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Effective planning involves knowing where different actions take us. However, natural environments are rich and complex, lead-
ing to an exponential increase in memory demand as a plan grows in depth. One potential solution is to filter out features of the
environment irrelevant to the task at hand. This enables a shared model of transition dynamics to be used for planning over a
range of different input features. Here, we asked human participants (13 male, 16 female) to perform a sequential decision-mak-
ing task, designed so that knowledge should be integrated independently of the input features (visual cues) present in one case
but not in another. Participants efficiently switched between using a low-dimensional (cue independent) and a high-dimensional
(cue specific) representation of state transitions. fMRI data identified the medial temporal lobe as a locus for learning state transi-
tions. Within this region, multivariate patterns of BOLD responses were less correlated between trials with differing input features
but similar state associations in the high dimensional than in the low dimensional case, suggesting that these patterns switched
between separable (specific to input features) and shared (invariant to input features) transition models. Finally, we show that
transition models are updated more strongly following the receipt of positive compared with negative outcomes, a finding that chal-
lenges conventional theories of planning. Together, these findings propose a computational and neural account of how information
relevant for planning can be shared and segmented in response to the vast array of contextual features we encounter in our world.

Key words: model based; planning; reinforcement learning; RSA

Significance Statement

Effective planning involves maintaining an accurate model of which actions take us to which locations. But in a world awash
with information, mapping actions to states with the right level of complexity is critical. Using a new decision-making “heist
task” in conjunction with computational modeling and fMRI, we show that patterns of BOLD responses in the medial tempo-
ral lobe—a brain region key for prospective planning—become less sensitive to the presence of visual features when these are
irrelevant to the task at hand. By flexibly adapting the complexity of task-state representations in this way, state-action map-
pings learned under one set of features can be used to plan in the presence of others.

Introduction
Effective goal-directed behavior requires an agent to learn an
accurate model of the world. Theories of reinforcement learning
(RL) conceive of this model as a function, p(s9|s,a), that encodes

the probability of transitioning to a new state, s9, given the cur-
rent state, s, and action, a. Explicitly learning a state transition
function permits agents to plan over possible futures (Sutton and
Barto, 1998). This computational framework has been widely
used to model simple laboratory behaviors that involve a lim-
ited number of state transitions (Gläscher et al., 2010; Daw et al.,
2011; Wunderlich et al., 2012; Doll et al., 2015). However, it has
well known limitations, foremost among which is that computa-
tional cost grows exponentially with the number of states.

One way that agents can reduce this computational cost is to
selectively discard information, such as intervals of time (minutes,
hours, days, etc.) and sensory cues, that can be used to segment
experiences into separate states (Niv, 2019). For example, when
planning a journey to work, travel delays when traveling by car
(traffic jams), rail (train track repairs), or bike (getting wet) can all
change from day to day. One way to reduce the cost of planning is
to share knowledge of travel delays over multiple days where this
is appropriate. For example, train delays might be invariant to
whether one is traveling on a weekday or at the weekend.
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Here, we developed an experimental paradigm that allowed
us to test how the brain adapts the state representations it uses
to plan efficiently. Our first question was whether participants
would flexibly adapt how information was recruited and updated,
switching between low-dimensional (cue-independent) and high-
dimensional (cue-specific) representations. Our question and
approach here are similar to those described in a recent article
by Baram et al. (2021), with a key difference being that our
work examines how the transition function (how states of the
world are associated), rather than the value function (the value
of states and actions), is shared across or kept specific to the
presence of different sensory cues. Our second question was posed
at the neural level and addressed by recording fMRI data while
participants performed the task. We focused on the medial tempo-
ral lobe (MTL), which has previously been shown to be important
for forming new associations between states (Miyashita, 1988;
Eichenbaum et al., 1999; Yokose et al., 2017; Rey et al., 2018) and
involved in bridging past memories to make new inferences on
the basis of paired associations or transitive relations (Bunsey and
Eichenbaum, 1996; Wimmer and Shohamy, 2012; Zeithamova
et al., 2012; Kumaran et al., 2016; Koster et al., 2018; Park et al.,
2019). We find that a cluster of regions in the MTL, including the
hippocampus, amygdala, and entorhinal cortex, display patterns
of blood oxygenation level-dependent (BOLD) activity encoding
transition probabilities that are more similar between sensory cues
when model sharing is possible compared with when it is not.
This suggests that the MTL maintains separable encoding patterns
corresponding to each sensory cue in cases where state associa-
tions are cue specific, but uses a single cue-independent encoding
pattern when they are not. Finally, we designed our paradigm
such that the transition function (the probability of moving from s
to s9 under action a) and the value function (when in state s, the
expected value of taking the action a that led to s9) were theoreti-
cally independent. This allowed us to ask whether state transition
learning depends on whether an outcome is positive or negative.
We show that belief updating of state transition knowledge occurs
to a greater degree following positive outcomes compared with
negative. This learning asymmetry is reflected by an interaction
in the MTL whereby state prediction errors (SPEs) are expressed
with greater fidelity for positive compared with negative outcomes.
These findings nuance conventional models of planning that
assume state transitions and outcomes are tracked and main-
tained separately from one another.

Materials and Methods
Participants. A total of 62 healthy volunteers with no self-declared

history of psychiatric or neurologic disorders took part in the experi-
ment. Thirty-one took part in the pilot experiment [18 female; mean
(SD) age, 26.29 years (5.50 years)], and 31 participated in the main fMRI
study. From the latter, two participants were subsequently excluded.
One was excluded because their structural fMRI revealed a possible brain
abnormality. A second participant was excluded because of excessive
head motion (.10% of images contained motion artifacts on visual inspec-
tion). This left 29 participants (16 female; mean (SD) age, 25.86 years
(3.59 years)] in the final sample. Participants were paid 10e/h plus a
bonus contingent on performance.

Ethics statement. The fMRI study was approved by the ethics com-
mittee of the University of Granada where data collection was con-
ducted. All participants gave written informed consent before scanning.
The behavioral pilot was approved by the ethics committee at the
University of Oxford where this dataset was collected. We obtained writ-
ten informed consent from each participant.

Heist task. On each trial of the fMRI experiment, participants were
presented with one of two doors (dark/light) on one (left/right) side of

the screen (side counterbalanced), in one of two “contexts” within the
current block (Fig. 1a). Participants were instructed not to respond until
an X appeared on the door. When an X appeared, on forced trials (24/
block), participants were required to select the door initially pre-
sented. On free-choice trials (8/block), participants could either choose
the door initially presented or opt to choose the alternate door, which
appeared on the opposite side of the screen also with an X (Fig. 1a).
Participants had 1.5 s to respond; otherwise, the trial was aborted.
Missed trials [mean (SD) = 6.41 (4.65)] were excluded from all analyses.

The selection of door influenced which of two possible second-stage
states participants subsequently transitioned to. One of the doors transi-
tioned with probability p to a heist state where participants could either
win or lose money and transitioned with probability 1 – p to a neutral
state in which participants would always receive 0 as an outcome (partic-
ipants were only rewarded for free-choice trials). The alternate door
transitioned to the same second-stage states but with the inverse proba-
bility (i.e., probability 1 – p of transitioning to the heist state and proba-
bility p to the neutral state; Fig. 1b). The value of p was set to either 0.2
or 0.8, alternating randomly between these two values throughout the
task (with probability of changing equal to 0.1 on every trial). This meant
that one door was always likely to transition to one of the outcome states
and unlikely to transition to the other. Participants were told state transi-
tions could change, but were not told the probability with which this
could happen. Importantly, p always had the same value for both con-
texts in dependent blocks. In independent blocks, the values for p were
independent in the two contexts. Participants were explicitly told this
probability structure during the instructions and the block type they
were in (dependent/independent) was clearly signaled to them at the
start of a new block of trials. The context of the current trial was signaled
to participants by the color of a gemstone presented in the center of the
screen (green, yellow, blue, or red). The assignment of gemstone to con-
text was different for each participant but (after assignment) remained
the same throughout the experiment. Alongside this contextual cue, dur-
ing door and response presentation participants were also shown a stim-
ulus (either swag bag or police) indicating whether they would receive a
gain (if a swag bag was shown) or incur a loss (if police were shown) if
they reached the heist state (this changed randomly on every trial). They
were also shown a sofa stimulus, which indicated they would get 0 on
reaching the sofa state (this was the case in every trial). Since whether a
gain or loss was possible in the heist state was signaled to participants
(and alternated on each trial), this meant that participants should aim to
reach the heist state on 50% of trials (when the swag bag was presented)
and aim to avoid this state (i.e., reach the sofa state) on the remaining
50% of trials (when the police were shown). Explicitly providing partici-
pants with this information was done to remove the need to actively
learn the value of each bottom-level state, emphasize the need to track
the transition function, and use current beliefs about this function to
plan. After indicating their choice, participants were shown the state
they transitioned to and the resulting outcome—either a gain or a loss if
they transitioned to the heist state (depending on whether the police or
swag bag stimuli had been presented at the time of choice) or zero if
they transitioned to the neutral state.

The task took place in sessions of trials (two blocks of 32 trials/
session, five sessions total during the experiment, and 320 trials total).
The first session took place outside of the scanner. Each session con-
tained one block of trials in the dependent condition and one block
of trials in the independent condition. The order of the blocks was coun-
terbalanced across sessions. Participants indicated their response using
a computer keyboard (outside the scanner) or MRI-compatible button
box (inside the scanner). Participants were paid a base rate bonus of
2.50e plus 2.5 times their percentage of correct free-choice trials (up to
5e total). The task was programmed in MATLAB using Psychtoolbox
(Kleiner et al., 2007).

Behavioral analysis (adapting information integration between con-
texts). To examine the extent to which participants updated beliefs about
state transitions within and between contexts, logistic regression analyses
were conducted [mixed-effects models using the fitglme fitting routine
in MATLAB, version 2020 (https://www.mathworks.com/)]. Models tested
to what extent subjects’ choice behavior on each trial (coded as: select dark
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door=1; select light door=0) was influenced by transitions experienced
over the previous five trials.

To examine this, we first constructed five variables that coded the
evidence received from the state transition n trials back (relative to the
current trial t), where n ranged from 1 to 5. When trial t was a gain trial,
previous transitions to the heist state were coded 1 (�1) if the dark
(light) door was selected t – n trials back and participants transitioned to
the heist state, and coded �1 (1) if the transition encountered was to the
neutral state. This coding was reversed for loss trials (Fig. 2). The intu-
ition implicit in this coding scheme is that participants would aim to
repeat choices that previously transitioned to the heist state on gain trials
but to switch choices on loss trials (in an attempt to transition to the
neutral state and avoid incurring a loss). We also partitioned trials
according to whether evidence was received in the same or alternate con-
text as the current trial t. This led to a total of 10 variables—5 encoding
evidence received one to five trials back from the same context and
5 encoding evidence received one to five trials back from the alternate
context. A “0” was entered as a value for cases where a variable did not
apply for a particular trial (e.g., if three trials back a subject’s choice was
executed in the alternate context, evidence three trials back in the same
context would be assigned a value of 0 for this trial).

