of the corresponding non-Bayesian models. This left 10 models (Table 1).

The core model (Model 0) is a baseline DDM that we expect to struggle to account for 

confidence reports (Table 1). It is included for comparison. Model V is closely related to 

the 2DSD model (interrogation version; Pleskac & Busemeyer, 2010), which struggles to 

capture the strength of the relationship between confidence and response time (Pleskac & 

Busemeyer, 2010). For all models, we do not consider trial-to-trial variability in the start 

point of the accumulator, a source of variability considered by Pleskac and Busemeyer 

(2010). Start point variability is usually justified on the grounds that it permits models to 

account for certain patterns in response times (Ratcliff et al., 2016). Because our main focus 

was understanding confidence, and to keep the models as constrained as possible, we did 

not consider this additional complexity (when comparing Model V and 2DSD, note also the 

different operationalization of drift-rate variability discussed above). Models D–VDM (in 

Table 1) represent different combinations of possible extensions that may allow the DDM to 

account for confidence reports, and in particular, their relationship with response time.

Explaining Key Findings

There are a range of phenomena that a satisfactory account of decisions and confidence 

would need to account for, many of which were set out as “empirical hurdles” by Pleskac 

and Busemeyer (2010). In this section, we explore key explanations for known phenomena 

relating to confidence, explicitly linking these explanations to the model features on which 

they rely (Tables 2 and 3; because our focus is confidence, we do not consider phenomena 

relating solely to responses and response times, but see Pleskac and Busemeyer, 2010, for 

explanations of how such effects can be accounted for within a DDM framework). Where a 

phenomenon applies to both free response and interrogation conditions, we only discuss the 

explanation for this phenomenon in the free response condition: It is often the presence of 

decision bounds that make observed phenomena difficult to account for. Hence, we will use 

explanations involving decision thresholds, and the idea that under free response conditions 

evidence is in sensory and motor processing pipelines at the time of response, which is a 

feature of all of the models we consider.

Pattern (A) “conf. with signal” in Table 2 is that confidence increases with the strength of 

signal provided by the stimulus. A stronger signal leads to a higher drift rate and hence, 

on average, a greater amount of evidence in the pipeline favoring the correct response, and 

increased confidence (Pleskac & Busemeyer, 2010). The time penalty for confidence will 

amplify the effect because higher drift leads to faster responses and, as a result, higher 

confidence. Similarly, decreasing decision thresholds may exacerbate the effect because 

faster responses are generated when the decision threshold is reached sooner, and hence, 

these decisions will be made with a greater balance of evidence in their favor.
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Pattern (B) “acc. and conf.” in Table 2 is that choice accuracy and confidence are positively 

correlated within individuals, even when considering trials of a fixed difficulty. Pipeline 

evidence will, in general, support the correct option, adding further evidence to the 

accumulator if the correct option was chosen (Pleskac & Busemeyer, 2010). The reverse 

holds in the case of an incorrect choice. The result is greater confidence on correct trials, and 

hence, a correlation between confidence and accuracy.

Key relationships have been identified between confidence and time. For example, 

confidence increases with response time when comparing across conditions that differ in 

their emphasis on trading speed for accuracy, and in settings where stopping is enforced at 

a particular time such as in the interrogation condition, pattern (C) “conf. with time (speed-

acc)” in Table 2. This pattern can be explained within any DDM account of confidence 

(Ratcliff & McKoon, 2008). In the free response condition when speed is emphasized, 

observers use lower decision thresholds such that less evidence is required to trigger a 

decision. This leads to faster, less accurate choices, but also to lower confidence. In the 

interrogation condition, the state of the accumulator simply grows with time as more 

evidence samples are received, generating an increase in confidence (provided the effect 

of the confidence time penalty is not too strong; Rosenbaum et al., 2022).

In contrast, in free response tasks, within a single speed-accuracy condition, confidence is 

higher for faster responses than slower responses, pattern (D) “conf. with time (free)” in 

Table 2. We can account for this pattern qualitatively using the idea of a processing pipeline 

together with drift-rate variability (Pleskac & Busemeyer, 2010; Introduction section): Trials 

with higher drift rates are associated with faster responses but also stronger evidence in 

favor of the chosen option in the processing pipeline, and hence increased confidence. 

As discussed above, Pleskac and Busemeyer (2010) noted that 2DSD—which contains 

a processing pipeline and drift-rate variability—struggles to explain the strength of the 

negative relationship between decision time and confidence. In contrast, models that include 

decreasing decision thresholds inherently create a strong dependency between confidence 

and decision time, because slower decisions are made with a smaller balance of evidence in 

their favor. The time penalty for confidence may also help us explain why the relationship 

between decision time and confidence is so strong: Observers who apply the time penalty 

take into account the time spent deliberating, in addition to the balance of evidence, in their 

confidence readout. We will see in computational modeling below, whether these features 

can account for the strength of the effect of response time on confidence.

Pattern (E) “conf. resolution” in Table 3 is that confidence is a stronger predictor of accuracy 

when task instructions and incentives emphasize speed over accuracy than vice versa. We 

can account for this effect if people take longer between decisions and confidence reports 

under speeded conditions (Pleskac & Busemeyer, 2010). The longer this interjudgment time, 

the greater the effect of pipeline evidence, which increases confidence on correct trials 

and decreases it on incorrect trials. However, we may not need to invoke an additional 

mechanism to explain this pattern in models featuring a time penalty for confidence. In a 

range of settings, the effect of the time penalty for confidence is to divide the accumulated 

evidence by a function of time (Drugowitsch et al., 2012; Moreno-Bote, 2010; Appendix A; 

Equation 1), decreasing the effect of evidence on confidence. At slow response times, the 
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time penalty will be greater, decreasing the effect of pipeline evidence on confidence further, 

and therefore decreasing the difference in confidence between correct and error trials.

In addition to the patterns identified by Pleskac and Busemeyer (2010), with the idea of 

pipeline evidence, the time penalty for confidence, and a flat decision threshold, we can 

explain some results that have previously appeared difficult to reconcile. Sanders et al. 

(2016) observed that confidence in errors decreases as a task becomes easier and stimuli 

more discriminable. However, Kiani et al. (2014) found that, when confidence reports 

were collected simultaneously with decisions, confidence in errors increased with stimulus 

discriminability. These findings, pattern (F) “conf. in errors” in Table 3, can be reconciled 

by considering the timing of decision and confidence reports (Calder-Travis et al., 2023; 

Desender et al., 2020; Khalvati et al., 2020; Kiani et al., 2014). Sanders et al. (2016) 

used confidence reports that followed decisions, while Kiani et al. (2014) used confidence 

reports that were made simultaneously with decisions. If the latter setup eliminates the 

accumulation of pipeline evidence following the crossing of the decision threshold, then 

evidence accumulation will always end at the decision threshold, and the final accumulated 

difference in evidence will always be the same. On the other hand, decision time will vary 

between trials. Increased signal strength leads to faster correct responses, but crucially, 

it also leads to faster error responses (when the decision threshold is flat, and without 

internally generated variability in drift rate; Shadlen et al., 2006). Faster responses are 

associated with a reduced time penalty for confidence. Hence, in the absence of pipeline 

evidence, confidence in errors will be greater when a task is easier (Calder-Travis et al., 

2023; Desender et al., 2020). When confidence reports follow a decision, and pipeline 

evidence is accumulated, pipeline evidence generally favors the correct option, reducing 

confidence in errors. When signal strength is greatest, this effect is strongest, leading to 

lower confidence in errors when a task is easier.

A further distinctive finding was presented by Yu et al. (2015). Yu et al. (2015) manipulated 

the time between the primary decision and confidence report, finding that confidence on 

correct trials was relatively unaffected by this interjudgment time, whereas confidence on 

error trials decreased, pattern (G) “conf. with IJT” in Table 3. Yu et al. (2015) explained 

this pattern by invoking the idea of a nonnormative leak in the evidence accumulation 

mechanism, such that there is a continuous decay or loss of previously accumulated 

evidence (Miletic et al., 2016; Ratcliff & Smith, 2004; Usher & McClelland, 2001). 

However, it may be possible to account for the effects observed by Yu et al. (2015) in a 

different way. Specifically, it may be possible using DDM-based models (implying no leak 

of accumulated evidence), coupled with a Bayesian time penalty for confidence. On correct 

trials, evidence gathered during the interjudgment time will generally support the choice 

made, meaning confidence will increase with interjudgment time. However this effect will 

be opposed by the time penalty for confidence, which decreases confidence with the time 

spent accumulating evidence. On error trials, evidence gathered during the interjudgment 

time will generally conflict with the choice made, decreasing confidence with interjudgment 

time. This effect will additionally be enhanced by the time penalty for confidence.
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Predicted Pattern

Although it is important to account for benchmark findings, and findings that have been 

difficult to reconcile, a stronger test is whether a model predicts qualitative patterns in new 

data. In this section, we note a new pattern predicted by models in which decisions and 

confidence both result from the same evidence accumulation, and where a decision threshold 

triggers a response.

The novel prediction we add to our list of confidence-related patterns applies specifically in 

the free response condition. It is that, once any effect of response time has been accounted 

for, evidence from different time periods during a decision will weigh differently on 

participants’ confidence judgments, Pattern (H) “evidence on conf.,” Table 3. Specifically, 

we predict that predecision evidence will have a much smaller effect on confidence than 

pipeline evidence. This key prediction is initially counterintuitive given that all of the models 

we consider treat overall accumulated evidence as the basis for confidence judgments. 

However, the prediction follows directly from the assumptions that decisions and confidence 

are the result of the same evidence accumulation process, and that in free response tasks 

a decision threshold is used. Under these simple assumptions, the state of the accumulator 

at the time of the decision is fully determined by the shape of the decision threshold. As 

such, evidence processed prior to a decision (i.e., all evidence apart from pipeline evidence) 

is irrelevant to confidence once the time of the decision is taken into account. By contrast, 

pipeline evidence should affect confidence independent of decision time. This distinction 

between evidence accumulated early versus late in the decision process does not hold in the 

interrogation condition, where we hypothesize that observers do not use decision thresholds. 

Instead observers make a decision after stimulus presentation ends and all evidence has been 

processed. In this case the decision time does not provide information about the state of the 

accumulator, and there is no pipeline evidence gathered following a decision. Therefore, in 

this case all evidence will be equally strongly related to confidence.

Four Tests

Using our knowledge of the various patterns and explanations in Tables 2 and 3, we next 

aimed to identify quantitative tests of our core modeling assumptions. Our core modeling 

assumptions—that is, those assumptions shared by the core model and all its variants 

(Table 1)—were that (a) confidence reflects a (possibly Bayesian) readout of the evidence 

accumulated, (b) the same DDM evidence accumulator used for the decision is used to read 

out confidence, and (c) a decision threshold is used in the free response condition, but not in 

the interrogation condition. From Tables 2 and 3 we see that our core modeling assumptions 

alone can generate patterns (C) “conf. with time (speed-acc)” and (H) “evidence on conf.” 

Using this knowledge, we can specify specific tests that can be applied to new data that 

if verified would support our core modeling assumptions and if falsified would lead us to 

question those core assumptions.

Before setting out specific tests, we note that although not predicted by any single core 

modeling assumption, pattern (D) “conf. with time (free)” can be generated by each of 

the features used to build variants of the core model (drift-rate variability, time penalty for 

confidence, decreasing decision thresholds). Hence, this pattern can be used to build tests 
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of the general set of extensions. An important detail is that the core model itself does not 

generate pattern (D) “conf. with time (free),” because none of the extensions are present in 

the core model.

Having noted specific patterns produced by models featuring our core computational 

assumptions, we use those patterns to predict the following specific results, which can be 

used as tests of the core modeling assumptions:

I. Test I: In the free response condition, confidence will be negatively related to 

response time, pattern (D) “conf. with time (free)”.

II. Test II: Confidence will be more negatively related to response time under 

free response, than in the interrogation condition, pattern (C) “conf. with time 

(speedacc)” and (D) “conf. with time (free).”

III. Test III: Under free response, once the effect of response time has been 

accounted for, the effect of predecision evidence on confidence will be smaller 

than the effect of evidence gathered after a decision, pattern (H) “evidence on 

conf.”

IV. Test IV: Once the effect of response time has been accounted for, the effect 

of predecision evidence on confidence will be stronger in the interrogation 

condition than in the free response condition, pattern (H) “evidence on conf.”

As discussed above, all model variants are underpinned by the same core assumptions and 

therefore all predict these four specific results. The only exception is the core model (Model 

0), which cannot explain pattern (D) “conf. with time (free)” (Table 2) and hence does not 

predict Test I. Nevertheless, the core model predicts that the relationship between time and 

confidence will be smaller (and hence “more negative”) in the free response condition, due 

to the presence of decision thresholds in this case, and their absence in the interrogation 

condition. Tests I and II provide basic proofs-of-concept for our computational modeling 

approach because, as discussed, the associated patterns have repeatedly been observed 

before and should follow naturally from our core modeling assumptions. Nevertheless, if 

these tests failed in a new data set, it would provide evidence against those assumptions. 

Tests III and IV thus provide the critical test for our modeling approach, in terms of a novel 

prediction about key qualitative features of the relationship between decision evidence and 

decision confidence. To anticipate our results, all four qualitative tests were satisfied in our 

data. As detailed in later sections, these affirmative qualitative results allowed us to proceed 

to an exploration of the precise quantitative predictions of the 10 model variants.

Experimental Method

We have considered a core DDM, and nine variants of this model featuring combinations of 

drift-rate variability, decreasing decision thresholds, and a (possibly miscalibrated) Bayesian 

time penalty for confidence. We sought to apply all four qualitative tests of the nine variants 

of the core model (Tests I–IV, Models section) in a preregistered, adequately powered 

study. As the models make contrasting predictions for the interrogation and free response 

conditions (Models section), and patterns in human confidence data are also known to 
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differ strongly (Rosenbaum et al., 2022), using both conditions in the same experiment 

can provide a particularly strong test of the models (Ratcliff, 2006). We will capitalize on 

this in later sections with computational modeling, and ask whether any model variant can 

simultaneously account for the precise quantitative patterns observed in the two conditions, 

in addition to the qualitative patterns.

Participants

Forty-nine participants were recruited to take part in the study (36 female, 13 male; 39 

aged 18–25, 10 aged 26–35). Consistent with a preregistered recruitment schedule (see 

below), only data from the first 48 participants were analyzed. The study was approved 

by the appropriate university ethical review body (Oxford University Medical Sciences 

Interdivisional Research Ethics Committee reference R56149/RE001), and all participants 

gave informed consent.