Next, to assess qualitatively whether the degree of information inte-
gration from each context (same and other) changed between condi-
tions, we entered all 10 variables in separate mixed-effects models: one
for the dependent condition and one for the independent condition.
Only choices from free-choice trials were entered in the model as the de-
pendent variable (however, the information encoded in the independent
variables used to predict choice could come from free or forced trials as

participants could use transition information from both trial types). All
regressors and the intercept were taken as random effects (i.e., allowed
to vary across subjects).

The model was specified in the syntax of the MATLAB fitglme rou-
tine as follows:

DarkDoor; oneBackSameþ twoBackSameþ threeBackSame

þ fourBackSameþ fiveBackSameþ oneBackOther

þ twoBackOtherþ threeBackOtherþ fourBackOther

þ fiveBackOtherþ ð1þ oneBackSameþ twoBackSame

þ threeBackSameþ fourBackSameþ fiveBackSame

þ oneBackOtherþ twoBackOtherþ threeBackOther

þ fourBackOtherþ fiveBackOtherjsubjectÞ

To the extent that participants are using information from each con-
text to a similar degree (which ought to be the case in dependent blocks),
coefficient estimates ought to have a similar magnitude for same and
other context. To the extent that participants ignore information from
an alternate context (which ought to be the case in independent blocks),
there ought to be separation between coefficient estimates from same
versus other. Note that by controlling multiple trials back, we guard
against the possibility that information used in the alternate context can
have an effect in the dependent condition by virtue of the fact the feed-
back received is similar in the two contexts.

Figure 1. Task design. a, Trial sequence in the fMRI experiment. Each trial begins with a fixation cross after which participants are shown one of two options (a dark and a light door) along
with one of four contextual cues (red gem in the example) and two stimuli (sofa plus either police or swag) indicating the outcome if they transition to the heist state (if police shown,�1; if
swag shown,11) or the neutral state (always sofa = 0). In forced-choice trials (75% of trials), participants are then required to select this option via a button press. In free-choice trials (25%
of trials), they can choose between this option and the alternate option. Participants were instructed to respond when an X appeared on one or both doors. Feedback—the subsequent state
along with the outcome—is then revealed. b, State transition dynamics: at the first stage, each option (framed as two doors) transitions participants to one of two second-level states; a neu-
tral state in which an outcome of 0 (sofa/chair stimuli) is always obtained or a heist state in which an outcome of 1 (swag bag stimuli) or�1 (police stimuli) can be obtained (note which of
these two outcomes will be obtained at the heist state is signaled to participants in advance by the presence of one of these cues at choice). One first-stage option (light door in the figure)
transitions with probability p to the neutral state and with probability 1 – p to the heist state; the alternate option (dark door) has the opposite transition probabilities. p changes at random
points in the task. c, In dependent blocks (not real data), p is the same in each context; changes to p occur simultaneously over the two contexts. d, In independent blocks (not real data),
p alternates independently in each context. p was set to be either 0.2 or 0.8 at any given time.
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Finally, to assess quantitively whether differences in information
integration between conditions were significant, we averaged the
streams of evidence of each condition for picking the dark door on the cur-
rent trial over the past five trials. This resulted in the following two
quantities:

average evidence Same ¼ ðoneBackSameþ twoBackSame

þ threeBackSameþ fourBackSame

þ fiveBackSameÞ=5

average evidence Other ¼ ðoneBackOtherþ twoBackOther

þ threeBackOtherþ fourBackOther

þ fiveBackOtherÞ=5
We then subtracted average_evidence_Other from average_

evidence_Same providing the following difference score:

differential evidence ¼ average evidence Same

� average evidence Other

The differential evidence score reflects a relative preference in updat-
ing beliefs for information received from the same context over informa-
tion received from the other context. When equal to 0, individuals are
indifferent between evidence from the same and evidence from the other
context. When .0, individuals prefer (i.e., update beliefs to a greater
degree) information received in the same context compared with the other
context. When ,0, individuals prefer information received in the other
context compared with the same context.

We used this differential evidence score in a third mixed-effects
model to test whether preferences for the context in which information was
received shifted with condition (captured in the model as a Differential
Evidence by Condition interaction). The model was specified as follows:

DarkDoor; differential evidence

� Condition
þ ð1þ differential evidence

� ConditionjsubjectÞ:

Condition was again coded as 1 =
Dependent condition, �1 = Independent
condition.

Computational model. Our model is not
intended primarily as an account of the com-
putations that humans undertake, but as an
analytic tool. Participants are assumed to
track the underlying state transition structure
of the task in the form of p, an estimate of the
probability that selection of one of the two
doors (which of the two is arbitrary, but in
our modeling this is taken to be the dark
door) transitions to the heist state. This is
assumed (as is the actual case in the experi-
mental design) to be equal to the probability
that the alternate door transitions to the neu-
tral state. It is also assumed (as is the case)
that 1 – p is equal to the probability of
each door going to the alternate state (dark
goes to neutral and light to heist). Under
these assumptions, maintaining a belief about
a single quantity, p, enables computation
of estimates for each door going to each sec-
ond-level (terminating) state. Importantly,
participants are assumed to maintain the
following two sets of beliefs about p: pispecific
and pindependent. pispecific maintains separate
estimates of p, exclusive to each context where
i indexes the two contexts in each block (i.e.,
[pi¼1

specific, p
i¼2
specific]). pindependent maintains a sin-

gle estimate of p, which updates across contexts (within the same block).
All estimates of p were initialized to 0.5 at the start of the experiment in
all models. Estimates of p were allowed to carry over between blocks
(i.e., p did not reset to 0.5 at the start of a new block).

At the time of choice, participants then combine the two sets of beliefs
(pispecific, pindependent) into a single estimate, p̂c, according to the following:

p̂c ¼ w � pindependent þ ð1� wÞ � pispecific:

We tested a baseline model in which w was held fixed between condi-
tions. We refer to this as the fixed model. We tested this against a second
model, which was identical in all respects except that it allowed w to
reverse in the independent condition. In other words, in the dependent
condition, p̂c was calculated as follows:

p̂c ¼ w � pindependent þ ð1� wÞ � pispecific:

In the independent condition. p̂c was calculated as follows:

p̂c ¼ ð1� wÞ � pindependent þ w � pispecific:

We refer to this as the flexible model.
In both models, combined estimates of p (p̂c) were then used to cal-

culate the value of selecting each door, as follows:

Qdark door ¼ r � p̂c;

Q light door ¼ ðr � 1� p̂cÞ;

[r=1 on gain trials,�1 on loss trials].
Following choice, after participants observed the second-level state

they transitioned to, a state prediction error, d , was calculated as follows:

Figure 2. Behavioral data. a, b, Parameter estimates predicting choice from state transitions experienced one to five trials
back, separated according to whether transitions occurred in the same (blue) or alternate (red) context to the current trial con-
text in the dependent condition (a) and the independent condition (b). Bars represent fixed-effects regression coefficients from
a mixed-effects logistic regression on participants’ choices. Triangles represent the mean fixed-effects regression coefficient esti-
mates generated via the same mixed-effects logistic regression as the data but for choice simulated for agents under a flexible
computational learning model, which enables evidence integration to adapt to the condition in which choices are being made
(dependent or independent). c, d, Plot the same parameter estimates with simulated agents from the fixed learning model (in
diamonds), which does not permit adaptation in evidence integration. *p, 0.05 (human data). Error bars express 95% confi-
dence intervals.
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d ¼ x� p̂c;

[x= 1 if chose dark door and transition to heist state OR chose light
door and transitioned to neutral state; x=0 if chose dark door and tran-
sitioned to neutral state OR chose light door and transitioned to heist
state].

This prediction error was then applied to update both sets of beliefs
about p, as follows:

pindependent ¼ pindependent þ w � a � d ;

pispecific ¼ pispecific þ ð1� wÞ � a � d :

Where the context indexing pispecific can be context 1 or context 2.
The w used in each update is identical to the w used to compute p̂c

and was either held fixed (fixed model) or allowed to reverse between
conditions (flexible model).

To avoid probability estimates exceeding 1 or going ,0 (which in a
small number of cases is possible in this setup), updates to beliefs were
bounded to within this range.

The probability of choosing the dark door was then estimated using
a softmax choice rule, as follows:

pðchoice ¼ dark doorÞ ¼ 1

1þ exp
�
b ðQ light door � Qdark doorÞ

� :

Altogether, each model has the following three parameters: a, b ,
and w. For each participant, we estimated the free parameters of the
model by maximizing the likelihood of their sequence of choices, jointly
with group-level distributions over the entire population using an expec-
tation maximization (EM) procedure (Huys et al., 2011; Garrett and
Daw, 2020), which maximizes the joint likelihood of each participant’s
sequences of choices where each individual’s parameter estimates are
random effects drawn from group-level Gaussian parameter distribu-
tions whose means and variances and also estimated) implemented in
the Julia language (version 0.7.0; Bezanson et al., 2012). Note that, simi-
lar to the behavioral analysis reported above, all trials (forced and free)
were included in the model but only free-choice trials were included in
the likelihood calculation. Models were compared by first computing
unbiased per subject log marginal likelihoods (using the Laplace approx-
imation) via subject-level cross-validation (iteratively holding out each
subject and estimating the free parameters of the model for the remain-
ing participants using the EM optimization algorithm then using these
estimates as a Gaussian before optimizing the left-out subject choices)
and then comparing these likelihoods (one per participant) between
models (Flexible vs Fixed) using paired sample t tests (two sided).

Computational simulations. To examine the qualitative fit of each
learning model to the data, we ran separate simulations for the Fixed
Model (in which w was held constant across conditions) and the Flexible
Model (in which w was allowed to vary with condition). For each simu-
lation (n=504 for each model), we ran a group of 29 virtual participants.
For each virtual participant, we randomly selected (with replacement) a
set of parameters (b , a, and w) from the best fit parameters generated
by the computational model (fit to actual participants choices). We then
simulated the learning process by which estimates of p evolved (given
door selection and state encountered), exactly as described for the re-
spective computational models. To mimic the task as closely as possible,
25% of virtual agent trials were free-choice trials in which we simulated
which of the two doors were selected (given current beliefs about p, and
whether a gain or a loss was available in the heist state), and 75% were
forced-choice trials where the door selected was chosen for them (as a
coin flip).

We then entered choices made by each virtual agent as the depend-
ent variable in a binomial mixed-effects model with regressors coding
evidence received one to five trials back from the same and alternate
context (10 regressors in total). This was run separately for each condi-
tion, replicating the analysis conducted on the data (i.e., actual subjects’

choices) with the same model specification (as before, all regressors and
the intercept were taken as random effects). This generated a set of
fixed-effect parameter estimates for each simulation for each condition.
We then averaged each fixed parameter estimate over the simulations
and compared these to the parameter estimates generated from the data.

Finally, we used the fixed model to run a permutation test to estimate
the extent to which an interaction between differential evidence and con-
dition (our third mixed-effects model) could arise under agents that did
not change information integration between contexts that might occur
because of feedback being more similar in the dependent condition com-
pared with the independent condition. Specifically, we simulated choices
for 500 groups made up of 29 agents each in performing the task. For
each agent, we randomly selected (with replacement) a set of parameters
(b , a) from the best fit parameters generated by the fixed model (fit to
actual participants choices). w could take any value between 0 and 1
(uniformly distributed) and could not reverse between contexts. For
each group, we then calculated differential evidence scores on each trial
for each participant and entered these into a mixed-effects model to pre-
dict choices (along with condition and their interaction) exactly as we
did using participants’ data. This generated a distribution of fixed-effects
estimates and t statistics that we used to calculate a 95% confidence
interval (CI) and compare against the estimates found in the data.

fMRI image acquisition, preprocessing and reporting. MRI data were
acquired on a 3T Magnetom Trio MRI Scanner scanner (Siemens). A
whole-brain, high-resolution, T1-weighted anatomical structural scan
was collected before participants commenced the four in-scanner blocks
of the task (imaging parameters: voxel resolution = 1 mm3; TR=1900
ms; TE=2.52 ms; TI= 900 ms; slice thickness = 1 mm; voxel resolution=
1 mm3). During the task, axial echoplanar functional images with
BOLD-sensitive contrast were acquired in descending sequence (imag-
ing parameters: 32 axial slices per image; voxel size = 3.5 mm3; slice
spacing = 4.2 mm; TR = 2000 ms; flip angle = 80°; TE = 30 ms). The
462 volumes were collected per participant per session (total number of
volumes over the four sessions = 1848), resulting in a scanning time of
;1 h. Image analysis was performed using SPM12 (http://www.fil.ion.
ucl.ac.uk/spm). The following procedures were used for preprocessing of
the raw functional files. Slice-time correction referencing was applied
with reference to the middle slice to correct for/avoid interpolation
errors because of the descending image acquisition sequence (Juechems
et al., 2017, their reference Sladky et al., 2011). Then, realignment of the
images from each session with the first image within it was performed.
The crosshair was adjusted to the anterior commissure manually to
improve coregistration. After coregistration of the functional with the
structural images was performed, segmentation, normalization, and
smoothing of the .epi files was undertaken. We then checked for motion
artifacts and flagged scans as well as warping manually.

In all fMRI analyses [univariate and representational similarity analy-
sis (RSA) searchlights], we report activation that survives small volume
correction at peak level within an anatomical or functional region of in-
terest (ROI) mask (see below for how these were defined). Other brain
regions were only considered significant at a level of p, 0.001 uncor-
rected if they survived whole-brain familywise error (FWE) correction at
the cluster level (p, 0.05).

Anatomical masks. Anatomical masks were generated using the
automated anatomic labeling atlas (Tzourio-Mazoyer et al., 2002) and
Talairach Daemon Atlas (Lancaster et al., 2000), which was used to
define Brodmann area 28 as entorhinal cortex (Canto et al., 2008) and
Brodmann area 17 as V1 (Tootell et al., 1998) integrated into the WFU
Pickatlas graphical user interface (GUI; Maldjian et al., 2003), as follows:
(1) a bilateral medial temporal lobe mask used for small-volume correc-
tion, which was defined as including the bilateral hippocampus, entorhi-
nal cortex, parahippocampus, and amygdala, and dilated by a factor of 1
in the WFU Pickatlas GUI; (2) bilateral amygdala (84 voxels), hippocam-
pus (336 voxels), entorhinal cortex (53 voxels), and parahippocampus
(404 voxels) masks (no dilation) used for anatomical definition of our
ROI from fMRI general linear model (GLM) 1 (see below) as well as post
hoc RSA tests (see Fig. 4); and (3) bilateral V1 (121 voxels) and bilateral
primary motor cortex (Brodmann area 4, 240 voxels) used as a control
region for the post hoc RSA tests (see Fig. 4).
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All masks were resliced to match the dimensions of our data using
the SPM fMRI Realign (Reslice) function.

fMRI general linear model 1. For each participant, the BOLD signal
was modeled using a GLM with time of door presentation and time of
outcome presentation as onsets. Events were modeled as delta (stick)
functions (i.e., duration set to 0 s) and collapsed over our two experi-
mental conditions (dependent and independent blocks).

To identify brain regions that tracked state prediction errors, we
extracted trial by trial estimates of unsigned state prediction errors, |d |,
from our computational model and entered these as parametric regres-
sors, modulating the time of outcome for each participant. In addition,
we also entered the following regressors: outcome received (1, 0, or �1),
the interaction of outcome with unsigned state prediction error (i.e., the
product of outcome received with |d | on each trial) and trial type
(1= forced, �1= free). Six movement parameters, estimated from the
realignment procedure were added as regressors of no interest.

ROI definition. We identified regions in which the BOLD response
was parametrically modulated by the magnitude of the unsigned state
prediction error (|d |), using a threshold of p, 0.001 uncorrected, with
cluster size. 10 voxels. Clusters identified were saved as binary ROIs
(in SPM) and then combined into a single ROI using the MarsBaR tool-
box (http://marsbar.sourceforge.net/). This functional ROI was then
used for a subsequent RSA (see below). We divided the number of voxels
that fell within both our functional ROI and each anatomical mask by
the total number of voxels in our functional ROI. This gave us the per-
centage with which our functional ROI was a conjunction of each ana-
tomical region.

fMRI GLM 2a (door presentation). For each participant, we created a
design matrix in which each door presentation (32 per condition per ses-
sion) was modeled as a separate event (without parametric regressors
attached). Such a procedure has been used multiple times in the past
(Charpentier et al., 2014; Garrett et al., 2016). Outcome onset was
entered as an additional event. Events were modeled as delta functions
and convolved with a canonical hemodynamic response function to create
regressors of interest. Six motion correction regressors estimated from the
realignment procedure were entered as covariates of no interest.

RSA (door presentation). To examine whether BOLD responses were
more similar between contexts in the dependent versus independent
condition, we used GLM2a to extract estimates of BOLD response on
each trial in our functional ROI (identified from GLM 1) and partitioned
these estimates into four linearly spaced bins according to how
likely the door presented was to go to the heist state (P(state = heist |
door presented)). This was inferred by extracting a trial by trial esti-
mate of pcombined (from the flexible learning computational model) and
using pcombined or 1 – pcombined, depending on whether the dark
or light door was presented, respectively, to estimate p(state = heist |
door presented).

We divided trials into quartiles based on p(heist state | door pre-
sented), resulting in the following average (SD) probability bins: Bin 1,
0.04, p (heist state | door presented)� 0.21 (0.10); Bin 2, 0.21, p (heist
state | door presented)� 0.51 (0.09); Bin 3, 0.51, p (heist state | door
presented)� 0.80 (0.09); and Bin 4, 0.80, p (heist state | door
presented)� 0.96 (0.03).

This was done separately for each context that the participant
(N= 29) encountered (2 in dependent blocks and 2 in independent
blocks, 16 bins in total). We then averaged these estimates in each voxel
in our functional ROI (collapsing across the four functional runs) for
each bin generating an average BOLD response for each voxel.

To compare the similarity of responses between contexts, we pro-
ceeded by first calculating the dissimilarity of BOLD responses in each
of the four bins between contexts. We computed this using (Pearson)
correlation distance (using the pdist function in MATLAB); hence, high
correlation indicates a low level of dissimilarity (conversely a high level
of similarity). This generated an 8� 8 dissimilarity matrix for each con-
dition of which we subselected the 4� 4 matrix displaying the dissimilar-
ity of probability bins between the two contexts [i.e., context 1 vs context 2
for each level of p (heist state | door presented).

Dissimilarity scores were then converted into similarity scores (high
scores indicating greater similarity) and Fisher transformed to allow

inference at the group level. The four similarity scores along the diagonal
of each RSA matrix (where identical bins are compared between con-
texts) were averaged for each participant, creating an on-diagonal simi-
larity score that quantifies the extent to which identical values of
transition probabilities are encoded similarly between the two contexts
in a condition. The 12 similarity scores on the off-diagonal of each RSA
matrix (where different bins are compared between contexts) were sepa-
rately averaged together to create off-diagonal similarity scores. Note
that, unlike in regular RSA analyses, all 12 scores were averaged across
rather than just the upper or lower triangular as the values in the 4� 4
matrix are not identical about the diagonal (off-diagonal 4� 4 of
a larger 8� 8; see above). We then computed the difference between on-
diagonal and off-diagonal scores separately for each condition. One-
sample t tests (vs 0) were conducted to assess whether significant differ-
ences between on-diagonal and off-diagonal similarity scores existed.
Two-tailed paired sample t tests were used to compare whether differ-
ence scores were greater for the dependent condition compared with the
independent condition.

The same RSA procedure was applied to voxels within the four
anatomical ROIs used to characterize the nature of the effect within the
medial temporal lobe and the control regions V1 and M1 (see Fig. 4).
The interaction ANOVA result reported in the text are Greenhouse–
Geisser corrected to adjust for violations of sphericity (both F value and
degrees of freedom).

To check whether there is a relationship between the temporal prox-
imity of trials between contexts and how similar the neural patterns are,
we calculated the mean temporal distance between trials in the two con-
texts on the diagonal and the off-diagonal in each condition for each par-
ticipant. We then correlated the difference in proximity between diagonal
and off-diagonal trials with the difference in representational similarity
between the diagonal and off-diagonal in the dependent and the inde-
pendent condition.

Encoding model analysis. As a complementary approach, we built a
linear encoding model, equivalent to a cross-validated multinomial
logistic regression, that mapped voxels (within an ROI) onto probabil-
ities under different constraints. We evaluated this model in cross-vali-
dation, using independent held-out data from across scanner runs.
Briefly, we first extracted single-trial estimates of BOLD within the MTL
ROI for each gem on each session, yielding data Y of size v� t, where v
is the number of voxels and t is the number of trials on which that gem
was presented. We also recoded (scalar) single-trial, model-derived esti-
mates of transition probability (converted to odds ratios) as input vec-
tors in either a one-hot format (i.e., a 1 within the relevant bin and zeros
elsewhere) or a Gaussian format (i.e., a Gaussian tuning curve that was
maximal in the relevant bin but gradually tapered over adjacent bins).
We used n bins falling within the range (in log odds) units of �2 to 2,
where n varied exhaustively from 1 to 10. This yielded data X of size
n� t. We estimated weights w by linear regression of Xi onto Yi for scan-
ner run i and evaluated the fit of the model to held out probabilities Xj

from multivariate patterns Yj acquired in scanner run j. We used a
(mean) cross-entropy loss in validation. This exercise allowed us to ver-
ify, for each gem, the cross-validated loss when weights obtained with
gem g were evaluated with gem g9 with which it co-occurred, both in the
independent condition (where the probabilities were different) and the
dependent condition (where they were not). We tested whether there
was stronger cross-validation between gems (and across runs) in the de-
pendent than the independent condition, for a varying number of bins n
and with both one-hot and Gaussian input functions.