Apparatus

A cathode ray tube monitor at 60 Hz refresh rate, a resolution of 1,600 × 1,200, and 

physical viewable size 36.4 × 27.3 cm was used to present stimuli. A windows PC running 

Psychtoolbox-3 on MATLAB was used for the experiment (Brainard, 1997; Kleiner et al., 

2007; Pelli, 1997).

Stimuli

Stimuli were two circular arrays of dots, one presented 2.9 degrees of visual angle (DVA) 

to the left and one 2.9 DVA to the right of the center of the screen (assuming stimuli were 

viewed at approximately 60 cm). The arrays had no outline but had an imaginary circular 

boundary at a radius of 2.0 DVA. Within this imaginary circle, 3,096 nonoverlapping dot 

locations were defined. Within a trial, dots appeared in a new subset of these locations 

every 50 ms “frame” (Ratcliff & Smith, 2010). The number of dots in each array varied 

around a fixed mean value such that either the left or right array had more dots on average. 

Fluctuations across frames in the number of dots presented provided a time-varying signal 

that could be correlated with participants’ decisions and reported confidence (Carlebach & 

Yeung, 2020; Charles & Yeung, 2019; Resulaj et al., 2009; Shadlen & Newsome, 2001; van 

den Berg, Anandalingam, et al., 2016). Each dot was square, 0.043 DVA in height, and all 

dots were separated from their neighbors by 0.022 DVA. Dots and the background were gray 

scale with RGB color value 200 and 80, respectively.

Procedure

On each trial, participants’ task was to determine which of two arrays contained the most 

dots on average. Participants used the left or right mouse button to indicate their response, 

before reporting their confidence (throughout “response” refers to the left vs. right choice, 

not the confidence judgment). The study used both free response trials (participants can 

respond when ready) and interrogation trials (participants cued when to respond; Models 

section; Bogacz et al., 2006), with a blocked within-participants design (Figure 3).

In the free response condition participants were asked to be “as accurate and fast as 

possible.” After a response, the stimulus cleared (unless the response was before the stimuli 
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appeared, in which case a warning message was displayed for 6 s and the trial ended). In 

the interrogation condition, participants had to wait for the stimuli to disappear, at which 

time the fixation cross would turn from white to red, and they could respond. They had 1 

s to respond, or they would receive a message, “Too slow” and the trial would end after a 

further 2 s. If they responded before the stimuli disappeared they would receive a message, 

“Too early,” and the trial would end after a further 2 s. The time at which the stimuli 

disappeared was random and drawn from a truncated normal distribution. This was designed 

to approximately match response times in the interrogation condition to those in the free 

response condition, minimizing the risk that participants would only monitor interrogation 

condition stimuli for a limited period of time (Balsdon et al., 2020; Ratcliff, 1988, 2006). 

Specifically, prior to truncation, the normal distribution had a mean and standard deviation 

matched to the mean and standard deviation in the most recent free response block (and M = 

750 ms, SD = 400 ms on the very first block). The distribution was truncated at 200 ms and 

4,000 ms. Each block of the experiment only contained trials from one of the two conditions, 

and participants were informed of the condition before the start of each block.

The number of dots in the two arrays was resampled every 50 ms from two independent 

truncated normal distributions, one for each array. On each trial, prior to truncation, one of 

the normal distributions had a mean 90 dots higher than the mean of the other distribution. 

Each distribution had a standard deviation of 220 dots. These distributions were then 

truncated to ensure that the number of dots was always positive and always below or 

equal to the maximum number of dots that could be displayed in an array at once (3,096). 

The half-way point between the means of the two distributions was itself randomly and 

independently set on a trial-by-trial basis, to reduce the risk that participants would focus 

on a single array of dots (Charles & Yeung, 2019). The half-way point was drawn from a 

truncated normal. Prior to truncation, it had a mean of 1,000 dots and standard deviation of 

100 dots. The distribution was truncated to be between 500 and 1,500 dots. In each block, 

there was an equal number of trials in which the correct answer was left and right, and the 

order was randomly shuffled.

Note that some trials were more difficult than others because of frame-by-frame variability 

in evidence strength present in the stimulus used. However, aside from minor truncation 

effects, there was no trial-by-trial variability in evidence strength (trial-by-trial variability 

is a source of variability that has a consistent effect over the whole duration of a trial). As 

discussed in the introduction, when trial-by-trial variability in stimulus evidence strength 

is present, this generates trial-by-trial variability in drift rate, making some patterns in 

confidence data easier to account for. We focus throughout on the more challenging case of 

no trial-by-trial variability in stimulus evidence strength.

After each legitimate response (i.e., the response did not incur a too slow/fast error 

message), participants were asked to report their confidence. The cursor would appear at 

the center of the screen, along with an arc that formed a semicircle around the cursor. 

Participants reported their confidence by clicking on the arc. This setup was chosen so that 

participants did not have to move the mouse further to report some levels of confidence than 

others. The left of the arc was marked “Definitely wrong,” the center marked “Don’t know,” 

and the right marked “Definitely correct.” Participants were asked to use the full range of 
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the scale. There was no time pressure when reporting confidence. Following a confidence 

report, the next trial would begin after a further 400 ms, starting with a 500 ms presentation 

of a central fixation cross.

The main experiment comprised 16 blocks of 40 trials each, and participants had two 

blocks of training prior to this. Each successive pair of blocks comprised one free response 

block and one interrogation block, with condition order randomized within this pairing. 

Participants did not receive feedback on a trial-by-trial basis, but at the end of each block 

participants were informed of the number of correct responses they had made in the block, 

along with their high scores (maximum number of correct responses in a block) in each 

condition.

All manipulations performed are described above (Simmons et al., 2011). The following 

provides a comprehensive list of measures recorded each trial: response, response time, 

confidence, a complete description of the stimulus, and trial duration.

Analysis

Our central aim was to test for the predicted dependence of confidence on decision time 

and the evidence received at different time points (particularly predecision vs. pipeline 

evidence). Our analyses of evidence strength focused on fluctuations in the number of dots 

around the mean of the relevant distribution, for each circular array (Charles & Yeung, 2019; 

Resulaj et al., 2009; Zylberberg et al., 2012). As discussed, the number of dots in each array 

changed every 50 ms frame, each time being resampled from a specific distribution (Figure 

3). For each frame and array, we looked at the number of dots presented, after subtracting 

the mean of the distribution from which this number was sampled (which was fixed across 

frames). Then, for each frame, we subtracted the resulting value for the unchosen array, 

from the resulting value for the chosen array. We refer to this measure of evidence as the 

“evidence fluctuations for choice.”

We divided evidence fluctuations into two quantities: predecision evidence, which is 

evidence processed before the participant made their decision (at the time of threshold 

crossing), and pipeline evidence, which is evidence that is still moving through sensory and 

motor processing pipelines at the time of the (physical) response (Resulaj et al., 2009). This 

definition implies that pipeline evidence will be presented close in time to the (physical) 

responses and will not affect the decision made (Resulaj et al., 2009; van den Berg, 

Anandalingam, et al., 2016). If evidence in a frame has an effect on the choice made, in 

general, evidence fluctuations in the frame will support that choice. Hence, average evidence 

fluctuations for the chosen option will be above zero. Separately for each participant, we 

looked at the average evidence fluctuations for the chosen option in the 12 frames preceding 

responses. Adapting the approach taken by van den Berg, Anandalingam, et al. (2016), we 

fit a step function to the average evidence fluctuations. We fit the initial value of the function 

(in the 12th frame prior to response), and the frame in which the function dropped down 

to zero (constrained to fall within 1–10 frames, inclusive, prior to response) by minimizing 

the root-mean-square error (Figure 4). The frame in which the step function drops provides 

an estimate of the number of stimulus frames immediately prior to a response that do not 

inform the decision but are in sensory and motor processing pipelines. Predecision evidence 
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and pipeline evidence on each trial were calculated by summing the fluctuations in the 

relevant frames.

We only used data from the free response condition to estimate the number of frames 

in processing pipelines. In the interrogation condition, if the manipulation is successful, 

decisions are made after the stimulus has cleared from the screen. Hence, no extra evidence 

is gathered between the time of the decision and the response. Nevertheless, we can analyze 

the impact of evidence from the corresponding final period of stimulus presentation, using 

the pipeline duration estimate derived (on a participant-by-participant basis) from the free 

response condition. This allows us to compare across conditions and allows us to check for 

artifacts: In the interrogation condition, there should be no difference between effects of the 

predecision evidence and the “pipeline” evidence.

With measures of predecision and pipeline evidence, we next fit regression models to 

estimate the strength of the relationship between key variables and confidence. Precisely, 

we fit a probit ordinal regression model to the data (Long, 1997), with confidence 

reports binned into five categories as the outcome variable. We quantile binned confidence 

separately for each participant, and for each condition (interrogation vs. free response), with 

approximately equal numbers of cases in each bin. We ran the regression analysis separately 

for each participant and condition. Ordinal regression is very similar to logistic regression 

but can handle cases in which the outcome variable has several ordered categories, 

rather than only two categories as in logistic regression (Long, 1997). Predictors in the 

regression were response time, predecision evidence, pipeline evidence, and accuracy (coded 

“1”/“0” for correct/incorrect respectively), individually z-scored (intercept terms are also 

fit). (Specifically, the number of intercept terms is one less than the number of categories 

of the outcome variable, which in this case is binned confidence.) We applied the reverse 

transformation to the coefficients produced by the regression, to return them to the units 

they would have had if z-scoring was not applied (Appendix C). For all Tests I–IV (Models 

section), we verified the same results were obtained without any z-scoring.

We examined whether evidence fluctuations and response time predicted confidence, by 

performing statistical tests on the coefficients produced by the ordinal regression onto 

confidence. These coefficients reflect the strength of the relationship between the predictors 

and the outcome. As we performed an ordinal regression for each participant and condition, 

for each predictor this approach produced one coefficient per participant and condition. We 

used these coefficients in t tests to look for differences from zero, or other coefficients. We 

measured effect size using the one-sample variant of Cohen’s d (Cohen, 1988), computed 

by dividing the mean of the values being compared to zero, by the estimated population 

standard deviation.

We could not use trials in which no confidence report was obtained (because the response 

was too fast/slow). We excluded further trials and participants according to preregistered 

criteria: We excluded any trial in which the number of frames prior to response was less 

than, or equal to, the estimate of the pipeline duration for the participant (the pipeline 

duration estimate is the estimate of the number of frames that are in the processing pipeline 

at the time of responses). We excluded participants that met any of the following conditions: 
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(a) fewer than 60% correct responses, where this is calculated using included trials; (b) 

prior to binning, any particular confidence value was reported on more than 30% of trials; 

(c) a confidence bin, after binning with MATLAB’s “quantile” function, contained <5% 

of included trials; (d) there were less than 70 included trials; and (e) after predictors were 

z-scored and combined into a single matrix (where each row was a case and each column 

a predictor), the two-norm condition number for inversion of this matrix (which provides 

a measure of sensitivity to errors in certain operations on the matrix) was greater than 

1,000. All exclusion criteria were applied separately to both conditions, and if met in either 

condition, data from the participant were excluded. These criteria led to the data set from 

1/48 participants being excluded from the regression analysis.

Plotting Procedure

For data visualization in figures below that have continuous variables on the x-axis of plots 

(apart from plots of quantile probability functions and probability densities), we first binned 

trials according to the x-axis value separately for each participant and each plotted series, 

such that bins on the x-axis contained approximately equal numbers of trials. The x-position 

of a bin was determined by an average of the values falling in that bin. Specifically, the mean 

value of the x-variable in each bin, for each participant, was computed. The mean, across 

participants, of these means then determined the x-location.

The y-value of a bin represents the mean value of the y-variable across participants. Unless 

noted, error bars and error shading represent ±1 standard error of the mean (SEM) across 

participants or simulated participants. Unless noted, plots were based on the data from all 

participants, and all trials in which a confidence report was obtained. For all plots that refer 

to “binned confidence,” confidence reports were divided into four bins on a participant-by-

participant basis.

In some plots, small panels (marked “P10,” “P20,” and “P30”) additionally present 

individual participant data for three random participants. In this case, fewer bins were used 

for the variables on the x-axis (to reduce noise), and of course no averaging was conducted 

across participants (plots showing across-participant averages are marked “Av” instead).

Preregistration

The details of this analysis (excluding the computational modeling in later sections) were 

decided prior to data collection and recorded in a preregistration (Open Science Framework 

registration at https://osf.io/wzrhm). Preregistered sample size was justified with a power 

analysis (see preregistration; Faul et al., 2007). We preregistered four statistical tests on the 

coefficients produced by the ordinal regression analysis (preregistration of a test is indicated 

in the results section).1 As these tests were specified a priori we made no correction for 

multiple comparisons.

1There is a typographical error in the preregistration. In the preregistration document, the predictions are lettered differently to here. 
The first time “prediction B” (as lettered in that document) is mentioned, it does not make sense. Our intent is clarified by looking at 
the stated statistical test for Prediction B. We made one small deviation from the preregistration. For the ordinal regression analysis, 
we excluded any trial in which the number of frames prior to response was less than, or equal to, the estimate of the pipeline duration 
for the participant. We preregistered “less than,” not “less than or equal to.” We did not run the analysis in the “less than” case.
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It should be noted that we originally made all preregistered predictions on the basis of 

Model D only (Table 1), but a range of models are consistent with the predictions (Models 

V–VDM in Table 1). We compare all models using computational modeling in later sections.

Anonymized data, experiment code, analysis code, and all modeling and simulation code 

written for the study will be made publicly available on publication at https://doi.org/10IO/

QPSEM.

Experimental Results

Task Performance

Averaging across participants, 98% of trials ended with valid confidence reports, and 

accuracy on these trials was 77%. Average response time was 2.08 s in the free response 

condition, and 2.19 s (including stimulus presentation time) in the interrogation condition. 

Distributions over response times and confidence reports are provided in Appendix D. 

Using the method described in Experimental Method section, we estimated the number of 

50 ms frames in sensory and motor processing pipelines at the time of response. Across 

participants, the median value was six frames (interquartile range, 1; 6 frames = 300 ms). 

We used Goodman and Kruskal’s gamma to assess the rank correlation between confidence 

and accuracy. Computing one value of gamma for each participant and comparing the 

resulting values to zero, we found that accuracy and confidence were reliably positively 

correlated, average Γ = 0.25, t(47) = 14, p = 3.0 × 10−18, d = 2.0. Taken together, 

these results suggest participants understood the task and reported a meaningful value for 

confidence.