Searchlight RSA (door presentation; whole-brain). To assess whether
our ROI was the only brain area with dependent and independent block
transition probability representations and potential differences between
them or whether this representation was distributed across the brain
(and thus potentially less meaningful), we also conducted a whole-brain
searchlight analysis. The searchlight analysis was conducted using a com-
bination of scripts from the RSA toolbox (Nili et al., 2014) and our own
parser script feeding in the single-trial onset events generated in GLM2a.
The searchlight radius used was 10.5 mm (corresponding to 3 voxels).
Neural representational dissimilarity maps for the two block types were
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separately correlated with model representational dissimilarity matrices
(RDMs) using Spearman’s correlation coefficient. The model RDM speci-
fied that the on-diagonal was more similar between contexts than the off-
diagonal. This was done individually for each participant, and the result-
ing maps of correlation coefficients were saved. Second-level analysis as
described above was then applied to the r-maps to establish separate
group-level effects for the two conditions (i.e., the dependent and inde-
pendent blocks). We report any brain regions that survive whole-brain
correction at the cluster level after thresholding at p, 0.001.

fMRI GLM 2b (outcome presentation). For each participant, we cre-
ated a design matrix in which each outcome presentation (32 per condition
per session) was modeled as a separate event (without parametric regres-
sors attached). Door presentation onset was entered as an additional event.

RSA (outcome presentation).We used GLM2b to extract estimates of
BOLD response on each trial in our functional ROI and partitioned
these estimates into bins according to the combination of doors chosen
and state encountered. These combinations (of which there are four in
total) drive the direction and degree of update of beliefs (p) about state
transitions in the computational model. Specifically, we divided responses
into bins as follows: Bin 1, dark door chosen 1 heist state encountered;
Bin 2, dark door chosen 1 neutral state encountered; Bin 3, light door
chosen1 heist state encountered; and Bin 4, light door chosen1 neutral
state encountered.

This was done separately for each context that the participant
encountered (2 in dependent blocks and 2 in independent blocks, 16 bins
in total). We then averaged these estimates in each voxel in our functional
ROI (collapsing across the four functional runs) for each bin generating
an average BOLD response for each voxel.

To compare the similarity of responses between contexts, we fol-
lowed a similar procedure to the RSA conducted at door presentation.
We first calculated the dissimilarity of BOLD responses in each of the
four choice–outcome state combinations across the two conditions gen-
erating 2 separate 8 � 8 disimilarity matrices, of which we subselected
the off-diagonal 4� 4 for further analyses (context 1 vs context 2 for

each of the four choice–outcome state combinations computed sepa-
rately for each condition). After conversion to similarity scores and
Fisher transformation, the 4 on-diagonal similarity scores and the 12 off-
diagonal similarity scores of each RSA matrix were averaged to create
two sets of similarity scores per condition. The mean on-diagonal and off-
diagonal similarity scores were then entered into a paired t test to assess
differences between identical choice–outcome bins and nonidentical
choice–outcome bins in the two contexts. Then, to assess whether there
were meaningful differences between conditions, the difference between
the mean on-diagonal and off-diagonal scores for each participant in
each condition was entered into a paired t test (dependent on-diago-
nal–off-diagonal vs independent on-diagonal vs off-diagonal).

The same RSA procedure was applied to voxels within the four ana-
tomical ROIs used to characterize the nature of the effect within the
medial temporal lobe and the control regions V1 and M1. Again, the
ANOVA results reported were Greenhouse–Geisser corrected because
of violations of the assumption of sphericity.

Searchlight RSA (outcome presentation; whole-brain). The search-
light analysis was implemented in the same way as described above for
the searchlight RSA at time of door onset. Here, the onset events read
into the searchlight script were the outcome onset events generated in
GLM2b. Again, the model RDMs specified that the on-diagonal (identi-
cal choice–outcome combinations for the two contexts within a condi-
tion) was more similar than the off-diagonal (see Fig. 5a) and that the
analysis was conducted separately for the two conditions.

Searchlight interaction analysis (outcome presentation; whole-brain).
The interaction analysis was also conducted similarly to the analysis
described above for the time of door onset. In this case, if there is a
difference between the difference scores for the two conditions, this
means that the difference between the similarity in encoding of identical
choice–outcome combinations and different choice–outcome combina-
tions across the two contexts is different between the two conditions. If
this difference is positive (as this analysis is coded as encoding similar-
ity), it means the same choice–outcome combinations are encoded more

Figure 3. a, The magnitude of (unsigned) state prediction errors related negatively to the degree of BOLD response in bilateral MTL. Image shown at p, 0.001 uncorrected. b, Voxels in
this contrast were converted to a bilateral mask and used as a functional ROI in subsequent analysis. c, Schematic of the RSA at the time of planning (door presentation). In each context, trials
were divided into quartiles, according to participants’ current estimates of p (heist state | door presented) extracted from the computational learning model (mean quartile ranges: bin 1, p �
0.21; bin 2, 0.21, p� 0.51; bin 3, 0.51, p� 0.80; bin 4, 0.80, p� 0.96). d, Difference scores were significantly greater for dependent than independent blocks. Dots represent individ-
ual participant data, gray lines indicate datapoints belonging to the same participant. Red line indicates the median, box represents the 25th and 75th percentile of data, and whiskers extend
to any data point that is not outside 1.5 times the interquartile range. e, Schematic of the encoding model analysis (example shown for one-hot case). f, Difference in cross-entropy loss from
the encoding model between dependent and independent blocks (predicting probability bins in one context in a condition using weights trained on the other context in that condition; in
cross-validation) for a range of probability bins (one-hot case). Error bars show SEM. *significant at p, 0.05; **significant at p, 0.01; ***significant at p, 0.001.
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similarly between contexts than nonidentical choice–outcome combina-
tions in dependent than in independent blocks and vice versa if this differ-
ence is negative. As for door presentation, we report any brain regions that
survive whole-brain correction at the cluster level after thresholding at
p, 0.001.

fMRI general linear model 3. To visualize the parametric effect of our
interaction term (|d | p outcome) in GLM1, we ran a separate GLM that
included onsets of door presentation and outcome presentation with
outcome onsets separated into the following three separate events: out-
come presentation when participants received an outcome of +1, out-
come presentation when participants received an outcome of 0, and
outcome presentation when participants received an outcome of �1.
Each of the three outcome onsets was modulated by two parametric
regressors: unsigned state prediction error (extracted from our flexible
RL model); and trial type (force/free). Events were modeled as delta
functions and collapsed over our two experimental conditions (depend-
ent and independent blocks), just as for fMRI GLM1. Six movement pa-
rameters, estimated from the realignment procedure, were added as
regressors of no interest. We then extracted the parametric betas for the
state prediction error regressors for each participant from the three out-
come conditions using the MarsBaR toolbox at the peak voxel of the |d |
p outcome cluster identified in GLM1.

Participants and task (behavioral pilot). Thirty-one self-declared
healthy individuals (18 female; mean = 26.29 years; SD = 5.50) were
recruited using opportunity sampling via the Oxford University Research
Recruitment System. The task was the same as the fMRI cohort under-
took, as described above) save for the following differences. First, partici-
pants performed eight blocks of 60 trials (480 trials total), and all trials in
this design were free-choice trials. This provided us with a higher-powered
design to detect differences in updating because of outcome received at
the end of an episode. After an intertrial interval (0.3–0.5 s), participants
had up to 5 s to make their choice, after which they received confirmation
of their choice (0.5 s) and feedback (1 s). Second, participants were not
informed about the differences between blocks. However, just as before,
each block had two different contexts: a dependent block in which transi-
tions for the two contexts were the same and an independent block in
which the transitions were independent.

Behavioral analysis (outcome valence and state transition updating).
To examine the effect of outcome valence on transition updating, we cal-
culated a consistency score for each participant. This is the percentage of
times a participant’s choices were consistent given both of the following:
(1) the previous trials state-action-state sequence; and (2) whether the
current trial was a gain or a loss trial. Since the same state-action-state
sequence can lead to repeating or switching being the correct thing to
do—depending whether the next trial is a gain or a loss trial—we first di-
vided trials into two types, repeat and switch. Repeat trials are those for
which participants would want to revisit the terminating state from the
previous trial. For example, participants would want to repeat their
choice if they picked the gray door on the last trial, went to the heist state
and the next trial is a gain trial. These trials comprised the following:
(1) trials where they previously reached the heist state and the current
trial was a gain trial; and (2) trials where they previously reached the
neutral state and the current trial was a loss trial.

Switch trials are those where participants would want to avoid the
terminating state from the previous trial. For example, participants
should want to switch their choice if they picked the gray door on the
last trial, went to the heist state, and the next trial is a loss trial. These tri-
als comprised the following: (1) trials where they previously reached the
heist state and the current trial was a loss trial; and (2) trials where they
previously reached the neutral state and the current trial was a gain trial.

For both repeat and switch trials, the outcome on the previous trial
can be positive or negative. For instance, while a participant ought to
want to repeat the selection of a gray door if that took them to the heist
state on the last trial and the next trial is a gain trial, the outcome on the
last trial (when they went to the heist state) could have been positive or
negative, depending on whether the last trial was a gain or a loss trial.
Hence, we then further divided each trial type (repeat, switch) into those
where they received a positive (11 on gain trials, 0 on loss trials) or neg-
ative (�1 on gain trials, 0 on loss trials) outcome at the end of the

previous transition. This gave us four types of trials: repeat positive,
repeat negative, switch positive, and switch negative. We calculated
the percentage of trials that participants repeated or switched
choices (as appropriate) for these four trial types for each participant.
We then calculated a consistency score for positive trials by averaging to-
gether repeat positive and switch positive. We also did the same for neg-
ative trials.

For the behavioral experiment dataset, all trials were used. In the
fMRI dataset, only free-choice trials were included (but transition
sequences from the previous trial could be from a free or a force trial).
Participants’ consistency scores for positive were compared with neg-
ative using paired sample t tests (two tailed). First, we did this collaps-
ing over contexts and conditions. This meant that the previous trial
could have either been from the same or from the alternate context.
Note that participants were not explicitly told of the conditions (i.e.,
whether to ignore or take notice of contextual cues) in the behavioral
dataset. Although they were told this in the fMRI version of the task
this ought not to bias this analysis. Nonetheless, we also repeated this
analysis only using trials in the dependent condition.

Finally, we calculated each participant’s outcome valence effect as the
difference between consistency scores for positive trials (i.e., repeat posi-
tive and switch positive trials) minus consistency scores for negative tri-
als (i.e., repeat negative and switch negative trials). This indexed the
degree to which participants updated state transitions preferentially fol-
lowing positive compared with negative outcomes over both types of tri-
als. We then correlated each participant’s valence effect with their
parametric betas extracted for the interaction regressor (|d | p outcome)
from GLM1.

Data availability. Behavioral data and analysis scripts for all analyses
are available at: https://github.com/summerfieldlab/Garrett_Glitz_etal.
fMRI data (second-level SPM maps and similarity scores in regions of
interest) are available at: https://osf.io/zvkj3/.

Results
Task and design
Participants (n=29) performed a planning task in an fMRI scan-
ner (the heist task; Fig. 1a). The task was introduced to partici-
pants via a cover story that suggested they were a burglar
involved in a heist at one of four contexts, each denoted by a
unique colored gem. Each trial occurred in one of these four
(gem) contexts, and the relevant colored gem icon remained on
the screen throughout the trial to make this clear. After trial
onset, participants chose one of two doors (light vs dark), which
were respectively associated in context c with probabilities pc of
transitioning to the (high-stakes) “heist” state and 1 – pc of tran-
sitioning to the “neutral” state (Fig. 1b). pc switched randomly
between 0.2 and 0.8 across the course of the experiment, mean-
ing that a door was always likely to transition to one of the out-
come states and unlikely to transition to the other. Participants
were told that the transitions could change but were not told that
there were two possible values that p could assume, what these
values were, or how often the value of p could change.

Before making their choice, participants were presented with
an additional cue that signaled whether, in the heist state, the
participant would be caught (signaled by police cue; incurring
a loss) or commit a successful burglary (signaled by swag cue;
incurring a gain), whereas no positive or negative outcomes
occurred in the neutral state (outcome of zero). The optimal pol-
icy was thus to learn the transition probability to approach the
heist state in the presence of the swag cue and avoid the heist
state in the presence of the police cue. To decorrelate choices and
probabilities for the scanner, 75% of trials were “forced” in which
only a single door was available, but in which transition probabil-
ities could still be updated on receipt of reward. In the remaining
25% of trials, participants could freely choose between the two
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doors. Participants were unaware during the initial door presen-
tation whether the trial would be forced or free choice and there-
fore needed to actively consider transition probabilities on every
trial.

The task was performed in alternating blocks that we label
“dependent” and “independent” conditions. In dependent blocks,
the transition probabilities associated with the two contexts (e.g.,
p1 and p2) were yoked so that p1 = p2 at all times (Fig. 1c). In inde-
pendent blocks, the transition probabilities associated with the
other two contexts (e.g., p3 and p4) were unrelated (overlapping
on average half of the time; Fig. 1d). The two contexts that
made up each condition were randomly interleaved within a
block, but the dependent and independent conditions them-
selves occurred in temporally distinct blocks of trials.
Participants were told before starting the task about the two
conditions and were told at the start of each new block whether
they were entering a dependent or independent condition block
(see Materials andMethods for full details about the task).

Behavioral analysis
We first asked whether behavior differed between the dependent
and independent conditions. If participants generalized knowl-
edge of the transition structure across contexts, then they should
be more prone to use learning from context j to inform subse-
quent decisions in context i when in the dependent rather than
the independent condition (note that this behavior is expected
because participants were instructed about the dependence or
independence among transition probabilities for the two gems in
each block).

We used a logistic mixed-effects regression to measure this
effect in a trial history-dependent fashion, asking how choices
made on each trial t in context i depended on the history of state
transitions observed over the previous five trials that had occurred
in the contexts i and j, where j was the alternate context within the
relevant condition (dependent or independent). To conduct this
analysis, we recoded choices in a single frame of reference that
removed the choice inversion between trials where police and
swag cues were present. This was necessary because in our task,
the transition history is relevant not for determining the specific
response (light vs dark door), but rather the choice contingent
on the presence of the swag or police cue. We call the historic in-
formation that is predictive of this recoded choice “transition
evidence.”

The results are shown in Figure 2. In the dependent condi-
tion, transition evidence from the previous two trials signifi-
cantly predicted choice, both when it was experienced in the
same [t – 1: fixed-effect b (95% CI)= 1.11 (0.76–1.46); SE= 0.18;
p, 0.001; t – 2: b = 0.43 (0.17–0.70); SE = 0.13; p, 0.001) and
when it was experienced in the alternate context to the current
trial [t – 1: b = 0.72 (0.42–1.02); SE = 0.15; p, 0.001; t – 2: b =
0.40 (0.17–0.63); SE= 0.12; p, 0.001; Fig. 2a]. In contrast, in the
independent condition, choices were only influenced by transi-
tion evidence when this was accrued in the same context (Fig. 2b).
This was the case going one, two, three, and four trials back [t – 1:
b = 0.62 (0.24–1.00); SE=0.19; p=0.001; t – 2: b = 0.30 (0.04–
0.55); SE=0.13; p=0.02; t – 3: b = 0.35 (0.09–0.61); SE=0.13;
p=0.008; t – 4: b = 0.32 (0.07–0.58); SE=0.13; p=0.01]. When
transition evidence was accrued in the alternate context, this
did not influence participants’ subsequent choices, even on
the immediately previous (t – 1) trial [b = 0.07 (�0.12 to 0.27);
SE=0.10, p=0.47].

To directly compare the relative weight participants placed on
past evidence received from the same and alternate contexts in

each of the two conditions (dependent, independent), we ran an
additional mixed-effects model. We computed the difference in
transition evidence between the two contexts (averaged over the
past five trials; we call this “differential evidence”) for each condi-
tion (dependent/independent) and their interaction as predictors
in this model. This revealed a significant interaction between dif-
ferential evidence and condition [b = �0.41 (�0.63 to �0.18);
SE = 0.11, p, 0.001] along with a main effect of differential evi-
dence [b = 0.43 (0.20�0.66); SE= 0.12, p, 0.001], but no main
effect of condition [b = �0.05 (�0.13 to 0.04); SE=0.04, p=0.27].
The interaction between differential evidence and condition
remained significant in a permutation test that guards against
greater similarity of feedback (in the dependent condition com-
pared with the independent condition) confounding the effect
(b = �0.41; 95% range under the null distribution, �0.25 to
0.08; p, 0.001). Together, these results suggest that the relative
preference for information received from the same (vs the alter-
nate) context shifted between conditions. This was a result of
participants increasing integration of information from the alter-
nate context in the dependent condition.

We also analyzed data from an additional pilot experiment
(n= 31; see Materials and Methods) with an identical structure
except for the following two important differences: first, there
were no forced-choice trials, and second, participants were not
instructed about the dependence or independence of the transi-
tion structure but were left to discover it for themselves. In con-
trast to the fMRI cohort, in the independent condition, choices
were influenced by transition evidence that accrued in both the
same context [t – 1: b (95% CI) = 1.20 (0.95–1.45); SE= 0.13;
p, 0.001; t – 2: b = 0.65 (0.49–0.82); SE= 0.08; p, 0.001; t – 3:
b = 0.39 (0.26–0.52); SE = 0.07; p, 0.001; t – 4: b = 0.25 (0.15–
0.34); SE = 0.05; p, 0.001; t – 5: b = 0.19 (0.09–0.29); SE= 0.05;
p, 0.001] and in the other context [t – 1: b = 0.22 (0.07–0.37);
SE = 0.08; p= 0.004; t – 2: b = 0.15 (0.06–0.24); SE= 0.05;
p= 0.001; t – 3: b = 0.10 (0.002–0.20); SE= 0.05; p= 0.046; t – 4:
b = 0.09 (0.004–0.179); SE= 0.04; p=0.04; t – 5: b = 0.09
(�0.001 to 0.19); SE = 0.049; p= 0.05]. Examining whether differ-
ential evidence interacted with condition revealed a significant
interaction between differential evidence and condition [b =
�0.097 (�0.17 to �0.02); SE= 0.04; p=0.010]; however, this was
not significant in the permutation test [b (95% range under the
null distribution) = �0.097 (�0.25 to 0.08); p=0.92]. As dis-
cussed below, potentially these results suggest that in the absence
of instruction, participants may have a stronger prior that if two
contexts (gems) co-occur in time, they belong to a shared latent
context.

Computational model
Our modeling framework assumed that choices were determined
by a mixture of associations learned in an independent and de-
pendent fashion across contexts. We note at the outset that our
model is not intended primarily as an account of the computa-
tions that humans undertake, but as an analytic tool that com-
pactly parameterizes human policy with just a few parameters,
which allows us to verify the degree to which humans share a
model between contexts.

The model is composed of two learners, one that learns a
shared transition function across a pair of contexts and another
that learns a separate transition function for each context. On
each trial, choices are determined by linearly mixing the esti-
mated probabilities from each learner according to a weighting
parameter, w, and using the resulting probabilistic estimate p̂c to
compute the relative expected value of heist and neutral states,
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according to which a choice was made via inverse temperature
parameter b . The optimal policy (for an omniscient agent)
would be to use w = 1 in the dependent condition and w= 0 in
the independent condition. On each trial, participants updated
the context-specific and the context-independent transition
functions according to a state prediction error, d , which quanti-
fies the degree of surprise at reaching a state given the option
chosen and current estimates of the transition function. d was
also weighted by w and the degree of update governed by a learn-
ing parameter, a. Our rationale for modeling the learning of
transitions as an incremental process (rather than beliefs fluctu-
ating between p= 0.2 and p=0.8) is that we did not explicitly
instruct participants that there were two levels of p, what these
levels were, or how often they could change. We assume that
learning this underlying structure in practice would therefore be
difficult (because of the stochasticity of the transitions, the exis-
tence of four different contexts, the frequency with which transi-
tions change and the heist state fluctuating between gains and
losses), but caution that alternate learning models could be used
to formally test this assumption.

We compared two versions of this learning model. A fixed
model in which w was held constant across the experiment was
compared with a flexible model in which w was allowed to
reverse between experimental conditions (i.e., windependent = 1 –
wdependent). This feature of the flexible model gives it the capacity
to shift between relying to a greater degree on separate transition
functions in the independent condition (i.e., w toward 0) and
relying on a shared transition function in the dependent condi-
tion (i.e., w toward 1). See Materials and Methods for full model
specification.

Flexible model adapts information integration between
conditions
We fit each model to single-subject choices on a per-trial basis
and compared fixed and flexible models by computing unbiased
marginal likelihoods via subject-level leave-one-out cross-valida-
tion (LOOcv) for each participant. Comparison of LOOcv scores
revealed significantly lower scores (indicating superior perform-
ance in cross-validation at predicting participant choices) for the
flexible model compared with the fixed model (t(28) = 2.72,
p, 0.01, paired sample t test; Table 1, model parameters and
LOOcv scores). Twenty-one of the 29 subjects (72% of subjects)
were predicted better (had lower LOOcv scores) with the flexible
model compared with the fixed model.

The best-fitting w parameter tended toward 1 in the depend-
ent condition and 0 in the independent condition, consistent
with the behavioral data. This indicates that participants learned
a single transition function in dependent blocks but reverted to
learning two different transition functions in independent blocks
(by contrast, when w was held fixed across blocks, it assumed an
intermediate value of;0.61). A flexible model with two separate
w parameters (one per condition, fitted separately) did not

account any better for participant choices than the flexible model
with a single w that reversed between conditions (t(28) = �1.59,
p= 0.12). Simulating choices using a population of subjects
drawn according to best-fitting parameters of the flexible model
showed that the flexible model qualitatively recapitulated the
change in relative preference for information from the alternate
versus the same context between conditions (Fig. 2a,b) to a greater
degree than choices simulated from the fixed model (Fig. 2c,d).

Neuroimaging data
Having established that participants behave differently in the de-
pendent and independent conditions, we turned to the fMRI
data to understand the neural mechanisms that supported this
differential behavior. Our goal was to use multivariate approaches
(including RSA) to examine how multivoxel patterns encoding
transition probabilities (i.e., beliefs about the forthcoming state)
were related in the dependent and independent conditions.
However, we first adopted a univariate analysis to identify target
sites for the coding of the state transition function, using the SPE
from the model. We expected that the MTL would be sensitive
to SPEs, consistent with a long tradition implicating the hippo-
campus in the formation of state associations (Eichenbaum et al.,
1999), and a detector of states that either match or violate the
agent’s expectations (Kumaran and Maguire, 2007; Duncan et al.,
2012).