Response Time and Accuracy

Prior to looking at the relationship between confidence and response time, we look at the 

relationship between accuracy and response time. The latter will inform our interpretation 

of the former. Longer response times appeared to be associated with lower accuracy in the 

free response condition but greater accuracy in the interrogation condition (Figure 5A). To 

explore this pattern further, we compared mean response time in correct trials versus error 

trials, via t test on values across participants. In the interrogation condition, errors were 

faster than correct choices, t(47) = −6.0, p = 2.4 × 10−7, d = −0.87, whereas, in the free 

response condition, errors were slower than correct choices, t(47) = 3.6, p = .00078, d = 

0.52. In the interrogation condition, if the observer pays attention throughout the course of 

the trial, longer response times for correct responses are expected. This is because observers 

receive more evidence when the stimulus is presented for a long time and will therefore 

be more accurate. The situation is very different in the free response condition, where 

the observer must set a decision threshold and determine response time themselves. Both 

drift-rate variability and decreasing decision thresholds can lead to errors that are slower 

than correct choices (Ratcliff & McKoon, 2008; Shadlen & Kiani, 2013) and hence are 

consistent with the observed pattern.
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Test I

Our first key prediction concerned the relationship between response time and confidence 

in the free response condition (Figure 5B; Models section for rationale for using binned 

confidence; a similar plot was obtained when plotting raw confidence instead). As predicted, 

in this condition confidence decreased with time (Figure 5B). For each participant, 

and separately for the two conditions, we ran a regression to predict confidence using 

predecision evidence, pipeline evidence, response time, and accuracy (Experimental Method 

section). To test the apparent effect of response time in the free response condition, we 

compared the regression coefficients for time to zero using a t test. Confidence was 

negatively related to response time, t(46) = −8.8, p = 9.7 × 10−12, one-tailed, d = −1.3, 

preregistered, Test I, consistent with the results from the preliminary study and previous 

findings (Pleskac & Busemeyer, 2010, Empirical Hurdle 4). This finding is consistent with 

all variants of the core model, but not the core model itself (Models section).

Test II

In contrast, in the interrogation condition, confidence did not vary significantly as a function 

of response time, t(46) = −0.90, p = .37, d = −0.13; Figure 5B. The core model and 

all of its variants predict a more negative effect of response time in the free response 

than in the interrogation condition, because observers only use a decision threshold in the 

free response condition (Models section). Indeed, a paired t test comparing the relevant 

regression coefficients showed this was the case, t(46) = −8.1, p = 1.1 × 10−10, one-tailed, 

d = −1.2, preregistered, Test II. Nevertheless, we were surprised that confidence did not 

increase with response time in the interrogation condition. This result conflicts with previous 

findings (Pleskac & Busemeyer, 2010, Empirical Hurdle 5) and the intuition that if the 

stimulus is presented for longer, more evidence will be gathered, and confidence will be 

higher.

One explanation for this surprising result is that, in our interrogation condition, observers 

only monitor the stimulus for a short initial period of time, such that their decisions are 

largely independent of later evidence and, correspondingly, confidence is insensitive to the 

overall amount of information presented. This possibility is consistent with the idea that 

observers set “implicit” decision thresholds in interrogation tasks (Balsdon et al., 2020; 

Kiani et al., 2008; Ratcliff, 1988, 2006), which trigger decisions that are stored by the 

observer until the response cue, with evidence received following the decision ignored. In 

this case, evidence accumulation only continues for the full duration of the stimulus in a 

subset of trials. However, we carefully matched response times across the two conditions 

with reasonable success (Appendix D), which may have minimized the number of times 

implicit thresholds were reached even if they were present. Supporting this claim, there is 

evidence from previous research that such an experiment design can successfully ensure 

implicit thresholds are not used in the interrogation condition (Rosenbaum et al., 2022). 

Thus, other factors are likely at play in producing this surprising null relationship between 

confidence and response time: As we will discuss later, this qualitative pattern favors models 

featuring a miscalibrated Bayesian readout for confidence. In General Discussion section, 

we consider this lack of a significant relationship between response time and confidence in 

the interrogation condition in the context of previous findings.

Calder-Travis et al. Page 27

Psychol Rev. Author manuscript; available in PMC 2025 February 24.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Effect of Evidence on Choice

Analyses looking at the effect of evidence on choice allowed us to further investigate the 

possibility that observers used implicit decision thresholds in the interrogation condition. 

We looked at the average evidence fluctuations in the direction of the choice made, as a 

measure of the strength of the relationship between evidence presented at different time 

lags and the response made (Figure 6A and 6B; Experimental Method section; Resulaj et 

al., 2009). Looking at average evidence fluctuations at time lags relative to the onset of 

the trial (Figure 6A), it appears that evidence presented near to the start of the trial has a 

stronger effect on the decision. A number of mechanisms have been proposed to account for 

such primacy effects, including implicit decision thresholds (Kiani et al., 2008; Tsetsos et 

al., 2012). However, an implicit threshold seems inconsistent with the pattern observed in 

average fluctuations at time lags relative to response (Figure 6B). This pattern suggests all 

evidence in interrogation trials, whenever it is presented, is weighted equally. When looking 

at time lags relative to response (Figure 6B), any stimulus onset effects are presumably 

averaged out due to variability in trial duration. Model-free analyses of evidence weighting 

time courses must be interpreted cautiously because they are affected by both the weight 

given to sensory information received at different time points and the mechanics of the 

decisionmaking process itself (Okazawa et al., 2018). Accordingly, we return to these effects 

when we consider the fit of the models to the data (Modeling Results section). For the free 

response condition, a notable feature in Figure 6B is the apparent negative effect on choice, 

of evidence gathered a long time prior to response. Such long trials may only occur when 

observers initially receive misleading evidence, explaining the effect (see also Figure 5 of 

Charles & Yeung, 2019).

Tests III and IV

The core model and its variants make a critical prediction about the dependence of 

confidence on predecision versus pipeline evidence. We looked at the rank correlation 

between evidence fluctuations and confidence at different time lags (Figure 6C and 6D). We 

see a similar pattern in the effect of evidence on confidence, as in the effect of evidence 

on response. Again, all evidence appears to be weighted equally in the interrogation 

condition, when looking at time lags relative to response (Figure 6D), but a primacy effect 

becomes apparent when looking at the effect of evidence relative to trial onset (Figure 

6C). On the basis of the core model and variants, we reasoned that in the free response 

condition, evidence presented prior to the time of a decision would have a reduced effect 

on confidence, once the effect of time had been accounted for (Models section). We can 

explore this possibility by returning to the coefficients produced by predicting confidence 

in an ordinal regression (Experimental Method section; Figure 7). The effect of time is 

taken into account in this regression because response time is included as a predictor. A 

t test on the coefficients showed that predecision evidence had a stronger effect in the 

interrogation condition than in the free response condition, t(46) = −2.4, p = .010, one-tailed, 

d = −0.35; Figure 7. This effect was even clearer when we baselined the predecision 

evidence coefficients relative to the pipeline evidence coefficients (separately for participant 

and condition), as we had preregistered, t(46) = −11, p = 3.9 × 10−14, one-tailed, d = −1.5, 

preregistered, Test IV. Comparing coefficients within the free response condition, we found 
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that predecision evidence had a smaller effect than pipeline evidence, t(46) = −6.2, p = 7.3 × 

10−8, one-tailed, d = −0.90, preregistered, Test III; Figure 7.

In summary, regarding the four qualitative predictions of the variants of the core model 

(Tests II–IV also hold for the core model itself), we find that all are confirmed in this 

preregistered study. As such, the results provide support for the general modeling approach 

taken. We therefore extended our approach to use detailed computational modeling to 

adjudicate among the DDM variants considered, based on their quantitative fit to these data. 

As part of this endeavor, we address some of the more surprising features of the empirical 

results, including the finding (Figure 5) that confidence varied little as a function of response 

time in our interrogation condition.

Modeling Method

We next sought a stronger, quantitative test of the models: A key motivation of our study 

was to provide a DDM framework for confidence that could account for key relationships 

observed in confidence data, and the strength of these effects. In doing so, we further aimed 

to determine which DDM model variant provides the best account of the data.

As discussed in Introduction section and further in General Discussion section, we do 

not fit the models to response times and responses themselves. Instead we fit the models 

to participants’ confidence reports, given the stimuli they observed, the responses they 

made, and their response times. The focus of our investigation is confidence, and fitting to 

confidence reports makes it possible to use recently developed mathematical expressions 

that are computationally cheap enough to enable trial-by-trial modeling of dynamic 

stimuli (Introduction section; Calder-Travis et al., 2023). These expressions allow us to 

evaluate directly—that is, without the need for laborious and inherently noisy simulation

—the likelihood of each empirically observed data point (i.e., each trial-wise confidence 

report), given assumptions about the computations underlying those data (i.e., theories 

about how confidence is determined) and given the stimulus presented, response observed, 

and associated response time on that trial. We can use these expressions to identify the 

parameters that allow a model variant to best fit empirically observed confidence data—that 

is, we identify model parameters that maximize the probability of observed confidence 

reports, according to the model variant’s specific account of how confidence is generated. 

To compare quantitative fits to the observed data across model variants, we can use a 

cross-validation approach. This involves assessing which model, when fit to a subset of each 

participant’s data, most accurately predicts their confidence reports in a different subset of 

the data. We thus identify, for each participant separately and in aggregate, which of the 10 

model variants best predicts unseen confidence data.

The key strength of fitting confidence specifically, using computationally cheap expressions, 

is that we can fit the models to single-trial confidence reports, rather than aggregate 

features such as the mean and standard deviation of participants’ confidence reports within 

a condition. Conversely, the fitting we use requires the models to make tailored predictions 

given the key features of individual trials (i.e., the stimulus, response, and response time; 

Park et al., 2016). Moreover, we fit data from both the free response and interrogation 
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condition simultaneously, and all parameters relevant to both conditions are shared between 

them. This provides a very strong test for the models because we are requiring the models 

to fit two very different sets of patterns using the same parameter values (Ratcliff, 2006). 

Finally, with this approach, response times and responses effectively become held out 

data that the models are not fit to. We can ask the models to predict these data—that is, 

ask whether model parameters that are chosen to optimize the fit to confidence reports 

nevertheless give reasonable fits to participants’ choices and response times—providing a 

very strong test (Kiani et al., 2014).

Following the approach described in Models section, we model confidence reports as ordinal 

data (see also Yu et al., 2015). For computational modeling, we divide confidence reports 

into four bins on a participant-by-participant basis. That is, models and parameters are 

evaluated according to the likelihood they ascribe to observing a confidence report in a 

particular quartile of each participant’s distribution of confidence reports across trials.

Model Predictions for Confidence

In Calder-Travis et al. (2023), we have derived approximate expressions for the confidence 

of DDM observers under both interrogation and free response conditions, allowing for drift-

rate variability, time-dependent thresholds and metacognitive noise. The approximations 

are computationally tractable and yet closely match detailed simulations (Calder-Travis et 

al., 2023). These expressions were derived according to the experimental design described 

above, in which participants choose between two equally probable options for which the 

stimulus provides two evidence signals, one for each option. The evidence signals vary over 

the course of a trial according to a normal distribution around a mean value, but are constant 

within short “frames.” Using the derivations in Calder-Travis et al. (2023), we capitalize on 

the dynamic nature of these stimuli—which introduces variability within and between trials 

(Figure 3)—to make trial-by-trial predictions for confidence.

A key reason for the low computational cost of these expressions, that makes trial-by-trial 

modeling of confidence in a fluctuating-stimulus task possible, is that a relatively simple 

probability distribution can be found for the final state of the accumulator in the free 

response condition. Namely, the final state of the accumulator follows a normal distribution, 

given a specific decision threshold crossing time and threshold crossing location. Ratcliff 

(1980) showed that in the absence of decision thresholds, even with within-trial time-varying 

drift rate, the probability distribution over the state of the evidence accumulator would 

remain normal. This is the situation in the free response condition following the crossing 

of the decision threshold: There are no longer active decision thresholds and we have a time-

varying drift determined by the particular stimulus shown on each trial. Even additionally 

under conditions of trial-to-trial drift-rate variability, the posterior distribution over the 

final state of the evidence accumulator remains approximately normal (Calder-Travis et al., 

2023).

The present work builds on Calder-Travis et al. (2023) in several ways. Notably, Calder-

Travis et al. (2023) only considered a calibrated Bayesian readout of confidence, not a 

miscalibrated Bayesian readout or, as in the core model, a readout of the final state of the 

accumulator. We provide the necessary extension in Appendix A. Here, we model decision 
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thresholds as symmetric and flat, or symmetric and linearly decreasing, in the case of 

decreasing decision thresholds, reflecting key model variants we aim to evaluate. Finally, 

we add a free parameter to allow for the possibility of lapses in confidence reports where 

confidence does not follow from the usual process and instead is randomly generated to fall 

within one of the four confidence bins with equal probability (Appendix A). We assume 

that lapses occur with equal probability regardless of response, response time, and evidence 

presented. In addition to this, on free response trials where the response time is faster than 

the estimated duration of sensory and motor processing pipelines (a free parameter in all 

models), we model confidence reports as certainly the result of a lapse. Following Calder-

Travis et al. (2023), we assume that observers ignore the fact that evidence is constant 

within each 50 ms frame and that variability present in the stimulus will have a bigger effect 

on the evidence accumulation during trials in which the stimulus is being processed better 

(i.e., trials with high drift rate). To expand on this point, when information in the stimulus 

is being processed better, both the mean stimulus signal and the frame-by-frame stimulus 

variability exert a greater effect on the evidence accumulation, increasing both the rate of 

evidence accumulation, and variability in the evidence accumulation process. We assume 

that participants ignore this subtle effect on variability in the evidence accumulation. Calder-

Travis et al. (2023) tested the effects of both assumptions and found that objective accuracy 

and subjective confidence remain closely related. Further details on the implementation of 

the model predictions are provided in Appendix A.

Model Parameters

The models described in the Models section have between eight and 11 free parameters 

(Table 4). All models had a parameter for the standard deviation of accumulator noise, σacc. 

Accumulator noise corrupts the evidence samples that drive changes in the accumulator, and 

it affects each evidence measurement independently. All models also had a parameter for 

the standard deviation of metacognitive noise, σm (Models section). We fit the height of the 

decision threshold, a, (with one decision threshold at a and the other at −a) and the duration 

of sensory and motor processing pipelines, I. Finally, all models had a lapse rate parameter, 

λ, and three parameters describing the bounds between the four confidence bins, di. In the 

model, confidence reports are determined by the location of a continuous variable, xc or −xc, 

with the sign determined by the response given such that a greater number indicates more 

support for the choice made. If xc (appropriately signed) falls between the boundaries di and 

di+1, then a confidence report falling in bin i is given (Yu et al., 2015). Further details of the 

roles of the parameters in the computational model are provided in Appendix A.