Univariate analysis
We thus modeled BOLD responses at the time the transitioned-
to state (heist or neutral) was revealed using a parametric predic-
tor encoding the unsigned state prediction error |d | extracted
from the flexible model. This analysis collapsed over conditions
(dependent, independent). This modulator was included along-
side other quantities coding for outcome, trial type (forced/free
choice), and the interaction of outcome and |d | (see Materials
and Methods).

The BOLD signal correlated negatively with |d | in two MTL
clusters [peak left (x, y, z): �20, �4, �28; t(28) = 5.01; p, 0.001
uncorrected for multiple comparisons; peak right: 18, �4, �21;
t(28) = 4.22; p, 0.001 uncorrected), which survived a small vol-
ume correction using a bilateral anatomical MTL mask [peak
left: �20, �7, �24; t(28) = 5.01; FWE corrected at the peak level
within bilateral MTL mask (pFWE) = 0.008; peak right: 18, �4,
�21; t(28) = 4.22; pFWE = 0.047]. In total, 10.14% of voxels lay
within the anatomically defined amygdala, 33.33% within the
hippocampus, 49.28% within the parahippocampus, and 5.80%
in the entorhinal cortex (Fig. 3a), determined by assessing over-
lap with anatomical masks generated in WFU pickatlas (see
Materials and Methods).

The negative direction of the parametric effect indicates a
greater change in BOLD response to expected (compared with
unexpected) state transitions. We combined these clusters (extracted
at p, 0.001 uncorrected) into a single bilateral functional ROI

Table 1. Model fitting and parameters

LOOcv scores
Free
parameters b a w (fixed) w (dependent condition) w (independent condition)

Fixed model 47.47 (61.26) 3 1.80 (95% CI = 1.4–2.20) 0.65 (95% CI = 0.4–0.80) 0.61 (95% CI = 0.49–0.70)
Flexible model 46.32* (61.47) 3 1.59 (95% CI = 1.2–1.95) 0.56 (95% CI = 0.3–0.73) 0.85 (95% CI = 0.66–0.95) 0.15 (95% CI = 0.05–0.34)

The table summarizes for each model its fitting performances and its average parameters. a, learning rate; b , softmax slope (sensitivity to the difference in the value of choosing dark vs light door on free-choice trials);
w, weighting parameter (governs the weighted combination of context independent and context dependent transition functions). Data for model parameters are expressed as the mean and 95% confidence intervals (calcu-
lated as the sample mean 6 1.96 � SE).
*p, 0.01 comparing LOOCV scores between the two models (paired sample t test). Lower scores indicate superior performance in cross-validation.
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mask (Fig. 3b), which we then used for subsequent multivariate
analyses.

Representational similarity analysis
Next, we used a multivariate approach to assess the mapping
from BOLD responses in our functional ROI to transition proba-
bilities, and to measure how this mapping changed over contexts.
We began with an analysis of BOLD signals at the time of choice
(i.e., when the door was presented). This is the time point during
which participants needed to consider the transition probability
to each prospective second-level state. We first used RSA, meas-
uring the correlation distance across multivoxel patterns associ-
ated with transition probabilities p (heist state | door presented)
derived from our flexible learning model into quartiles, both
across blocks and across gems (Fig. 3c). Note that our prediction
is that neural patterns encoding transition probabilities should
be more similar across contexts in dependent than in independent
blocks. We thus computed a similarity score by averaging correla-
tions in diagonal (same probability quartile) versus off-diagonal
(different probability quartile) cases, separately for the two contexts
in the dependent and independent conditions.

This revealed a significant condition (dependent, independ-
ent) � quartile (diagonal, off-diagonal) interaction (t(28) = 4.02;
p, 0.001; 95% CI, 0.11–0.33; paired sample t test). This was the
result of a difference in similarity between on-diagonal and off-
diagonal scores in the dependent condition (t(28) = 5.33; p, 0.001;
95% CI, 0.11–0.26; one-sample t test vs 0), which was absent in the
independent condition (t(28) = �0.82; p=0.42; 95% CI, –0.11 to
0.05; one-sample t test vs 0; Fig. 3d).

One interpretation of this finding is that in the dependent
condition, the MTL encodes the state transition function for
each context with a common neural pattern. However, we also
considered some alternative possibilities. First, we examined
whether the results held if we allocated trials to bins using fixed
probabilities across the unity range (i.e., quartile 1, 0.00–0.25;
quartile 2, 0.26–0.50; quartile 3, 0.51–0.75; quartile 4, 0.76–1.00)
rather than adapting bins for each participant according to the
specific distribution of probabilities they used. This revealed the
same pattern of results (condition p diagonal interaction:
t(28) = 4.20; p, 0.001; 95% CI, 0.10–0.30; difference in similarity
between on-diagonal and off-diagonal bins in the dependent
condition: t(28) = 5.73; p, 0.001; 95% CI 0.13–0.28; difference in
similarity between on-diagonal and off-diagonal bins in the inde-
pendent condition: t(28) = 0.04; p=0.97; 95% CI, –0.07 to 0.08).
Second, we checked that the number of trials in each probability
quartile were well matched between contexts, finding that they
were (t(28) = 1.50; p= 0.55; 95% CI, –0.02 to 0.15). Finally, we
were concerned that the effect might arise as a spurious effect of
closer temporal proximity between trials in the same transition
probability quartile in dependent blocks. To address this, first we
checked whether the average difference between the temporal
distance of trials in on-diagonal versus off-diagonal quartile
combinations was correlated with the difference in representa-
tional similarity (see Materials and Methods). This was neither
the case in the dependent condition (r = �0.20, p=0.32) nor the
independent condition (r= 0.15, p= 0.44).

We then repeated our analysis in cross-validation across ses-
sions. In other words, we measured the similarity between quar-
tile/bin ni and nj, where i and j are drawn from different scanner
runs, and computed the average for each similarity bin across all
possible c1j and c2j combinations, where i= j. This revealed the
same (albeit weaker) pattern of results with fixed probability bins
(condition p diagonal interaction: t(28) = 2.04; p=0.05; 95% CI,
–0.00 to 0.06) and probability quartiles (t(28) = 1.89; p=0.069;

95% CI, –0.00 to 0.07). Finally, we repeated this cross-validation
analysis, this time comparing similarity scores within the same
context (separately for each condition). Contrary to what we had
expected, this did not reveal a significant difference in either con-
dition (dependent condition: t(28) = 1.09; p=0.29; 95% CI, –0.01
to 0.03; independent condition: t(28) = 0.42; p=0.68; 95% CI,
–0.01 to 0.02; paired t tests comparing on-diagonal with off-diag-
onal similarity scores). In other words, while we were able to
successfully decode probabilities between contexts in cross-vali-
dation in the dependent condition, this was not the case within
context (for either condition). We caution that this does question
the robustness of the between-context RSA. Reassuringly however,
we also did not observe the condition p diagonal interaction we
had observed for the between-context case (t(28) = �0.53; p=0.60;
95% CI, –0.03 to 0.02). Furthermore, we did not find evidence
to suggest that decoding was stronger for the between-con-
text RSA compared with the within-context RSA in the
dependent condition (t(28) = �0.69; p = 0.49, paired t test
comparing the difference in on-diagonal and off-diagonal similar-
ity scores within vs between contexts), an effect that would have
been at odds with participants using a shared transition model.
Comparing scores between conditions also revealed a weak effect
in the direction we would predict under the hypothesis that partic-
ipants would switch to use of a context-specific model in the inde-
pendent condition with the difference in decoding accuracy being
greater for the within-context versus the between-context RSA in
the independent condition compared with the dependent condi-
tion [t(28) = 1.69, p(one tailed) =0.05].

Multivariate encoding model
Next, taking a complementary approach, we built an encoding
model that mapped transition probabilities [in the frame of refer-
ence p(state = heist|door presented) derived from the flexible
learning model as before] flexibly onto voxels within the MTL
ROI, separately for each context ca. We then inverted this model
to predict transition probabilities both for the same context
ca and the other three (held out) contexts (contexts) cb, where
a= b (Fig. 3e, schematic of this analysis). This approach allowed
us to train and test in cross-validation, by obtaining weights
from session (scanner run) i and then using these to predict the
probabilities for each context on session j. The model output
was a 4� 4 (context � context) matrix of predicted versus true
(model-derived) transition probabilities, which we compared via
cross-entropy loss. This allowed us to measure whether, within
the MTL, neural patterns coding for probabilities were more
similar across contexts in the dependent condition (e.g., c1 ! c2
and c2 ! c1) than in the independent condition (e.g., c3 ! c4
and c4 ! c3). Unlike the RSA approach, this also allowed us to
compare two different coding schemes. It could either be the
case that state associations are encoded in a high-dimensional
format in which probabilities map onto bins with no input struc-
ture. This can be implemented via a one-hot input function in
the encoding model, which also enables us to test various levels
of granularity of binning, to verify that the RSA results were not
specific to our choice of having four bins. Alternatively, it could
instead be the case that probabilities are encoded in a low-
dimensional format, whereby neural patterns are more similar
for closer probabilities (e.g., bin 1 is more similar to bin 2 than
to bin 4). This can be implemented via a Gaussian input function
(effectively, a tuning curve for probability) in the encoding
model. Probabilities were converted to odds ratios for this exer-
cise (see Materials and Methods).
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The results validated and extended those of the RSA. Using
one-hot encoding of probability, we found stronger evidence of
shared encoding of probability in the dependent condition com-
pared with the independent condition. Furthermore, this effect
was independent of the number of bins chosen, as long as there
were.3 bins (Fig. 3f). We obtained the most robust effects with
;6 bins (implying a psychologically plausible granularity to the
estimation of transition probabilities), for which the cross-
validated loss was substantially higher between contexts in the
independent condition than those in the dependent condition
(t(28) = �3.12, p=0.002). When cross-validation was performed
across sessions only, reconstructing both probabilities in the other
context as well as in the same context using information from
another session (e.g., c1session1 ! c1session2), we found the same
pattern of results (t(28) = �3.80; p, 0.001). Similar results were
also obtained at different granularities. Interestingly, we were
unable to recreate these effects under the additional constraint
imposed by Gaussian encoding of probability ratios. This implies
that while there is a consistent code for transition probabilities, its
similarity structure does not map smoothly onto the one-dimen-
sional axis given by probability.