In addition to these shared parameters, specific model variants had additional parameters. 

All models that included drift-rate variability had a parameter describing its standard 

deviation, σφ. All models with decreasing decision thresholds included a parameter 

describing the slope of the decision threshold as a function of time, b (upper and lower 

thresholds were then given by a − bt and −a + bt where t is the time spent accumulating 

evidence). Models using a miscalibrated Bayesian readout of confidence included one 

additional parameter, Γ, accounting for the incorrect beliefs of the observer. Specifically, 

Γ is a transformed version of the variable γ (discussed in Models section), that reflects 

the observer’s belief about the balance between drift-rate variability and a weighted sum 
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of other sources of variability (Appendix A). The two other sources of variability are 

accumulator noise and the variability in evidence presented in different frames of the 

stimulus. Incorrect estimation of any of these sources of variability can lead to a value 

for Γ that differs from the value used by a calibrated Bayesian. For details of the exact role 

of the parameters see Appendix A.

Fitting

For any given set of parameters, ξ, we can compute the probability of an observed 

confidence report for a given participant on a given trial. Assuming the confidence report 

given on a trial is conditionally independent of the confidence report given on any other trial, 

the likelihood of the parameters is then given by,

L(ξ) = p C(1), C(2), … ξ, E(1), R(1), tr
(1), E(2), R(2), tr

(2), … ,

(2)

= ∏
i

p C(i) ξ, E(i), R(i), tr
(i) ,

(3)

where C(i), E(i), R(i), and tr
(i) are the confidence report, stimulus, response, and response time 

on trial i. When fitting to participants’ confidence reports, we use the stimuli that were 

actually shown to participants, along with the obtained responses and response times. We 

fit the models to the data by maximizing the log likelihood. All data were used in either 

the fitting or fit evaluation; all participants and every trial in which a confidence report was 

obtained were included. The confidence lapse rate parameter was included to account for 

any random responses, so exclusions are not necessary.

A single fit began with the evaluation of the likelihood function at 200 randomly drawn sets 

of parameter values. The parameter set with the highest log likelihood was used as the start 

point for MATLAB’s fmincon optimizer (Matlab Optimization Toolbox, 2017). For details 

of the limits applied to parameters during optimization, and the way the 200 candidate sets 

of parameters were drawn, see Appendix F.

We repeated this entire process 40 times for every fit (i.e., for each participant, model, 

and cross-validation fold; see below). Rerunning fitting many times improves the chance of 

finding the true maximum likelihood, rather than getting stuck in local maxima, and allows 

one to perform heuristic assessments of the optimizer’s performance (Acerbi et al., 2018, 

Supplemental Methods, Section 4.2).

Model Comparison

We compared the fit of the models using five-fold cross-validation, which automatically 

penalizes flexibility (Lewandowsky & Farrell, 2011) and does not require explicit estimation 

of a penalty as in the Akaike information criterion (AIC) and the Bayesian information 
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criterion (BIC). Every fold, 4/5 of the trials were used for training and 1/5 used as test trials. 

We fit the models to the training trials, searching for the values of model parameters that 

maximize the likelihood, that is, the values that maximize the probability of a participant’s 

trial-wise confidence reports given the models’ underlying computation of confidence. We 

then evaluated the models using the average negative log likelihood in test trials (Honig et 

al., 2020)—that is, we assess the degree to which each model (mis-)predicted the empirically 

observed confidence reports on those trials. We computed this value for each fold and 

averaged across folds to provide a measure of the performance of each model for each 

participant. We refer to this measure as the negative cross-validated log likelihood (−LLcv). 

A smaller −LLcv value indicates that the model was better at predicting the test data.

To determine the overall best fitting model, we computed the mean −LLcv across 

participants. To assess the reliability of the difference in fit between this and other models, 

we computed participant-by-participant, the difference between the −LLcv of all models and 

that of the best fitting model. We then computed the mean −LLcv difference, along with 

95% confidence intervals found by bootstrapping 10,000 times.

Supplementing the model comparison in which we looked at cross-validated log likelihoods 

averaged across participants—which makes most sense under the assumption that all 

participants are described by the same model (fixed effects)—we also performed an analysis 

that assumes different participants may be described by different models (random effects; 

Stephan et al., 2009). In this further analysis, we assume that, for each model (i.e., each 

DDM variant), there is a specific proportion of the population that are described by this 

model. This assumption can be formalized in a generative model (which is separate from 

the DDM variants themselves and describes the frequency of the DDM variants in the 

population). We can invert this higher level generative model to infer the frequency of each 

of the lower-level DDM models in the population (Daunizeau et al., 2014; Stephan et al., 

2009).

For the implementation of the higher level generative model and its inversion we used 

the Variational Bayesian Analysis toolbox, which utilizes a variational Bayesian inference 

scheme (Daunizeau et al., 2014). For such an analysis, we require estimates of the model 

evidence for each participant and model, that is, the probability of the data for that 

participant given the model (Stephan et al., 2009). Depending on the precise definition 

of the BIC, the BIC can either be viewed directly as an estimate of model evidence or can 

be viewed as an estimate after multiplication by a factor of −1/2 (as was the case here; 

Bishop, 2006; Lewandowsky & Farrell, 2011; Penny et al., 2004). We used BIC values 

calculated from a separate set of fits that were identical to the procedure described above, 

except that fitting was performed using all the data from a participant (with no held out 

“test” data). In addition to reporting estimated model frequencies in the population, we also 

report exceedance probabilities, which give the probability that a model describes a greater 

proportion of the population than any other model considered (Stephan et al., 2009).

Because these random effects model comparison analyses aim to infer model frequencies 

working from a prior that all models are equally likely, for this analysis, we included the two 

Bayesian models that we ignore elsewhere (Models section). These models are named “C” 
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and “DC” under our model naming scheme; Table 5. As discussed, these models are ignored 

elsewhere because they make exactly the same predictions as two of the models in which 

confidence is a non-Bayesian readout of the evidence accumulated.

Using this random effects approach, we also performed various family-wise comparisons 

(Penny et al., 2010), again as implemented by the Variational Bayesian Analysis toolbox, to 

compare groups of models (e.g., non-Bayesian confidence models vs. calibrated Bayesian 

confidence models vs. miscalibrated Bayesian confidence models). In addition to estimates 

for individual model frequencies, these analyses give us estimates of the proportion of the 

population best described by each group of models.

To evaluate the likely performance of the model-fitting procedures, we ran a model recovery 

analysis, simulating data from each of the 10 models, fitting each set of simulated data 

with all 10 models, and then evaluating the AIC and BIC to confirm the correct model was 

recovered. This analysis suggested that the AIC and BIC could be too conservative in the 

current context, but otherwise the results were as expected (Appendix E). Importantly, apart 

from one tied best fit (as evaluated by the AIC that included the true data generating model 

in the tie), the analysis never incorrectly inferred the presence of a feature (V/D/C/M) that 

was not in fact present in the underlying generative model.

To plot the behavior of the fitted models, for comparison with detailed features of our 

empirical data, we ran a simulation for each participant, using the fitted parameters. We 

use the parameters resulting from the fits to the entire data set (with no training-test split 

applied; further details in Appendix B).

Modeling Results

Using computational modeling, we aimed to determine which of the 10 DDM models of 

confidence fit the data from the experiment best (Table 1; Experimental Method section) 

and whether any DDM model could provide an adequate quantitative account of confidence. 

As set out in the Modeling Method section, we fit specifically to confidence reports—the 

focus of our investigation—not to responses and response times. We will return later to 

consideration of responses and response times.

Model Comparison

We fit the models and evaluated their performance using cross-validation. Model M, in 

which the observer uses a miscalibrated Bayesian readout of confidence, and Model DM, 

which also includes decreasing decision thresholds, provided the best fit to the data on 

average (Table 1 and Figure 8A). The fits for Models VM and VDM were nearly as 

good. These models, in addition to having the features in M and DM, respectively, include 

drift-rate variability. All these four models share a miscalibrated Bayesian readout for 

confidence. Models in which confidence reflects the final state of the accumulator, or in 

which confidence reflects a calibrated Bayesian readout, performed worse (Models 0–VDC 

in Table 1). These results suggest that confidence reflects a miscalibrated Bayesian readout, 

but it is not clear whether observers used time-dependent thresholds or whether drift-rate 

variability is present.
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Considering fits to individual participants (Figure 8B), Model M was the best fitting model 

for the greatest number of participants. We conducted a random effects model comparison 

analysis to explore the distribution of models over participants in a more principled manner. 

This analysis directly estimates the proportion of the underlying population that are best 

described by each model (Modeling Method section). Model M again performed the best 

(estimated model frequency: 0.766; exceedance probability: 1.000). Model D (Table 1) was 

the next best model according to this analysis, although its performance was clearly worse 

(estimated model frequency: 0.083; exceedance probability: 0.000). To be precise, Models D 

and DC were joint second best (Table 5): Both models make exactly the same predictions 

and have the same associated statistics.

Using the random effects analysis, we could also compare families of models (Penny 

et al., 2010). This analysis reinforced our conclusion that, in general, participants 

use a miscalibrated Bayesian readout for confidence (estimated family frequency: 

0.824; exceedance probability: 1.000). Regarding drift-rate variability and time-dependent 

thresholds, this analysis provided more definitive answers than when comparing individual 

models. An absence of drift-rate variability was estimated to be most common (estimated 

family frequency: 0.990; exceedance probability: 1.000), as were flat decision thresholds 

(estimated family frequency: 0.775; exceedance probability: 1.000). Nevertheless, it is worth 

noting that because this random effects analysis was based on BIC values, it will inherit the 

tendency of the BIC to favor simpler models (Appendix E; Lewandowsky & Farrell, 2011).

Fits of the Best Model

Having seen that Model M performed the best over a range of measures, we next asked 

whether this model could account for detailed patterns in our empirical confidence data. 

As shown in Figure 9A-Av, Model M is capable of simultaneously capturing the effects of 

response time in the two conditions, with confidence decreasing as a function of response 

time in the free response condition while remaining relatively constant in the interrogation 

condition. Not only does Model M capture these effect qualitatively but also quantitatively, 

with a very high degree of overlap between the error bars and error shading representing 

±1 SEM of the data and model fits. The performance of the model can be explained by 

considering the main feature of the miscalibrated Bayesian observer model: It includes a 

parameter to capture the observer’s estimate of the relative magnitude of different sources 

of variability, which is no longer assumed to match the true ratio. As discussed, this 

estimate determines the strength of the time penalty for confidence that the observer applies 

(Models section). Participants appear to apply a bigger time penalty for confidence than a 

calibrated observer should. This conclusion follows most clearly from Model M, in which 

there is no trial-to-trial variability in drift rate. In this case, for a calibrated observer who 

correctly believes there is no trial-to-trial variability in drift rate, the Bayesian confidence 

readout does not use time, only the final state of the accumulator, and there should be 

no time penalty for confidence at all (given the stimuli we studied; Introduction section; 

Models section; Moreno-Bote, 2010). Only if the observer erroneously believes trial-to-trial 

variability in drift rate is present, will the Bayesian readout of confidence take into account 

both the final state of the accumulator and the time spent accumulating evidence. In this 

case the time penalty for confidence will apply, and by definition be too strong. A time 
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penalty for confidence that is too strong explains the surprisingly slow change in confidence 

with response time in the interrogation condition that we observed empirically, despite 

the fact that in this condition the evidence accumulation is not bounded by a decision 

threshold and will accumulate rapidly: The effect of the time penalty cancels out the effect 

of accumulating more evidence.

Model M likewise accounts qualitatively and quantitatively for the effect of (unsigned) 

average evidence on confidence (apart from a slight quantitative deviation of the data and 

model at the very highest values of average evidence in the free response condition, where 

±1 SEM windows for data and model no longer overlap; Figure 9B-Av). The model captures 

how this relationship differs in the free response and interrogation conditions: Confidence is 

higher in the free response condition for a fixed level of average evidence, and this effect 

is greatest at high and low average evidence. High and low average evidence is associated 

with shorter stimulus presentation; as stimulus duration increases, variability in average 

evidence decreases. One possible explanation for the difference between free response and 

interrogation trials at high and low average evidence is that, in the free response condition, 

short trials occur when noise in the evidence accumulation happens to quickly drive the 

accumulator to the decision threshold. In contrast, in the interrogation condition, on average 

little evidence is accumulated in a short trial. The overall quantitative pattern will be a 

complex result of the various evidence accumulation mechanisms, and how they are affected 

by the presence or absence of decision thresholds. Therefore the success of the model 

supports the idea that the mechanisms and assumptions built into the model match the real 

evidence accumulation and confidence mechanism.

Regarding the associated plots of individual participant data (Figure 9-P10, A-P20, A-P30, 

B-P10, B-P20, B-P30), we see that fits are reasonable but fairly noisy. This is a situation 

that we will see repeated in other plots showing fits of the best model to individual 

participants and can be anticipated from the shape of the data set collected: We collected 

modest amounts of data from a large number of participants (48 participants; 640 trials per 

participant; Experimental Method section).

The ability of Model M to account for the separate effects of both response time and 

evidence strength does not depend on the correlation between these factors: The model 

predicts the independent effects of both. In Figure 10, we plot for the free response 

(Figure 10A-Av) and interrogation conditions (Figure 10B-Av), confidence as a function of 

response time, separately for low, medium and high total evidence trials. Model M captures 

qualitatively the effect of response time at all levels of evidence and also accounts for 

increased confidence with greater evidence at a fixed response time. The model also captures 

qualitative differences between the two conditions, such as the stronger effect of evidence 

at fixed response time in the interrogation condition. Two mechanisms allow the model 

to account for the independent effects of response time and evidence in the free response 

condition. First, the time penalty for confidence leads to an effect of time independent of 

the effect of evidence. Second, the accumulation of pipeline evidence allows for an effect of 

evidence that is independent of any effect of response time. Although in general the model 

provides a close quantitative fit to the empirical data, there appear to be some systematic 

quantitative deviations for the fastest and slowest response times within an evidence bin, as 
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indicated by the lack of overlap in a limited number of cases between ±1 SEM for the data 

and model fits. For example, in the interrogation condition for medium evidence and fast 

response times, the model appears to slightly underestimate confidence (Figure 10B-Av). 

This effect is difficult to explain because at both low and high evidence the model accurately 

fits the level of confidence at fast response times. Possibly the small deviation at medium 

evidence is the result of random fluctuations in the data.

In addition to the effects of response time and evidence, another key pattern for any 

model of confidence is the relationship between accuracy and confidence. The model 

provided an excellent fit to the accuracy at different confidence levels in both conditions 

both qualitatively and quantitatively (Figure 11-Av). The qualitative and quantitative model 

predictions result from the combined effect of all hypothesized evidence accumulation and 

confidence readout processes. Hence, the close fits to the data support the claim that the 

miscalibrated Bayesian readout describes well the way humans relate the evidence they 

have received to a subjective sense of confidence. There was one exception to the excellent 

quantitative fits: The model overestimated accuracy at the lowest level of confidence in the 

free response condition (the model predicted 72% accuracy but the true value was 69%). 

A possible explanation for this result is that participants make response lapses in the free 

response condition, of which they are aware, and correspondingly indicate on the confidence 

reporting scale. The models include lapses in confidence reports, but not response lapses, 

and hence could not capture such an effect. Nevertheless, even here the model correctly 

fitted the qualitative pattern of greater accuracy in the free response condition, than the 

interrogation condition, for this lowest level of confidence.

Complementing these findings regarding the success of the model at fitting accuracy as 

a function of confidence, the model additionally does an excellent job of accounting 

qualitatively and quantitatively for the number of reports in each confidence bin, separately 

for free response (Figure 12A-Av) and interrogation trials (Figure 12B-Av). Furthermore, 

this is the case following both correct and error responses. The model captures both the 

qualitative and quantitative patterns: ±1 SEM windows for the data and model are highly 

overlapping. Fits to individual participants are a little noisier, but in general the model does 

well at capturing the qualitative patterns and how these differ across participants, and across 

the two conditions for individual participants (Figure 12). It is difficult to attribute this 

success of the model to one mechanism: All components of the model are centrally involved 

in generating these distributions, and hence supported by these results.

Figure 13 plots the degree to which trial-wise confidence ratings are predicted by evidence 

at different time points relative to trial onset (Figure 13A) and response (Figure 13B). 

Quality of the model fits differ depending on whether we look at data plotted relative to 

trial onset or relative to response time. It is when plotting data relative to trial onset that the 

model does not perform as well as elsewhere: While the model correctly predicts evidence–

confidence correlations that on average are close to the true values, the model fails to capture 

qualitatively the effect of evidence presented at the beginning of trials (Figure 13A-Av). 

Specifically, both in the free response and interrogation conditions, Model M underestimates 

the effect of very early evidence. The model assumes all evidence presented over the course 

of a trial is given equal weight as it is accumulated. Therefore, the deviation of the model 
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from the data provides further support for the idea that there may be an overweighting of 

evidence presented early in a trial (Experimental Results section).

In contrast, when looking at data relative to response time (Figure 13-Av), the model 

captures the qualitative patterns in both conditions (relatively constant evidence–confidence 

correlation in the interrogation condition and a sharply increasing correlation in the 

free response condition). Furthermore, the model accurately captures these patterns in a 

quantitative sense too, with a large degree of overlap between ±1 SEM windows for 

the data and model in both conditions. In particular, the model accurately captures the 

critical pattern in the free response condition of a weak correlation between confidence and 

evidence presented well before a response. It also accounts quantitatively for the strong 

effect of evidence presented immediately prior to a response, which will be in sensory 

and motor processing pipelines at this time (Introduction section; Resulaj et al., 2009). 

Unlike predecision evidence, which only affects confidence by changing the time at which 

the decision threshold is crossed, in the model pipeline evidence can directly affect the 

final balance of evidence (Models section; Pleskac & Busemeyer, 2010), explaining its far 

stronger effect on confidence. Although the pattern in the free response condition is largely 

quantitatively captured, there are some small deviations of the model from the data: For 

evidence presented around 1.5 s prior to response, the model appears to underestimate the 

effect of this evidence on confidence. One possibility is that these differences arise because 

there is significant between trial variation in the duration of the processing pipeline, a 

commonly made assumption (e.g., Ratcliff & McKoon, 2008; van den Berg, Anandalingam, 

et al., 2016).

Still considering data relative to response, the model again quantitatively captures the 

effects observed in the interrogation condition, with evidence at all time points contributing 

approximately equally to confidence, and the ±1 SEM windows of the model showing 

good overlap with the data (Figure 13B-Av). On very close inspection, the model slightly 

overestimates the effect of evidence received close to a response. In the model, evidence 

from all time points is weighted equally in the observer’s decision. However, on short trials, 

the effect of individual frames on confidence is likely to be greater because fewer frames are 

used to determine confidence. Note that in Figure 13B-Av, short trials will only contribute to 

plotted time points close to the response. Finding that the model accounts well for the effect 

of evidence in the run up to a decision supports the model’s assumptions, including the 

assumption that participants continue accumulating evidence until the end of each trial and 

that participants do not use an implicit decision threshold (Experimental Results section). 

Considered from the other direction, these aspects of the model offer us with an explanation 

for the patterns observed in the data.

Alternative Models

We next sought to understand why Model M fit better than others. 2DSD theory struggles 

to account for the strength of the relationship between confidence and time (Introduction 

section; Pleskac & Busemeyer, 2010), and Model V is very similar to 2DSD. While Model 

V can account for some decrease in confidence with time in the free response condition, 

because it contains drift-rate variability (Introduction section; Pleskac and Busemeyer, 

Calder-Travis et al. Page 38

Psychol Rev. Author manuscript; available in PMC 2025 February 24.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



2010), it clearly struggles to capture the strength of this relationship (Figure 14A), with 

data and model many standard errors apart for short and long trials. This is very similar 

to the conclusion drawn by Pleskac and Busemeyer (2010) in relation to 2DSD. In the 

interrogation condition, Model V does not even match the qualitative pattern: Model V 

predicts increasing confidence with response time but this pattern is not apparent in the data.

It may be more surprising that models using a calibrated Bayesian readout for confidence 

(Models VC and VDC) also struggle to account for the relationship between confidence 

and time. A Bayesian readout model can predict decreasing confidence with response time 

due to the time penalty for confidence (Introduction section), so we might expect these 

models to perform well. Model VC, which uses a calibrated Bayesian readout, only slightly 

underestimates the decrease in confidence with response time in the free response condition, 

but it struggles to account for the finding that confidence changes little with response time 

in the interrogation condition (Figure 14B). Specifically, ±1 SEM windows for the data and 

model fits do not overlap for short and long trials. The mismatch between the observer’s 

model of the environment and the true generative model that is present in Model M, but 

not in Model VC, affects the strength of the time penalty for confidence. This mismatch 

appears to be crucial in accounting for the pattern in the interrogation condition, with the 

time penalty for confidence in Model VC not being strong enough.

Simulating Responses and Response Times

We have fit the models to confidence reports given the response, response time, and 

evidence presented on each trial, finding that models with a miscalibrated Bayesian readout 

of confidence can provide a very good to excellent fit to most aspects of the confidence data. 

While we have not fit responses and response times, a core hypothesis motivating all models 

used is the idea that the same process that generates decisions also generates confidence 

(Figure 2A). Given that we now have estimates for all the parameters of the evidence 

accumulation process that leads to confidence (Table 4), if our hypothesis is correct, we 

should have estimates of all the parameters required to simulate responses and response 

times (see Kiani et al., 2014 for related approach). It may be that some parameters have a big 

effect on accuracy, but a small effect on confidence, and so are relatively poorly estimated 

from fits to confidence data alone. A good example of such a parameter is decision threshold 

height. It appears to be weakly constrained by confidence data as, in the parameter fits for 

Model M, there is a large spread in the fitted values across participants (Appendix F). On the 

other hand, bound height likely has a very strong effect on response times and accuracy and 

hence would be well constrained if we had directly fit to these quantities instead of aiming to 

predict them. Nevertheless, we expect simulations using parameters from confidence fits to 

at least approximate properties of responses and response times.

Without any additional fitting, we simulated new stimuli and trials using the model that 

best fit the confidence data (Model M) and the parameters from the fits to confidence. We 

simulated entire diffusion processes, from onset, through decision, to confidence report 

(Appendix B). The accuracy of simulated responses, and how accuracy changed with 

response time was sensible—in particular the range of simulated accuracy values largely 

overlapped with the range of accuracy values in the data—although there were clear 
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differences between the model simulations and the data (Figure 15). In the interrogation 

condition model simulations qualitatively matched the data, with an increase in accuracy 

with response time. Furthermore, there was good match between the simulations and the 

data for shorter trials in this condition in terms of overlapping ±1 SEM windows for data 

and model simulations. For longer trials the model simulations exhibited a higher level of 

accuracy than the data. In the free response condition, model simulations showed no change 

in accuracy with response time, which differs qualitatively from the decrease in accuracy 

at longer response times observed in the data. Similar to the interrogation condition results, 

model fits closely matched the data quantitatively for short trials, but produced higher levels 

of accuracy than observed in the data for longer trials.

We did not include in our models the possibility of lapse responses (i.e., evidence-

independent guesses), which would reduce accuracy (there was only the possibility for 

lapse confidence reports). However, the observation that simulated accuracy is greater than 

the accuracy in the data specifically at late response times (Figure 15) suggests a subtler 

explanation. In particular, given the ubiquity of variations in attention and motivation 

in human performance (Macdonald et al., 2011; Robertson et al., 1997; Smallwood & 

Schooler, 2006), it may be that drift-rate variability—which causes slow errors (Ratcliff & 

McKoon, 2008) and limits accuracy for slow interrogation task responses (Ratcliff, 1978)—

is important in accounting for decisions and response times, even if it has relatively little 

effect on confidence. This line of reasoning suggests that if we fit to responses, response 

times and confidence simultaneously, we may find more evidence for models featuring 

drift-rate variability.

We can also look at whether the diffusion mechanism assumed by the model, and fitted 

using confidence data, can account for the relationship between evidence and participants’ 

responses at different time lags. Looking at the data presented relative to trial onset (Figure 

16A), the model simulations recreated in both conditions the qualitative pattern in the data 

of a decreasing effect of evidence fluctuations on choice over time. As was the case when 

looking at the relationship between evidence and confidence in the model fits, the model 

simulations produced a smaller effect of evidence on choice close to trial onset than the 

effect observed in the data, consistent with the conclusion that early evidence may be 

overweighted. At other times relative to trial onset, the effect of evidence on choice in the 

data and the model simulations was similar, although ±1 SEM windows for data and model 

did not always overlap. The model accounted reasonably well for the effect of evidence 

at time lags relative to response including, in the free response condition, capturing the 

distinctive pattern of an increase and decrease in the effect of evidence in the run up to a 

response (Figure 16B). The performance of the model simulation in this regard suggests 

the duration of the processing pipeline—which generates the decrease in the effect of 

evidence presented just prior to a response—was well estimated in the fits to confidence data 

alone. In the model-simulated data for the free response condition, evidence fluctuations at 

lags far before response favored the unchosen option, presumably because initial evidence 

fluctuations favoring the alternative is the only situation in which very long trials occur. 

However, data from participants did not clearly demonstrate this effect. This may be because 

in reality very long trials are the result of lapses (note that there was a trend in the data for 

the very longest responses; see also Figure 5 of Charles & Yeung, 2019). In the interrogation 
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condition, model simulations produced an effect of evidence that matched on average the 

effect of evidence in the real data, but at times well before the response ±1 SEM windows 

for data and model did not overlap, and model simulations produced a smaller effect of 

evidence than observed in the data. This pattern is again consistent with the idea that in 

reality observers overweight evidence that they receive at the very beginning of trials.

These results demonstrate that, by using parameters estimated by fitting to confidence 

reports, and without fitting any additional parameters, we can generate reasonable response 

and response time data from the model. The results of these simulations are therefore 

consistent with the view, and can be explained by the idea, that the same underlying model 

that explains confidence reports also explains response times and decisions.

Focusing on Response Time Distributions

The main goal of our article was to explore how far DDM-based models can account 

for confidence data. We have seen that such models can capture qualitative and precise 

quantitative patterns in confidence. In the Introduction section, we noted that even though 

the DDM has proved an extremely successful model of decision and response times, 

and even though our focus is on the open question of whether DDM models can also 

account for confidence, it remains important to assess whether good DDM-fits to confidence 

come at the cost of poor correspondences to decisions and response times: Our aim is to 

determine whether DDM-based models can account for confidence in addition to decisions 

and response times, not instead of them. We have already seen that fitting to confidence 

reports alone can produce a model that demonstrates reasonable correspondence to patterns 

in response and response time data. Nevertheless, we wanted to provide further evidence that 

fits to confidence do not compromise the ability of the DDM to account for decisions and 

response times.

We took decisions and response times further into account by performing fitting not just to 

confidence data alone. Instead we fit Model M to the confidence data while simultaneously 

minimizing an additional penalty. The penalty term was built from various sources and 

encouraged the model to also account for certain aspects of response and response time data. 

Details of the approach are provided in Appendix G. The approach is not systematic and 

in many ways limited, but the resulting performance of the model can be thought of as a 

lower bound. Specifically, the performance of the model resulting from this approach is a 

lower bound on the possible performance of the model when conducting a rigorous fitting 

exercise—that may become possible in the future—using the dynamic stimuli presented to 

model responses, response times, and confidence simultaneously and on a trial-by-trial basis.

In Figure 17, we plot the correspondence between simulations from the resulting model and 

the real response and response time data. Specifically, we plot quantile probability functions 

(Ratcliff & McKoon, 2008), which simultaneously represent the quantiles of the response 

time distributions (y-axis) for each unique combination of accuracy and condition (in our 

case, free response and interrogation) and the proportion of correct and error responses 

in each condition (x-axis). We see that the model does a reasonable job of capturing the 

response time distributions and the response proportions: The qualitative pattern of greater 

accuracy in the free response condition than the interrogation condition is reflected in 
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the model, and the model largely captures quantitatively the shape of the response time 

distributions in both conditions, both for error and correct trials. One exception is that the 

model slightly underestimates the speed of the slowest error responses in the free response 

condition. We reiterate that these correspondences can be viewed as a lower bound on the 

performance of the model that could be achieved with simultaneous trial-by-trial fitting of 

responses, response times, and confidence. Crucially, the fits of the model to confidence 

continued to capture both qualitatively and quantitatively the features of the data, even when 

the model was also encouraged to fit aspects of responses and response times (Appendix G; 

Figures G1 and G2). Hence, even with a suboptimal fitting approach, we can simultaneously 

achieve reasonable correspondences to response and response time data, and very good to 

excellent fits to confidence data. We discuss the future for this line of methodological and 

empirical research in General Discussion section.