Replication of results using anatomical ROI of the medial
temporal lobe
To investigate whether the effects we observed were specific to
our choice of functional ROI, we conducted a subsequent RSA.
This was exactly as described above (for between contexts), only
this time we used voxels from a bilateral anatomical MTL mask
comprising four subregions of the MTL, specifically hippocampus,
parahippocampus, entorhinal cortex, and amygdala. Replicating
the effects we observed in our functional ROI, this revealed a sig-
nificant condition (dependent, independent) � quartile (diago-
nal, off-diagonal) interaction (t(28) = 5.23; p, 0.001; 95% CI,

0.11–0.25; paired sample t test; Fig. 4a). This was the result of a
difference in similarity between on-diagonal and off-diagonal
scores in the dependent condition (t(28) = 6.12; p, 0.001; 95%
CI, 0.10–0.21; one-sample t test vs 0), which was absent in the in-
dependent condition (t(28) = �0.96; p= 0.345; 95% CI, –0.07 to
0.03). We also observed the same pattern of results (i.e., cross-
validated loss substantially higher between contexts in the
independent condition than the dependent condition) rerunning
the multivariate encoding model using this anatomical ROI in
place of the functional ROI (four-bin case: t(28) = �2.85; p= 0.02;
six-bin case: t(28) =�3.23; p= 0.002).

Characterizing the nature of the effect in the medial
temporal lobe
Next, to investigate whether the observed effects were specific to
particular subregions of the MTL, we conducted four further
RSAs on voxels using separate anatomical masks for each of the
four MTL subregions (hippocampus, parahippocampus, entorhi-
nal cortex, and amygdala). Fisher transformed similarity scores
were then entered into a region � condition (dependent/inde-
pendent) 4 p 2 repeated-measures ANOVA. This revealed a
main effect of condition (F(1,28) = 29.40; p, 0.001) with the dif-
ference in similarity (M) between on-diagonal and off-diagonal
scores greater in the dependent than independent condition
(Mhippocampus = 0.26, Mparahippocampus = 0.13, Mentorhinal cortex =
0.15,Mamygdala = 0.16) as well as a region� condition interaction
(F(2.45,68.54) = 3.91; p=0.018; Greenhouse–Geisser corrected).

To better understand the interaction, we proceeded to test the
difference in similarity scores between conditions in each region
with every other region (correcting for multiple comparisons).
This revealed a larger difference between conditions in the hip-
pocampus compared with each of the other three MTL subre-
gions (entorhinal cortex, amygdala, and parahippocampus; all

Figure 4. a–c, RSA in Figure 3c was repeated using a anatomical mask of the entire MTL (a) and subregions of the MTL (b), specifically, bilateral hippocampus, parahippocampus, entorhinal
cortex, and amygdala, as well as in V1 and M1 (control regions; c). d, Illustration of the whole-brain searchlight interaction analysis; the difference between on-diagonal and off-diagonal simi-
larity was contrasted between conditions. e, Whole-brain searchlight interaction analysis revealed greater similarity between on-diagonal versus off-diagonal in the dependent condition com-
pared with the independent condition in our functional ROI, right dorsal striatum (top panel) and left IFG/OFC (bottom panel). Brain images shown at p, 0.001 uncorrected, thresholded at
t. 3. Error bars show SEM. *significant at p, 0.05; **significant at p, 0.01; ***significant at p, 0.001.
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p, 0.05, paired sample t test) with the parahippocampus surviv-
ing correction for multiple comparisons (t(28) = 3.91; p=0.001,
significant at Bonferroni-corrected threshold of p, 0.008). There
was also a main effect of region (F(3,84) = 3.33; p=0.023), with the
difference across both conditions being significantly greater in the
amygdala than in both parahippocampus (t(28) = 3.07; p=0.005)
and entorhinal cortex (t(28) = 2.81; p = 0.009). Together, these
results suggest that greater similarity in transition encoding in
the dependent compared with the independent condition was
not exclusive to a particular subregion of the MTL but was
most pronounced in the hippocampus (Fig. 4a).

Finally, to test whether the differences between our condi-
tions were selective to the MTL or present over the whole brain,
we conducted the same RSA using voxels in the following two
control regions: early visual cortex (V1) and primary motor cor-
tex (M1). There was no significant difference between conditions
in either control region (V1: t(28) = �0.28; p = 0.78; 95% CI,
–0.08 to 0.06; M1: t(28) = �0.22; p = 0.83; 95% CI, –0.09 to
0.08; Fig. 4c).

RSA whole-brain searchlight
Next, we repeated the same RSA as described above across the
whole brain using a searchlight approach. In the dependent con-
dition, this identified activity within our functional ROI (right
peak: 22, �7, �18; t(28) = 4.31; FWE corrected at peak level
within functional ROI mask, pFWE = 0.005; left peak: �24, �7,
�18; t(28) = 4.92; FWE corrected at peak level within functional
ROI mask, pFWE = 0.001). The cerebellum also survived family-
wise error correction for multiple comparisons at the cluster level
(cluster-defining threshold, p, 0.001, uncorrected). We did not
find any evidence for differences in similarity in or outside our
functional ROI in the independent condition, even at very leni-
ent thresholds (p, 0.01 uncorrected).

Next, we conducted a new searchlight that directly tested the
difference in similarity for on-diagonal versus off-diagonal bins
between conditions (Fig. 4d). This also revealed activation in our
functional ROI (right peak: 22, �7, �18; t(28) = 3.55; FWE cor-
rected at peak level within functional ROI mask, pFWE = 0.02; left
peak: �27, �10, �14; t(28) = 4.02; FWE corrected at peak level
within functional ROI mask, pFWE = 0.006). A cluster in the right
dorsal striatum (29, �7, �7: t(28) = 5.80; p, 0.001, FWE cluster-
level corrected; Fig. 4e), which extended into the hippocampus,
as well as the inferior frontal gyrus (IFG) adjacent to Brodmann
area 47 (�16, 14, �18: t(28) = 5.08; p= 0.007) and left cerebellum

(�2, �46, �21: t(28) = 4.92; p=0.03) also survived familywise
error correction for multiple comparisons over the whole
brain at the cluster level (cluster-defining threshold, p, 0.001
uncorrected).

Multivariate analysis during transition probability updating
The analyses described so far focus on the time point when plan-
ning takes place (door presentation). What happens during
updating? To examine this, we conducted a related analysis at
the time of transition outcome (i.e., when participants learned
whether, conditional on their choice, they had reached the heist
or the neutral state). We reasoned that to update the state-action
representations appropriately (in a shared or unshared manner
across contexts) it would be necessary to re-encode both the
selected action (light vs dark door) and encountered state (heist
vs neutral). We thus partitioned data according to these factors
and investigated whether BOLD signals were more similar when
both state and action matched (i.e., on-diagonal elements) versus
where they did not (off-diagonal elements) at the time of updat-
ing, separately for the dependent and independent conditions
(Fig. 5a) in our functional ROI. This analysis also revealed a sig-
nificant condition � diagonal interaction (t(28) = 2.67; p= 0.01;
95% CI, 0.03–0.22; paired sample t test; Fig. 5b), driven by a
significant difference in similarity between matched and mis-
matched choice–state combinations (Fig. 5a, on vs off diagonal)
in the dependent condition (t(28) = 2.35; p=0.03; 95% CI, 0.01–
0.18; one-sample t test vs 0) which was absent in the independent
condition (t(28) = –0.78; p= 0.44; 95% CI, –0.12 to 0.05).

Once again, this effect was not specific to a particular subre-
gion of the MTL. We entered similarity scores from RSAs con-
ducted in subregions of the MTL into a condition (dependent,
independent) by region (hippocampus, parahippocampus, ento-
rhinal cortex, amygdala) ANOVA. This revealed a main effect of
condition (F(1,27) = 10.05; p=0.004). There was no main effect of
region (F(3,81) = 0.95; p= 0.42) or region � condition interaction
(F(3,81) = 1.21; p=0.31). There was no difference between condi-
tions in two control brain regions (V1: t(28) = 1.16; p= 0.26; 95%
CI, –0.04 to 0.16; M1: t(28) = 1.66; p= 0.11; 95% CI, –0.02 to 0.15).
Finally, a whole-brain searchlight comparing the difference in
similarity scores between on-diagonal and off-diagonal between
conditions revealed a significant interaction within our state
prediction error ROI (left: �16, �4, �32; t(28) = 3.47; p= 0.02,
cluster level corrected within our SPE mask), as well as in a

Figure 5. a, RSA at trial outcome. We examined the BOLD similarity at the time of outcome between matched choice (door)–outcome state combinations and mismatched combinations
between contexts in the two conditions. b, In our MTL ROI, the difference between representational similarity of matched and mismatched combinations was significantly greater in dependent
than independent blocks. Error bars show SEM. psignificant at p,0.05.
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cluster composed of right hippocampus extending into pons
(t(28) = 5.05; p, 0.0001, uncorrected; 12, 18, �18; p = 0.04,
cluster level corrected across the whole brain with cluster-
forming threshold of p, 0.001 uncorrected). No other sig-
nificant effects were observed.

Outcome valence modulates updating of state transitions
An interesting feature of our design is that the transition func-
tion changes (with reversals of p) in a way that is unrelated to
outcomes. This means that, in theory, any learning about the
transition function should not depend on whether the outcome
was positive or negative. To test whether participants might be
biased to update the transition function more or less according
to the outcome, we calculated a consistency score (see Materials
and Methods) for each participant. This measured the consis-
tency of each choice given transitions experienced on the previ-
ous trial. A high consistency score indicates that a participant
updates transitions strongly on the basis of feedback. This was
calculated separately for trials in which participants received a
positive outcome (11 on a gain trials or 0 on a loss trial) and
those in which they received a negative outcome (�1 on a loss trial
or 0 on a gain trial) on the previous trial. Notably, this is not the

same as a win–stay, lose–switch bias, as a choice would be consid-
ered consistent only if it considered both past transitions and the
current reward/loss incurred when reaching the heist state (i.e., if
choosing the dark door on trial t – 1 had resulted in monetary
gain, but the current trial t was a police trial (monetary loss), the
consistent choice would be to choose the light door on trial t).

We first conducted this analysis in a separate behavioral
experiment (described as “pilot” above; n=31; see Materials and
Methods). This experiment included exclusively free-choice tri-
als, giving us greater power to be able to detect valence effects.
In this version of the task, participants were not told about any
structure between contexts and integrated information from
each context in each condition.

Participants integrated evidence from the other context in the
dependent condition (1–4 trials back) in this dataset but also did
so in the independent condition; therefore, we remain agnostic
as to whether participants adjusted how they integrated feedback
from state transitions between the two conditions and primarily
use this dataset to examine how outcome interacts with learning
the state transitions. This revealed that transition updating was
greater following positive compared with negative outcomes
(t(30) = 9.79; p, 0.001, paired sample t test; Fig. 6a). In other

Figure 6. Outcome on the previous trial influenced the degree to which transition knowledge was updated. Specifically, when participants received a positive outcome (11 on gain trials or 0 on
loss trials), consistency scores (indexed as the percentage of repeat choices for desirable trials and the percentage of switch choices for undesirable trials) were higher compared with when they
received a negative outcome. a, b, This was observed in participants who completed a behavioral study outside the scanner (a) and our fMRI cohort (b). c, Unsigned state prediction errors were
modulated by outcome valence in the MTL [peak (x, y, z): �13, �10, �18; t(28) = 4.87; p=0.018, FWE whole-brain cluster level corrected]; image displayed at p, 0.001 uncorrected. d, The
magnitude of the valance effect observed behaviorally (quantified as green minus red in b) correlated with the size of the interaction betas observed in the fMRI data in c (Spearman’s r =�0.41,
p, 0.03). *p, 0.05; 10.05, p, 0.10, paired sample t test (in the case of (a) and (b)) or one sample t test vs 0 (in the case of (c)). n.s., Nonsignificant. Error bars show SEM.
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words, participants updated state transition knowledge and
adjusted their subsequent behavior to a greater degree when
outcomes were positive compared with negative. Note that this
analysis collapses over contexts (see Materials and Methods).
However, the main effect remains (t(30) = 8.14; p, 0.001) when
we run this same analysis restricted to the dependent condition.