General Discussion

The motivation for the present research was a divergence between theories of how decisions 

are made and theories of how decisions are evaluated: Normative models of decision 

making prescribe that all available evidence should be considered when opting for a 

particular choice, a principle incorporated in influential frameworks such as the DDM that 

characterize the decision process in terms of tracking of the difference in evidence between 

two alternatives (Bogacz et al., 2006; Tajima et al., 2019). However, previous DDM-based 

accounts of confidence struggle with certain aspects of confidence data, and theories of 

confidence have often assumed that decisions are based on suboptimal mechanisms such as 

the race model or its variants. These theories provide intuitive accounts of confidence, but 

share the counterintuitive property that metacognitive evaluations of confidence are based 

on different and perhaps richer evidence than the decision itself (De Martino et al., 2013; 

Kepecs et al., 2008; Kiani et al., 2014; Moreno-Bote, 2010; van den Berg, Anandalingam, et 

al., 2016; Zylberberg et al., 2012; but see Moran et al., 2015; Pleskac & Busemeyer, 2010). 

For example, in race models with two evidence accumulators, a single accumulator may be 

used to trigger a response, whereas both evidence accumulators may be used to determine 

confidence.

In so far as we believe the foundational cognitive ability of perceptual decision making 

will be underpinned by a mechanism that is normative for typical perceptual decisions, 

and in so far as we are convinced of the empirical support for the ability of the DDM to 

account for decisions and response times (Introduction section), we have a strong interest 

in exploring ways in which we can improve upon the modeling of confidence within the 

DDM framework. An open question of special importance is whether a DDM can capture 

the strong relationship between confidence and response times (Pleskac & Busemeyer, 2010; 

Vickers & Packer, 1982).

We considered a core DDM and nine variants of this model that were motivated by 

theory and previous empirical research. They featured combinations of drift-rate variability 

(whereby different decisions vary in difficulty even when based on identical objective 

evidence), decreasing thresholds (whereby slower decisions are made based on a smaller 

balance of evidence), and Bayesian time penalties for confidence (whereby slower decisions 
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are assumed to indicate more difficult decisions). Collectively, these features can explain 

benchmark findings regarding the relationship between confidence and trial difficulty, 

accuracy, speed emphasis, and response time, suggesting the viability of explaining 

confidence within a DDM framework. Four qualitative predictions shared by all nine 

variants of the core model were borne out in a novel experiment. This experiment assessed 

the relationship between confidence and stimulus evidence as a function of whether the 

choice over when to respond lies with the decision maker (and, hence, depends on a decision 

threshold) or is externally imposed: If decisions depend on a threshold, the possible balance 

of evidence at the time of decision is constrained (and, in principle, perfectly knowable) 

such that predecision evidence is substantially less predictive of confidence in free response 

tasks than in interrogation tasks. Developing this approach, we compared the DDM variants 

according to their detailed quantitative trial-by-trial predictions for confidence, capitalizing 

on the variability of the dynamic stochastic stimuli used in our study. To be precise, we 

modeled binned confidence data (see Models section for the rationale for treating confidence 

as an ordinal variable by binning, along with associated limitations). Model variants that 

featured a miscalibrated Bayesian readout of confidence fit the data best and provided an 

excellent account of the relationships between confidence and response time, and confidence 

and evidence, observed in both the free response and interrogation conditions.

There are wide implications of the finding that the DDM—which accounts well for 

decisions and response times (Ratcliff et al., 2016; Ratcliff & McKoon, 2008)—can 

precisely capture so many key patterns in confidence data. In particular, these results 

suggest that there is no need to abandon the claim that the mechanism responsible for 

one of the most basic cognitive functions, perceptual decision making, will reflect normative 

properties. On the contrary, these results strengthen the viewpoint that confidence reports 

are also generated by the same mechanism, normative for decision making, in which the 

difference in evidence is accumulated (Introduction section). The findings also support the 

idea that we can account for patterns in confidence data while maintaining that decisions 

and confidence result from the same evidence accumulation, instead of hypothesizing one 

accumulator for decisions and a second accumulator for confidence (Introduction section; 

Balsdon et al., 2020; Fleming & Daw, 2017; Ganupuru et al., 2019; Jang et al., 2012). This 

is attractive from a theoretical point of view because it means we are not committed to the 

idea that the brain accumulates noisy versions of exactly the same information twice. As a 

result, the brain only needs a single population of neurons to track evidence, reducing energy 

consumption (Lennie, 2003; see Ganupuru et al., 2019, for results in a different context that 

may be more difficult to account for using a single accumulator).

The key feature included in our best-fitting models was a miscalibrated Bayesian readout: 

Such observers look not just at the amount of evidence accumulated but also at the amount 

of time it takes to accumulate that evidence. If the same amount of evidence is gathered in 

two trials, but in one trial it takes longer to gather that evidence, the miscalibrated Bayesian 

observer interprets this trial as being more difficult, thereby reducing confidence. This time 

penalty applies regardless of whether the observer determines the time spent accumulating 

evidence through their response time (free response condition) or whether the experimenter 

determines the accumulation time (interrogation). For such observers, the time penalty 

applied does not perfectly match one based on the true variances associated with the various 
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sources of variability that contribute to task difficulty. There are specific implications of the 

success of models with a miscalibrated Bayesian readout. The idea that confidence reflects 

a Bayesian readout has proved successful in the context of models of perceptual decisions 

based on two partially anticorrelated evidence accumulators (Kiani et al., 2014; van den 

Berg, Anandalingam, et al., 2016). We have seen that the idea of a Bayesian readout is 

also successful when using the framework of the DDM, building on work looking at the 

theoretical implications of such a model (Moreno-Bote, 2010), and complementing recent 

findings (Desender et al., 2020; Khalvati et al., 2020). That a DDM with a miscalibrated 

Bayesian readout can account for a wide range of patterns observed in previous research, 

and in this study, supports the view that confidence is Bayesian in the ongoing debate about 

this claim (Adler & Ma, 2018; Bertana et al., 2021; Caziot & Mamassian, 2021; Geurts et 

al., 2022; Kvam & Pleskac, 2016; Li & Ma, 2020; Meyniel et al., 2015; Navajas et al., 2017; 

Peters et al., 2017; Sanders et al., 2016).

Our results build on the 2DSD theory of Pleskac and Busemeyer (2010) by showing 

that DDM variants can not only explain decreasing confidence with response time but 

can successfully account for the strength of this relationship. 2DSD can predict some 

relationship between confidence and response time due to the presence of drift-rate 

variability, but struggles to account for the strength of this relationship (Introduction section; 

Pleskac & Busemeyer, 2010). It is surprising that Model V, which is closely related to 

2DSD and contains drift-rate variability, did not outperform Model 0, which lacks drift-rate 

variability (Table 1; Figure 8). However, the models were not just fitting the decrease 

in confidence with response time that was observed in the free response condition. With 

the same parameter values for those parameters relevant to both conditions, the models 

needed to simultaneously account for the very different relationship between confidence 

and response time in the interrogation condition. In attempting to also fit data from the 

interrogation condition, parameters in Model V may have been driven to values at which any 

advantage over Model 0 in the free response condition was lost.

Although model comparison results were clear regarding the type of readout used for 

confidence (models with a miscalibrated Bayesian readout outperformed all others), it was 

unclear whether decreasing decision thresholds or drift-rate variability are also important: 

For example, Models M and DM, the latter of which includes decreasing decision 

thresholds, did not significantly differ in overall fit to our empirical data, when assessed 

using cross-validated log likelihoods. A random effects model comparison suggested that 

flat decision thresholds are more common, but it should be borne in mind that this latter 

analysis was based on BIC values, which tend to favor simpler models (Lewandowsky & 

Farrell, 2011). Similarly, models VM and VDM, which both feature drift-rate variability, 

performed fairly well when assessed on the basis of cross-validated log likelihoods, but the 

random effects model comparison pointed against this feature.

One explanation for why we did not find a clear result regarding decreasing decision 

thresholds is that humans use a decision threshold that only slightly deviates from flat, 

making time-dependence difficult to detect (Voskuilen et al., 2016). Consistent with this 

idea, studies investigating whether humans and animals use time-dependent thresholds have 

provided mixed results (Evans et al., 2020; Hawkins et al., 2015; Malhotra et al., 2017; 
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Palestro et al., 2018; Pardo-Vazquez et al., 2019; Voskuilen et al., 2016). Another possible 

explanation is that we considered a straightforward implementation of decreasing decision 

thresholds, using linearly decreasing thresholds. Other options with additional parameters 

are possible, such as using a Weibull cumulative distribution function where the boundary 

collapses from an initial value, either toward an asymptotic value that may also be a free 

parameter (Glickman et al., 2019; Glickman & Usher, 2019; Hawkins et al., 2015) or 

alternatively simply collapses to zero (i.e., the starting point of the evidence accumulation; 

Evans et al., 2020). Other parameterizations have also been used (Hanks et al., 2011; 

Voskuilen et al., 2016). A more complex parameterization could be considered, although 

if strongly collapsing boundaries had been present it seems likely that a collapsing linear 

function would fit them better than static boundaries, even if their precise functional form 

was more complicated than linear. Furthermore, when more complicated functional forms 

have been used, the resulting boundaries are often such that a linear approximation could be 

reasonable, especially within the region of time containing most threshold crossings (Figure 

2 in Evans et al., 2020; Figure5 in Voskuilen et al., 2016).

One further explanation is that our parameterization of the decision thresholds did not have 

too few parameters, but rather too many. One motivation for considering decreasing decision 

thresholds was that such thresholds can be optimal within the DDM framework when the 

difficulty of the task is unknown to the observer (Drugowitsch et al., 2012; Malhotra et 

al., 2018), such as is the case under the models considered here that feature drift-rate 

variability. However, we did not compare flat decision thresholds to the optimal decision 

thresholds. Instead we compared flat thresholds to decreasing thresholds, where we fit the 

slope of the threshold as a free parameter. Removing this free parameter by computing the 

optimal decision thresholds might allow us to draw stronger conclusions. Another promising 

approach to using nonlinear thresholds without adding model-fitting parameters would be 

to first perform model-free estimation of the shape of the decision thresholds. Glickman et 

al. (2022) presented a model-free approach to estimating time-varying decision thresholds 

from choice and response time data, and the shape of the thresholds are not constrained to 

take on a particular form. Thresholds inferred using this approach could be combined with 

the methods we presented to perform trial-by-trial modeling of confidence with arbitrarily 

complex decision thresholds.

Drift-rate variability is a central component of many DDM models (Ratcliff et al., 1999, 

2016; Ratcliff & McKoon, 2008) and can be generated either because stimulus evidence 

strength varies on a trial-by-trial basis or because of internal fluctuations in the processing of 

constant evidence strength stimuli (Introduction section; Moran, 2015; Ratcliff et al., 2016). 

Throughout, we considered the more challenging case where no trial-by-trial variability 

is provided by the stimulus (only frame-by-frame variability; see Experimental Method 

section). Nevertheless, it may be surprising that we did not find evidence in favor of models 

featuring drift-rate variability. The explanation for this difference may be that we fit models 

only to confidence data. The inclusion of drift-rate variability in DDM accounts has been 

justified on the grounds that it explains key empirical phenomena regarding the speed of 

correct and error responses (Ratcliff et al., 1999, 2016; Ratcliff & McKoon, 2008). Thus, 

drift-rate variability may be an important part of explanations of patterns in responses and 

response times, but a less important part of understanding patterns in confidence.
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This conclusion points toward a promising direction for future research: Performing trial-

by-trial modeling by fitting simultaneously to responses, response times, and confidence 

reports, given the fluctuating stimulus shown on a particular trial. Although trial-by-trial 

modeling allows us to capitalize on the full richness and detail of the fluctuating-stimuli 

data sets we collect, by demanding that models take into account the unique properties 

of each trial (Park et al., 2016), it greatly increases the computational costs of model 

fitting. This is because the evaluation of a candidate set of parameters requires us to make 

unique predictions for every single trial, rather than simply for a few conditions. Here we 

made trial-by-trial fitting in a fluctuating-stimulus task feasible by using recently derived 

computationally cheap expressions for confidence (Calder-Travis et al., 2023) and did not 

fit to responses and response times, which in general—under free response conditions—

demand far greater computational resources to model (Introduction section; Calder-Travis et 

al., 2023; Shinn et al., 2020; Smith, 2000; Tuerlinckx et al., 2001). Specifically, we made 

trial-by-trial predictions for, and fit to, confidence given the response, response time, and 

stimulus on each trial.

This advance in modeling of confidence is not in tension with the ultimate goal of generally 

applicable simultaneous trial-by-trial modeling of responses, response times, and confidence 

but rather is a step toward this important ultimate goal. In particular, two lines of theoretical 

and empirical work must reach a sufficient stage of development, and then be combined, 

to make such simultaneous trial-by-trial modeling feasible. One line is research looking 

into the predictions for confidence given responses, response times, and specific stimuli, 

such as those expressions used here. We have demonstrated that such expressions can be 

successfully used to fit, evaluate, and compare DDM-based models of confidence. The 

second line is research into reducing the computational cost of computing predictions for 

responses and response times, given the specific stimuli presented (e.g., Ratcliff, 1978, 1980; 

Shan et al., 2019; Smith, 2000; Smith & Ratcliff, 2022). Fast predictions currently only 

exist for limited cases (e.g., Navarro & Fuss, 2009). If faster broadly applicable predictions 

for responses and response times can be developed, we will be able to further push the 

limits of what DDM-based models can achieve in terms of simultaneously capturing precise 

quantitative patterns in responses, response times, and confidence. Previous work using 

condition-by-condition modeling (e.g., Desender et al., 2020; Kiani et al., 2014; Moran 

et al., 2015; Pleskac & Busemeyer, 2010; Ratcliff & Starns, 2009, 2013; van den Berg, 

Anandalingam, et al., 2016; Zylberberg et al., 2016), and the model fitting to confidence 

with an additional penalty term in Modeling Results section, already hint at the possible 

power of such an approach.

The model comparison we performed provided clear support for a miscalibrated Bayesian 

readout (Model M), but could this conclusion change to support other models, such as 

the calibrated Bayesian readout (Model VC), if trial-by-trial simultaneous modeling of 

choices, response times, and confidence becomes possible in the future? Several pieces of 

evidence support the robustness of the modeling conclusions reached on the basis of the 

trial-by-trial modeling of confidence conducted here. First, visual inspection of the fits in 

Figure 14B reveals that Model VC already fails to capture qualitatively and quantitatively 

key patterns in the confidence data, even without applying extra fitting constraints in the 

form of fitting to responses and response times. These fits to patterns in confidence data 
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can only worsen when fitting to confidence, response times, and responses simultaneously. 

Hence, based on our results Model VC can be eliminated as a candidate for a DDM-based 

model of confidence. In contrast, even with extra penalty terms in the fitting to encourage 

fitting to response times and responses, Model M clearly outperforms Model VC (Figure 

G2A-Av) and achieves a good fit to patterns in the data. Second, the robustness of the 

modeling conclusions is supported through quantification of the goodness-of-fit for the 

models. Imposing additional constraints to fit choices and response times (as described in 

Appendix G) slightly increased the average −LLcv of confidence reports for Model M from 

1.3384 to 1.3392, but this increased −LLcv was still lower than for all other models not 

featuring a miscalibrated Bayesian readout even before those additional constraints were 

used (e.g., Model VC without additional constraints has average −LLcv of 1.3509). This 

points strongly to the robustness of the modeling conclusions reached.

It is important to note that some features of the data remained unexplained by the best fitting 

model. The model could not explain why evidence presented at the onset of the stimulus had 

a stronger effect on responses and confidence than evidence presented later. We speculate 

that this effect arises because initial sensory samples are overweighted but acknowledge that 

changes to the decision mechanism itself might be able to account for this effect (Okazawa 

et al., 2018; Tsetsos et al., 2012). There are presumably numerous perceptual and cognitive 

phenomena that could be found in the data, but which we have not modeled, such as Weber’s 

law (Cobb, 1932), adaptive gain control (Cheadle et al., 2014), and confidence leak (Rahnev 

et al., 2015). From the perspective of models that do not incorporate these features, the data 

may look more noisy, with more unexplained variance, but the presence of other phenomena 

does not immediately invalidate an approach.

As described in Models section, we focused on exploring whether the DDM could be 

expanded to account for confidence reports, and we have not addressed the question of 

whether the DDM can be further extended to account for confidence response times. 

For example, we did not consider the possibility of a confidence threshold, following the 

decision threshold, which determines the time of the confidence report (Moran et al., 2015; 

Pleskac & Busemeyer, 2010). There were several motivations for this focus. First, using 

the parsimonious assumption that observers process and use all information presented in 

the stimulus to determine their confidence report, under our experimental design, we can 

make precise predictions for confidence, without needing to account for the wide range of 

possible mechanisms for terminating confidence computations (Models section; Bogacz et 

al., 2006; Moran et al., 2015). In this manner, we can separate out two difficult questions. 

By focusing on one of them, we can address this question in more detail than would be 

otherwise possible. Furthermore, this simplifying focus on confidence reports can be viewed 

as a strength of the models: We can explain rich patterns in confidence data without needing 

to postulate additional mechanisms.

Second, there is uncertainty about exactly what confidence response times reflect and 

evidence that they may be generated in a different way to decision response times. Pleskac 

and Busemeyer (2010) and Moran et al. (2015) successfully modeled the interval between 

the two-alternative perceptual decision and the confidence report and accounted for patterns 

that have been observed in such data. Notwithstanding these results, we note that in 
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naturalistic situations there is often a clear cost to deliberating too long during perceptual 

decision making (e.g., crossing the road or determining if an animal is a predator), whereas 

confidence reports are often cued by external events, such as when our confidence is 

explicitly queried by someone else or when confidence is used to inform future information 

gathering choices (Bahrami et al., 2010; Desender et al., 2018). In addition, the finding that 

the speed of confidence reports is largely determined by the frequency with which each 

confidence report is made supports the idea that a separate mechanism from the evidence 

accumulation itself—such as some aspect of motor preparation—may be responsible for 

variability in the timing of confidence reports (Chen & Rahnev, 2023). If this is the case, 

the fastest progress to better joint models of confidence and confidence response times may 

come from first understanding the computations responsible for confidence reports, and then 

exploring how these lead to confidence response times, when the results of the confidence 

computations are reported on specific confidence scales.

It is also important to note that we have focused on a specific type of decision-making 

context throughout. Namely, we have explored confidence reports that follow two-alternative 

decisions. Confidence has been studied in a wide range of contexts, such as confidence 

following a multiple-alternative decision (Li & Ma, 2020), confidence in continuous 

judgments (e.g., orientation estimation; Bertana et al., 2021; Geurts et al., 2022), and 

confidence judgments made simultaneously with a response. This latter situation has been 

extensively studied in memory research (Heathcote, 2003; Murdock & Dufty, 1972; Ratcliff 

et al., 1992; Ratcliff & Starns, 2009, 2013), but also to some extent in the context of 

perception (Aitchison et al., 2015; Kiani et al., 2014). It may be that context-specific models 

are to some extent required, but the general principle “Bayesian confidence in optimal 

decisions” could be applied in all cases to guide future model development (although see 

Aitchison et al., 2015).

A comprehensive account of confidence in all contexts falls outside the scope of this work, 

nevertheless it is straightforward to start relating the models studied here to responses 

and confidence judgments given simultaneously. Findings from such studies present an 

important a priori challenge to any theory of confidence within a DDM framework, because 

if confidence is based on exactly the same evidence as the decision, it is not obvious why 

confidence could vary at the point of decision (as discussed above in the context of the 

2DSD model). The idea that confidence reflects a Bayesian readout of evidence accumulated 

up to the time of the decision (Desender et al., 2020; Kiani et al., 2014) provides an 

important answer to this question, predicting reduced confidence for slower decisions 

given the same level of accumulated evidence. Hence, without any substantial modification, 

DDM-based models with a Bayesian readout predict higher confidence for faster decisions 

(under free response conditions), even when responses and confidence reports are made 

simultaneously. This is a pattern that has been observed (Murdock & Dufty, 1972). Whether 

such models can capture the entire range of patterns observed in the context of simultaneous 

responses and confidence reports remains an open question (Ratcliff & Starns, 2013).

A subtle but important detail is that, as implemented here, the models studied (including 

the winning Model M) cannot account for an effect of evidence that is independent of the 

effect of time, when there is no accumulation of pipeline evidence. Kiani et al. (2014) 

Calder-Travis et al. Page 48

Psychol Rev. Author manuscript; available in PMC 2025 February 24.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



reported exactly such a finding: They used simultaneous responses and confidence reports 

and found that response time and evidence were both related to confidence, even when the 

other variable (evidence or response time) was held constant. However, this finding can be 

accommodated within our models if we make the common assumption that the duration of 

the sensory and motor processing pipeline varies from trial to trial (Luce, 1986; Ratcliff 

et al., 2004, 2016). In this case, the amount of time spent accumulating evidence up to 

the decision is no longer known by the researcher. Evidence becomes important (from the 

perspective of the researcher) and predicts confidence because it provides information about 

this timing and therefore about the strength of the time penalty for confidence. For example, 

lots of evidence presented for the chosen option suggests a short amount of time spent 

accumulating evidence up to a decision, and hence a reduced time penalty for confidence.

Given the successes of a relatively simple model in explaining varied features of confidence 

reports as a simple function of the accumulated evidence, penalized by the time taken to 

reach a decision, it is important to consider the concern that these models are too flexible 

and overpowerful in fitting the data. In particular, because by definition we do not constrain 

the observer’s generative model to match the true generative model, we might worry that 

Model M and its variants could fit any data set through flexibility in the specific form 

taken by the Bayesian readout for confidence (Bowers & Davis, 2012; Jones & Love, 

2011; Rahnev & Denison, 2018). In this regard, we note first that, empirically, Model M 

did not seem to overfit training data: Model comparison using cross-validation showed 

that the miscalibrated Bayesian observer models were best at predicting data not used for 

training, suggesting that the extra flexibility of these models is warranted in this sense. 

Moreover, in a model recovery exercise (Appendix E), a miscalibrated Bayesian readout 

was never part of the winning model, unless the data had actually been generated with 

a miscalibrated Bayesian readout for confidence. More broadly, we would argue that our 

implementation of the miscalibration is a reasonable one, which held that observers in our 

experiment misestimated a key value (γ; Models section) that reflects the balance of various 

difference sources of variability. This idea is consistent with previous findings that humans 

deal poorly with noise introduced by stimulus variability (de Gardelle & Mamassian, 2015; 

Herce Castañón et al., 2019; Zylberberg et al., 2014, 2016). It seems plausible that observers 

misestimate the various sources of variability in our experiment specifically, given that 

our stimuli provided different amounts of evidence on each trial, due to frame-by-frame 

variability in evidence. Observers may have confused the frame-by-frame variability that 

is indeed present in the stimuli used, for trial-by-trial variability in the stimuli, and this 

seems especially plausible given the lack of trial-by-trial feedback (the distinguishing feature 

of trial-by-trial variability being that its effect is constant throughout a trial). This line 

of argument supports the view that a miscalibrated Bayesian observer model, of the kind 

considered here, is a sensible model to consider.

Although the modeling results consistently point toward the best fit of the miscalibrated 

Bayesian readout in the context we studied, it is plausible that in other contexts human 

observers achieve good calibration to the statistics of the task and hence use a calibrated 

Bayesian readout. In particular, those features that make a miscalibrated readout plausible 

for our task—namely, a lack of trial-by-trial feedback and the presence of additional sources 

of variability (frame-by-frame variability)—are clearly not present in all tasks and contexts. 
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Where these features are not present and, for example, observers receive extensive trial-by-

trial feedback, observers may be able to develop accurate representations of the statistics of 

the task, or improve their confidence reports over time, and therefore perform a calibrated 

Bayesian readout for confidence (Kiani et al., 2014; Ma & Jazayeri, 2014). There may also 

be task-specific or idiosyncratic biases that generate incorrect estimates of the magnitude 

of different sources of variability (de Gardelle & Mamassian, 2015). Such considerations 

may help explain why we did not find a significant positive relationship between response 

time and confidence in the interrogation condition, although this pattern has been found 

before (Pleskac & Busemeyer, 2010, Empirical Hurdle 5; Irwin et al., 1956; Vickers et al., 

1985). If the estimation of task statistics by observers is task-dependent, the strength of the 

time penalty for confidence used and the relationship between time and confidence in the 

interrogation condition will also be task-dependent as a consequence. Therefore, in some 

contexts that differ from the context that we studied, we may expect human confidence 

to be best explained by a calibrated Bayesian readout. This in no way invalidates the 

proposition that human observers are performing a possibly miscalibrated Bayesian readout 

for confidence, from a DDM-based evidence accumulation.

In our model comparison, we did not compare a miscalibrated Bayesian observer with a 

range of non-Bayesian alternatives (Bowers & Davis, 2012). As a result, we accept that we 

have not provided strong evidence that confidence is based on a truly Bayesian computation. 

It is possible that the effects we observe arise from various mechanisms, which might 

include heuristic strategies that approximate the normatively prescribed computation via 

different mechanisms, but which might of course include computations with very different 

purposes and implementations that, for currently unclear reasons, nevertheless result in 

similar predictions for our data set. It was beyond the scope of our aims to rule out non-

Bayesian alternatives. Our goal was more limited: We wanted to see if the DDM, coupled 

with plausible extensions such as a Bayesian readout, could provide an adequate account of 

confidence.

Notwithstanding the limitations discussed, we have seen that models in which decisions and 

confidence are generated by the same evidence accumulator, an accumulator that tracks the 

difference in evidence between two alternatives, can account for a wide range of qualitative 

and quantitative patterns in confidence. This provides a positive answer to the question 

we posed at the outset, of whether the normative and empirically successful DDM can be 

extended to account for confidence reports. Hence, we do not need to abandon the idea 

that the mechanism responsible for perceptual decisions will feature normative properties, 

or the idea that the brain will save on neural hardware when it can. Throughout, we have 

seen that one idea in particular, the idea of a miscalibrated Bayesian readout—that is, 

a Bayesian readout based on an imperfect internal model of the statistics of the world—

provides a powerful framework for understanding and predicting confidence. Alongside the 

main empirical results, we have presented a methodological advance: We conducted model 

fitting to confidence data on a trial-by-trial basis, requiring the models to fit unique features 

of each trial.
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Figure 1. In the Drift Diffusion Model (Ratcliff & McKoon, 2008), the Observer Accumulates the 
Difference in Evidence Samples for Two Options
Note. Two example trials are shown (“Trial 1” and “Trial 2”). When the difference in 

evidence reaches a threshold value, a response is triggered. Due to the criterion used for 

triggering a response, observers end every trial with the same difference in evidence between 

the chosen and unchosen alternative (Yeung & Summerfield, 2014). RT = response time. See 

the online article for the color version of this figure.
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Figure 2. The Core Modelling Framework and Considered Extensions
Note. (A) All models considered are built from a core modeling framework in which 

observers track the total difference in evidence between alternatives (Bogacz et al., 2006). 

When the researcher sets the time of the response (interrogation condition), observers 

accumulate evidence until all information from the stimulus is processed (Bogacz et 

al., 2006). When observers set the time of response (free response condition), observers 

accumulate evidence until the accumulator reaches one of two decision thresholds (Ratcliff 

& McKoon, 2008). Evidence accumulation continues for a short time after a decision, as 
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sensory and motor processing pipelines mean there will be additional information that did 

not contribute to the decision (Resulaj et al., 2009). (B) Model variants are constructed by 

adding combinations of possible extensions to the core model. Bayesian confidence—that 

is, the probability of being correct—is a function of time spent accumulating evidence and 

the amount of evidence accumulated (as represented by the shading). To be precise, in 

the Bayesian confidence models, the observer does not read out probability correct, but a 

monotonic function of this, as described in the main text. The function of time and evidence 

used by a miscalibrated Bayesian observer to estimate the probability of being correct differs 

from the function that would be used by a calibrated Bayesian observer. arb. = arbitrary; 

prob. = probability; est. = estimated. See the online article for the color version of this 

figure.
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Figure 3. Participants’ Task Was to Determine Which Array Contained More Dots on Average
Note. The number of dots changed every 50 ms, resampled from two independent truncated 

normal distributions, one for each array. (“Free response”) In the free response condition, 

participants could respond when they liked. (“Interrogation”) In the interrogation condition 

participants had to respond within 1 s of a red cross appearing that marked the disappearance 

of the dot arrays. conf. = confidence; RT = response time. See the online article for the color 

version of this figure.
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Figure 4. Duration of Sensory and Motor Processing Pipelines Was Estimated by Fitting a Step 
Function
Note. The step function was fitted to average evidence fluctuations in the frames running 

up to choices in the free response condition. Approach adapted from van den Berg, 

Anandalingam, et al. (2016). This figure shows an example fitted step function for one 

participant. See the online article for the color version of this figure.
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Figure 5. The Effect of Response Time on (A) Accuracy and (B) Confidence in the Main Study
Note. “Response” refers to the left vs. right choice. (B) Consistent with model predictions 

and with previous findings (Pleskac & Busemeyer, 2010), confidence decreased with 

response time in the free response condition, and the relationship between time and 

confidence was more negative in the free response condition than in the interrogation 

condition. The rationale for using binned confidence is explained in Models section. Similar 

patterns were obtained when plotting raw confidence scores against response time. Error 
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bars represent ±1 SEM of the mean. Plotting details in Subsection “Plotting Procedure.” 