Next, we ran the same analysis on our fMRI participants (re-
stricted to free-choice trials; Fig. 6b). We again observed a main
effect of outcome with greater updating following positive out-
comes compared with negative outcomes (t(28) = 2.24; p= 0.03).
This effect remained when analysis was restricted to trials from
the dependent condition (t(28) = 2.60; p= 0.015).

In two datasets, our participants’ behavior suggested that
rewards received influenced the degree to which the transition
function was updated with a greater update following positive
compared with negative outcomes. If this is the case, we would
predict that SPE signals in the MTL, which drive updates to the
transition function, ought to be larger following positive out-
comes compared with negative. To test this, we examined the
interaction of the unsigned state prediction error regressor and
outcome in a univariate whole-brain analysis (controlling for the
main effects of each; see Materials and Methods). This revealed a
negative effect in a cluster in the left MTL [peak (x, y, z): �13,
�10, �18; p=0.018, whole-brain FWE cluster level corrected
after thresholding at p, 0.001], which included voxels within
our functional ROI [peak (x, y, z): �16, �7, �18; t(28) = 4.08;
small volume corrected using functional ROI mask]. No other
regions survived whole-brain correction. Note that since the
main effect of SPE is also negative (Fig. 3a), the sign of this inter-
action suggests a greater parametric effect of unsigned SPEs in
the MTL following positive versus negative outcomes.

Finally, we examined whether there was a relationship between
this interaction effect in the MTL (i.e., the degree to which
unsigned SPEs were modulated by outcome valence) and par-
ticipants’ behavior (the degree to which consistency scores were
greater for positive outcomes compared with negative outcomes).
We quantified each participant’s behavioral outcome valence
effect (Fig. 6b) by taking the difference in consistency scores
between positive and negative outcomes and correlated these
with each participants parametric SPE p outcome interaction
b (this quantifies the degree to which the parametric effect of
unsigned SPEs are modulated by outcome). This revealed a
negative correlation that was robust to outliers (Spearman’s
r = �0.41; p, 0.03); specifically, the greater participants showed
a bias toward integrating information following transition
sequences that ended in a positive outcome (vs negative) in their
choices, the greater the extent to which unsigned SPEs expressed
in the MTL were greater for higher (vs lower) outcomes.

Discussion
We studied the neural and computational mechanisms by which
humans combine or segment information about the transition
structure of the world. For the fMRI experiment, we chose to
directly instruct our participants, as our hypothesis was agnostic
to whether model sharing occurred because of instruction or
trial-and-error learning. Consequently, our computational model
is an analytic tool and does not offer a process-level account of
model sharing. Previous structure learning tasks have suggested
that participants are able to use the similarity of latent variables
such as value estimates, prediction errors, and their covariation
over time to draw links between different contexts (Acuña and
Schrater, 2010; Wunderlich et al., 2011). Bayesian inference

models in which latent causes are inferred and used to group to-
gether experiences (Gershman and Niv, 2010; Gershman et al.,
2015; Niv, 2019; Sanders et al., 2020) could also be a means by
which participants learn to group different contexts together in
practice. Another possibility is that neural geometry actively rep-
resents the relational organization of task elements (Luyckx
et al., 2019; Bernardi et al., 2020; Sheahan et al., 2021). However,
our encoding model did not find a smoothly varying relationship
between neural coding and probability, which seems like it would
follow naturally from such a representation.

To address the question of how neural population activity
encoded transition probabilities within and between contexts,
we began by identifying voxels that responded differentially
according to whether a transition between states was expected
or unexpected, using estimates of SPEs to parameterize this
effect. We found that responses to SPEs correlated with BOLD
responses in brain regions that overlapped with the bilateral
hippocampus (Fig. 3a). Of note, the parametric effect of SPEs
in the MTL were negative. This might seem surprising given
the past implication of the (more anterior) hippocampus in novel
or surprising stimuli (Strange et al., 2005). We speculate that such
a signal might occur, however, if internal representations were
strengthened following evidence that confirms prior beliefs.

We first focused our analysis on voxels in this region and
measured the consistency in neural patterns in these voxels in
encoding transition probabilities between conditions. First, we
adopted an RSA-based method to show that the encoding of
probability was more similar across contexts in the dependent
condition than the independent condition. We caveat that we
were not able to decode probabilities within context using this
same approach and caution that this challenges the robustness of
this analysis. It may be that there is a confound that gives rise to
between-context decoding that leaves within-context decoding
unaffected, or that the identical gem features present when
decoding within gem (e.g., color, shape of each gem) make
decoding transition probabilities more difficult or better suited
to a different RSA than we use for the between-context case (e.g.,
dividing probability into a different number of bins rather than
four quartiles). Other explanations could also give rise to this dis-
crepancy. Comparing the difference in within-context and
between-context decoding between conditions yielded a pattern
(albeit weakly and with due caution with respect to the possibility
of a type I error) of results in line with what we would expect.
Namely, that the difference in within-context versus between-
context decoding was stronger in the independent compared
with the dependent condition, consistent with a switch between
context-specific and context-nonspecific models.

Next, we adopted a more flexible encoding modeling pipeline
as a complementary multivariate approach. This told a similar
story: that the brain learned a representation that was similar
across contexts when this was beneficial, but partitions proba-
bility encoding into different patterns when it is necessary to
disambiguate the predictions for different contexts. The encod-
ing model also enabled us to examine the pattern of results
under two different coding schemes: a Gaussian input function
and a one-hot input function. Interestingly, while the one-hot
input function replicated the pattern of RSA and was robust to
the range of different probability bins being used, the Gaussian
input function did not. We are not entirely clear about why this
is the case. Previous theories have emphasized that neural pop-
ulations in cortex may encode probability distributions in
smoothly varying ways, permitting forms of function approxi-
mation or Bayesian inference (Ma et al., 2006; Orhan and Ma,
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2017), and there is even some support for this class of theory
from studies involving BOLD recordings (Van Bergen et al.,
2015). However, the nature of the coding scheme for transition
probabilities in hippocampus remains unclear. Future work
could potentially develop this encoding model approach to exam-
ine whether other task variables influence the representational
structure encoded in the hippocampal formation [e.g., the level of
uncertainty in beliefs, priors, anticipatory (state) prediction errors,
and the degree to which predictions diverge for different actions].

Observing these effects in the MTL is consistent with past
findings that have identified the involvement of the MTL in
learning state associations (Miyashita, 1988; Eichenbaum et al.,
1999; Schapiro et al., 2012, 2013; Deuker et al., 2016; Garvert
et al., 2017; Yokose et al., 2017; Rey et al., 2018), encoding rela-
tional knowledge that can be used to generalize and draw infer-
ences across contexts (Bunsey and Eichenbaum, 1996; Wimmer
and Shohamy, 2012; Zeithamova et al., 2012; Kumaran et al.,
2016; Koster et al., 2018; Park et al., 2019) and its role in model-
based planning (Bradfield et al., 2020), including in similar two-
stage sequential planning tasks (Miller et al., 2017; Vikbladh
et al., 2019) potentially via the representation of task structure
(Geerts et al., 2020). Our initial analysis focused on a region that
included different subregions of the MTL. But when we repeated
our RSA approach separately in 4 different anatomical subre-
gions of the MTL—hippocampus, entorhinal cortex, amygdala,
and parahippocampus—we found a significant effect in each of
these (an effect that was absent in two control regions). This is
suggestive that a network of MTL regions is involved in encoding
the predictive relationships between states necessary for plan-
ning—consistent with past findings using a paradigm similar to
ours (Boorman et al., 2016)—and that each component in this
network has the capacity to flexibly adapt the representations it
uses to facilitate the sharing of models between contexts when
prudent to do so. The involvement of a number of subregions
might account for why disabling a specific part of the MTL does
not always lead to reductions in goal-directed behavior (Corbit
and Balleine, 2000; Gaskin et al., 2005). Interestingly, the effect
we observed was strongest in bilateral hippocampus, in line with
its involvement in modulating pattern separation between con-
texts and memories via inputs from other MTL brain regions
including the entorhinal cortex (Yassa and Stark, 2011). However,
future work, ideally with higher-resolution fMRI or direct record-
ings, is needed to help characterize the precise functional contribu-
tion of each of these subregions.

We also examined whether there were other regions of the
brain in which representations had a similar selective pattern
similarity between contexts by running a whole-brain searchlight
analysis. In addition to confirming the involvement of the MTL,
this detected a strong effect in the dorsal striatum and the left
IFG. This analysis was exploratory, and neither of these brain
regions was hypothesized to be involved from the outset. While
the IFG and adjacent orbitofrontal cortex (OFC) have previously
been shown to be involved in inferring task states using fMRI
multivariate approaches (Schuck et al., 2016; Niv, 2019), the
striatum was particularly unexpected given its well established
role in model-free learning (Montague et al., 1996; Joel et al.,
2002; O’Doherty et al., 2004; Geerts et al., 2020), although (and
with the necessary caveats with regard to retrospective inference)
there is some evidence from fMRI and lesion studies that the
dorsal striatum, along with prefrontal cortex (Niv, 2009; Balleine
and O’Doherty, 2010), may also play an important role in
model-based planning behavior (Yin et al., 2005a,b), though

exactly what the functional role that either region fulfills here in
the service of our task is unclear.

Examining participants’ stay/switch behavior revealed an
effect of valence whereby, following positive outcomes, partici-
pants updated transition probabilities to a greater degree than
following negative outcomes. We note that these findings are
unlikely to be accounted for by purely model-free state-action
learning since our task and updating metric includes cases where
participants should (if using model-based control and updating
the transition function) repeat choices following negative out-
comes and switch choices following positive outcomes. These
cases would cancel out the effect of valence that we actually
observe in the data under a model-free controller (which would
repeat following positive outcomes and switch following negative
outcomes). An effect of valence on updating was also observed in
the fMRI data, which revealed a greater parametric effect of SPEs
for positive outcomes relative to negative outcomes in the MTL.
Interestingly, this pattern of asymmetric updating is reminiscent
of confirmation bias (Nickerson, 1998), a recent account of which
(Lefebvre et al., 2022) has shown that this learning asymmetry
can in fact be beneficial by driving apart the difference in value
between the different options. Future theoretical work may help
shed light on whether a similar normative account exists behind
the asymmetry we observe here in planning.

Together, these results shed important light on the computa-
tional processes by which the MTL maintains and adapts knowl-
edge about the consequences of our choices and actions in the
world. By relying on a common representational code, knowledge
can be shared across different contexts that we interact with.
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