SEM = standard error of the mean. See the online article for the color version of this figure.
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Figure 6. The Effect of Evidence Fluctuations on (A and B) Choices and (C and D) Confidence
Note. “Response” time refers to the left vs. right choice. Panels A and B plot the average 

evidence fluctuations in the direction of the choice made. This serves as a measure of the 

effect of evidence on the choice made (Experimental Method section; Resulaj et al., 2009). 

Panels C and D plot the rank correlation (Kendall’s τ) between evidence fluctuations and 

confidence. The shaded region in Panels B and D has a width equal to the median estimate, 

across participants, of the duration of sensory and motor processing pipelines. At time 

lags relative to response, all evidence appeared to be weighted equally in the interrogation 
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condition (B). However, there was evidence that frames occurring at the onset of the 

stimulus were especially strong predictors of responses in both conditions (A). Looking 

at the free response condition data in Panel D, we see that evidence that was probably 

gathered after a decision (i.e., evidence probably in processing pipelines at the time of 

response) appears to have a greater effect on confidence, than the evidence that was probably 

processed prior to decisions. Error bars represent ±1 SEM of the mean. Plotting details in 

Subsection “Plotting Procedure.” SEM = standard error of the mean. See the online article 

for the color version of this figure.
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Figure 7. The Effect of Predecision and Pipeline Evidence on Confidence in the Two Conditions
Note. The y-axis represents the values of coefficients produced by the ordinal regression 

onto confidence (Experimental Method section). We hypothesize that in the interrogation 

condition all evidence is processed prior to a decision, and therefore that there is no pipeline 

evidence. Nevertheless, as discussed in the main text, we artificially divide up the evidence 

presented, in the same manner as in the free condition, for the purpose of comparison. 

Unlike in other plots, error bars represent 95% confidence intervals. conf. = confidence. See 

the online article for the color version of this figure.
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Figure 8. Model Comparison Results
Note. (A) Negative cross-validated log likelihood (−LLcv) relative to the model with 

the lowest mean −LLcv (Model DM with a mean −LLcv of 1.338) and (B) number of 

participants for which each model provided the best fit. A lower value of –LLcv in Panel 

A indicates better fit. Models in which confidence reflects a miscalibrated Bayesian readout 

fit best (Models M, VM, DM, VDM). Unlike in other plots, error bars represent 95% 

bootstrapped confidence intervals. V = drift-rate variability; D = decreasing thresholds; C = 

calibrated; M = miscalibrated.
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Figure 9. (A-Av) Effect of Response Time and (B-Av) Average Evidence on Confidence in the 
Data (Error Bars) and in the Best Fitting Model, Model M (Shading)
Note. Model M accounted well for quantitative patterns in the effects of both response time 

and average evidence, and in differences between the two conditions. In Panel B average 

evidence is computed by summing, over all frames, the difference in dots presented in the 

two arrays, before taking the absolute value and dividing by the time the stimulus was 

presented for. In both A-Av and B-Av error bars and shading represent ±1 SEM. A-P10, 

A-P20, A-P30, B-P10, B-P20, B-P30 show corresponding data (circles) and model fits 

(lines) for three individual participants. Plotting details in Subsection “Plotting procedure.” 

Parameter values for key fitted models are given in Appendix F. Av = average; SEM = 

standard error of the mean; M = miscalibrated. See the online article for the color version of 

this figure.
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Figure 10. Effect of Response Time and Evidence, Considered Simultaneously, in the (A-Av) Free 
Response and (B-Av) Interrogation Conditions
Note. Effect on confidence shown for the data (error bars), and in the best fitting model, 

Model M (shading). Except at the longest and shortest response times, Model M accounted 

well for the simultaneous effect of time and evidence in both conditions (A and B). Evidence 

is computed by summing, over all frames, the difference in dots presented in the two arrays, 

before taking the absolute value. We separated trials into tercile bins according to this 

value, separately for the two conditions and each participant. In both A-Av and B-Av, error 

bars and shading represent ±1 SEM. A-P10, A-P20, A-P30, B-P10, B-P20, B-P30 show 

corresponding data (circles) and model fits (lines) for three individual participants. Plotting 

details in Subsection “Plotting Procedure.” Av = average; SEM = standard error of the mean; 

M = miscalibrated. See the online article for the color version of this figure.
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Figure 11. (Av) The Relationship Between Confidence and Accuracy in the Data (Error Bars) 
and in the Best Fitting Model, Model M (Shading)
Note. Generally, the model captured quantitative and qualitative patterns well. In Panel 

“Av” error bars and shading represent ±1 SEM. Panels “P10,” “P20,” and “P30” show 

corresponding data (circles) and model fits (lines) for three individual participants. Plotting 

details in subsection “Plotting Procedure.” Av = average; SEM = standard error of the mean; 

M = miscalibrated. See the online article for the color version of this figure.
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Figure 12. Fit of the Best Model (Model M) to the Number of Confidence Reports in Each 
Confidence Bin in (A-Av) the Free Response Condition and in (B-Av) the Interrogation 
Condition
Note. The model fit is shown in shading and the data with error bars. The model 

captured quantitative and qualitative patterns very well. In both A-Av and B-Av error 

bars and shading represent ±1 SEM. A-P10, A-P20, A-P30, B-P10, B-P20, B-P30 show 

corresponding data (circles) and model fits (lines) for three individual participants. Plotting 

details in subsection “Plotting Procedure.” Av = average; SEM = standard error of the mean; 

M = miscalibrated. See the online article for the color version of this figure.
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Figure 13. (A-Av and B-Av) The Effect of Evidence Fluctuations on Confidence in the Data 
(Error Bars) and in the Best Fitting Model, Model M (Shading)
Note. Effects shown (A) at times relative to trial onset and (B) at times relative to the 

response. To measure this effect, we computed the rank correlation (Kendall’s τ) between 

evidence fluctuations and confidence. The model accounted well for the effect of evidence 

at time lags relative to response (B-Av), in both conditions. However, the model failed to 

capture the strength of the effect of evidence presented at the onset of the stimulus (A-Av). 

In both A-Av and B-Av, error bars and shading represent ±1 SEM. A-P10, A-P20, A-P30, 

B-P10, B-P20, B-P30 show corresponding data (circles) and model fits (lines) for three 

individual participants. Plotting details in subsection “Plotting Procedure.” Av = average; 

SEM = standard error of the mean; M = miscalibrated. See the online article for the color 

version of this figure.
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Figure 14. Model Fits for Two of the Losing Models
Note. Specifically, the effect of response time on confidence in the data (error bars), and 

in Models V and VC (shading). (A) Model V did not capture the strength of the effect of 

response time on confidence in the free response condition, (B) while Model VC slightly 

underestimated this effect. Error bars and shading represent ±1 SEM. Plotting details 

in subsection “Plotting Procedure.” Parameter values for key fitted models are given in 

Appendix F. SEM = standard error of the mean; V = drift-rate variability; C = calibrated. See 

the online article for the color version of this figure.
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Figure 15. The Effect of Response Time on Accuracy in the Data (Error Bars) and in Simulations 
Using the Best Fitting Model for Confidence, Model M (Shading)
Note. The simulated behavior of the model was sensible, although there were clear 

differences to the data. The accuracy of model-simulated responses was too high at long 

response times. Error bars and shading represent ±1 SEM of the mean. Plotting details in 

subsection “Plotting Procedure.” SEM = standard error of the mean; M = miscalibrated. See 

the online article for the color version of this figure.
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Figure 16. The Effect of Evidence Fluctuations on Choices, in the Data (Error Bars), and in 
Simulations From the Best Fitting Model for Confidence, Model M (Shading)
Note. Effects shown (A) at times relative to trial onset and (B) at times relative to 

the response. The model simulations were generally reasonable, and captured some key 

qualitative effects. The model simulations did not capture the strength of the effect of 

evidence presented at the onset of the stimulus (A). Error bars and shading represent ±1 

SEM of the mean. Plotting details in subsection “Plotting Procedure.” SEM = standard error 

of the mean; M = miscalibrated. See the online article for the color version of this figure.
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Figure 17. The Effect of Predecision and Pipeline Evidence on Confidence in the Two Conditions
Note. Real data are shown with circles, while data simulated from the model are shown 

with crosses and connected by dashed lines. Following Ratcliff and McKoon (2008), for 

each participant and each unique combination of accuracy and condition (free response vs. 

interrogation), the 0.1, 0.3, 0.5, 0.7 and 0.9 quantiles of the response time distributions 

were calculated. The mean over participants is plotted on the y-axis. Data from a unique 

combination of accuracy and condition are plotted at the same x-value. This x-value 

represents the proportion of responses in that condition (free response or interrogation) 
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that have the corresponding accuracy. Specifically, it is the mean of this value across 

participants. Note that this plotting procedure deviates from that described in subsection 

“Plotting Procedure.” Just as for other plots, the plot is based on trials in which a confidence 

report was obtained (meaning trials without a valid response in the interrogation condition 

are not included). RT = response time. M = miscalibrated. See the online article for the color 

version of this figure.

Calder-Travis et al. Page 80

Psychol Rev. Author manuscript; available in PMC 2025 February 24.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Calder-Travis et al. Page 81

Table 1
Ten Model Variants Were Constructed Using the Core Model and Combinations of the 
Model Features

Model name 0 V D VD VC VDC M VM DM VDM

Drift-rate variability (V) - ✓ - ✓ ✓ ✓ - ✓ - ✓

Decreasing thresholds (D) - - ✓ ✓ - ✓ - - ✓ ✓

Bayesian confidence

     Calibrated (C) - - - - ✓ ✓ - - - -

     Miscalibrated (M) - - - - - - ✓ ✓ ✓ ✓

Note. Models are named using abbreviations of the features that they contain. ✓ = contains feature; - = does not contain feature.
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Table 2
Observed and Predicted Patterns in Confidence Data (Part 1), Together With 
Explanations for These Patterns

Observed pattern Features that can explain

(A) “conf. with signal”: Confidence increases as the strength of signal provided by the stimulus 
increases (Pleskac & Busemeyer, 2010, Hurdle 2; for example, Baranski & Petrusic, 1998, and Vickers 
& Packer, 1982)

Pipeline evidence (Pleskac & 
Busemeyer, 2010)
Time penalty for conf.
Decreasing thresholds

(B) “acc. and conf.”: Choice accuracy and confidence are positively correlated within individuals, even 
when considering trials of a fixed difficulty (Pleskac & Busemeyer, 2010, Hurdle 3; for example, 
Baranski & Petrusic, 1998, and Sanders et al., 2016)

Pipeline evidence (Pleskac & 
Busemeyer, 2010)

(C) “conf. with time (speed-acc)”: Confidence increases with response time when comparing different 
conditions in which there is different emphasis on trading speed for accuracy, and in settings where 
stopping is enforced at a particular time, such as in the interrogation condition (Pleskac & Busemeyer, 
2010, Hurdle 5; for example, Rosenbaum et al., 2022, and Vickers & Packer, 1982)

DDM accounts of conf. (Ratcliff & 
McKoon, 2008)

(D) “conf. with time (free)”: For free response tasks, within a single speed-accuracy condition, 
confidence decreases with response time (Pleskac & Busemeyer, 2010, Hurdle 4; for example, 
Rosenbaum et al., 2022, and Vickers & Packer, 1982)

Pipeline evidence and drift 
variability (partial explanation only; 
Pleskac & Busemeyer, 2010)
Time penalty for conf.
Decreasing thresholds

Note. The explanations are discussed in detail in the main text. See Table 3 for Part 2. conf. = confidence; acc. = accuracy; DDM = drift diffusion 
model.
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Table 3
Observed and Predicted Patterns in Confidence Data (Part 2), Together With 
Explanations

Observed pattern Features that can explain

(E) “conf. resolution”: Confidence is a stronger predictor of accuracy following free 
responses that are speeded, compared to free responses where participants are asked to 
emphasize accuracy (Pleskac & Busemeyer, 2010, Hurdle 8;
Baranski & Petrusic, 1994)

Variable interjudgment times (Pleskac & 
Busemeyer, 2010)
Time penalty for conf.

(F) “conf. in errors”: In some cases confidence in errors decreases as a task becomes easier, 
in other cases it increases (Kiani et al., 2014, and Sanders et al., 2016)

Pipeline evidence and time penalty for conf. 
and flat decision threshold (Calder-Travis et al., 
2023; Desender et al., 2020; Khalvati et al., 
2020; Kiani et al., 2014)

(G) “conf. with IJT”: Time between decision and confidence (when controlled by the 
experimenter) decreases confidence on error trials, but this IJT has a relatively small effect 
on correct trials (Yu et al., 2015)

Evidence leak (Yu et al., 2015) Time penalty for 
conf.

Predicted pattern Feature that can explain

(H) “evidence on conf.”: In free response tasks, once the effect of time has been accounted 
for, predecision evidence will have a smaller effect on confidence than pipeline evidence. 
There will be no analogous effect in interrogation tasks

Decisions and conf. from same thresholded 
accumulation

Note. See Table 2 for Part 1. conf. = confidence; IJT = interjudgment time.
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Table 4
Parameters in the Models

Model 0 V D VD VC VDC M VM DM VDM All

Accumulator noise (σacc) 1

Metacognitive noise (σm) 1

Decision threshold height (a) 1

Pipeline duration (I) 1

Confidence lapse rate (λ) 1

Confidence bin bounds (di) 3

Drift-rate variability (σφ) 1   1 1   1   1   1

Decision threshold slope (b) 1   1   1   1   1

Estimated variability ratio (Γ) 1 1   1   1

Total 8 9 9 10 9 10 9 10 10 11

Note. All models shared the eight parameters of the core model. Model variants with additional features contained additional parameters. Drift-rate 
variability introduced a parameter (standard deviation of distribution over the drift-rate scaling), decreasing decision thresholds introduced a 
parameter (threshold slope), and a miscalibrated Bayesian readout for confidence also introduced one additional parameter (estimated variability 
ratio). Models VC and VDC have the same parameters as Models V and VD, respectively, but are not the same model. Models VC and VDC 
feature a Bayesian readout of confidence (which introduces no additional parameters; Table 1). Details of the role of the parameters in the 
computational model are provided in Appendix A. V = drift-rate variability; D = decreasing thresholds; C = calibrated; M = miscalibrated.
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Table 5
Model Variants Added Only for the Random Effects Model Comparison

Model name C DC

Drift-rate variability (V) - -

Decreasing thresholds (D) - ✓

Bayesian confidence

     Calibrated (C) ✓ ✓

     Miscalibrated (M) - -

Note. These models are not included in most analyses because they exactly duplicate the predictions of other models (see Table 1 and Models 
section). ✓ = includes this feature; - = does not include this feature.
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