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Abstract

Associative memories in the brain receive and store patterns of activity registered by the sensory 

neurons, and are able to retrieve them when necessary. Due to their importance in human 

intelligence, computational models of associative memories have been developed for several 

decades now. In this paper, we present a novel neural model for realizing associative memories, 

which is based on a hierarchical generative network that receives external stimuli via sensory 

neurons. It is trained using predictive coding, an error-based learning algorithm inspired by 

information processing in the cortex. To test the model's capabilities, we perform multiple retrieval 

experiments from both corrupted and incomplete data points. In an extensive comparison, we show 

that this new model outperforms in retrieval accuracy and robustness popular associative memory 

models, such as autoencoders trained via backpropagation, and modern Hopfield networks. In 

particular, in completing partial data points, our model achieves remarkable results on natural 

image datasets, such as ImageNet, with a surprisingly high accuracy, even when only a tiny 

fraction of pixels of the original images is presented. Our model provides a plausible framework 

to study learning and retrieval of memories in the brain, as it closely mimics the behavior of the 

hippocampus as a memory index and generative model.

1 Introduction

Throughout our lives, we learn a huge number of associations between concepts: the taste of 

a particular food, the meaning of a gesture, or to stop when we see a red light. Every time 

we acquire new information of this kind, it gets stored in our long-term memory, situated 

in distributed networks of brain areas [1]. In particular, visual memories are stored in a 

hierarchical network of visual and associative areas [2]. These regions learn progressively 

more abstract representations of visual stimuli, so they participate in both perception and 

memory as each area memorizes relationships present in their inputs [3]. Accordingly, 

early visual areas learn common regularities present in the stimuli [4], while at the top 
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of this hierarchy, associative areas (such as hippocampus, entorhinal cortex, and perirhinal 

cortex) store the relationships between extracted features, which encode an entire stimulus 

or episode [5]. The memory system of the brain is able to both recall complex memories [1, 

6], and use them to generate predictions to guide behavior [7]. Learning in these associative 

memories shapes our understanding of the world around us and builds the foundations of 

human intelligence.

Building models that are able to store and retrieve information has been an 

important direction of research in artificial intelligence. Particularly, such models include 

(auto)associative memories (AMs), which allow for the storage of data points and their 

contents-based retrieval, i.e., for retrieving a stored data point s from a corrupted or a 

partial variant of s. One way to realize AMs is to store data points as attractors, so 

that they can be easily recovered via an energy minimization process when presenting 

their corrupted variants [8, 9]. Existing AMs include Hopfield networks [8] and modern 

Hopfield networks (MHNs) [10]. The latter are one-shot learners, which are able to store 

exponentially many memories, and to perfectly retrieve them. However, the retrieval process 

often fails when dealing with complex data, such as natural images. Recent works have 

shown that overparametrized autoencoders (AEs) are excellent AMs as well. Particularly, 

when training an AE to generate a specific point s when s itself is presented as an input, it 

gets stored as an attractor [11].

In this work, we present a novel AM model that is based on an energy-based generative 

approach. This AM model differs from Hopfield networks, as it is trained using predictive 

coding (PC), which is a biologically plausible learning algorithm inspired by learning in the 

visual cortex [4]. The idea that PC may naturally be related to AMs is inspired by recent 

works showing that the generative neural architecture that connects the hippocampus to the 

neocortex is based on an error-driven learning algorithm, which can be interpreted with a PC 

framework [6, 12]. From a machine learning perspective, predictive coding networks (PCNs) 

are able to perform both supervised and unsupervised tasks with a high accuracy [4, 13], 

and are completely equivalent to backpropagation when trained with a specific algorithm 

[14–16]. We show that the new AM model is not only interesting from a neuroscience 

perspective, but it also outperforms popular AM models when it comes to the storage and 

retrieval of complex data points. Our results can be briefly summarized as follows:

• We define generative PCNs and empirically show that they store training data 

points as attractors of their dynamics by demonstrating that they can restore 

original data points from corrupted versions. In an extensive comparison of the 

new AM model against standard AEs, the new model considerably outperforms 

AEs (in storage capacity, retrieval accuracy, and robustness) when tested on 

neural networks of the same size.

• The reconstruction of incomplete data points is a challenging task for AMs. 

Our model naturally solves the task of reconstructing complex and colored 

images with a surprisingly high accuracy. We also test our model on ImageNet, 

perfectly reconstructing single pictures even after removing all but 1/8 of the 

original image. We then show that, to increase the overall capacity and retrieval 

robustness of the model, it suffices to add additional layers. We also compare 
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our model against MHNs, showing that it significantly outperforms them in the 

aforementioned tasks.

2 Generative predictive coding networks

We now briefly recall predictive coding networks (PCNs), and we introduce generative 

PCNs, which are the underlying neural model for the novel AMs introduced in the 

subsequent section.

Deep neural networks have a multi-layer structure, where each layer is formed by a vector of 

neurons [17]. While in standard deep learning the goal is to minimize the error on a specific 

layer, PC defines an error in every layer of the network, minimized by gradient descent 

on a global energy function [4]. Particularly, let M be a PCN with L — 1 fully connected 

layers of dimension n, followed by a fully connected layer of dimension d. We call the 

d-dimensional layer sensory layer (indexed as layer 0), which biologically corresponds to 

sensory neurons (see Fig. 1). We call the most internal layer (layer L) memory, which is 

equipped with an n-dimensional memory vector b. Every layer l contains value nodes xi, tl , 

and every pair of consecutive layers is connected via weight matrices θl, which represent the 

synaptic weights between neurons of different layers. The value nodes, the weight matrices, 

and the memory vector are all trainable parameters of the model. The signal passed from 

layer l + 1 to layer l, called prediction μtl, is computed as follows:

μi, tl = ∑j = 1
nl + 1

θi, j
l + 1f xj, t

l + 1 if 0 ≤ l < L
b if l = L,

(1)

where f is a non-linear activation function. To conclude, the difference between the value xtl

and their predictions μtl is the error εi, tl = xi, tl − μi, tl . We now describe how PCNs are trained. 

To do this, we explain one iteration of a training algorithm, called inference learning (IL), 

that is divided into an inference phase and a weight update phase.

Algorithm 1

Learning to generate s with IL

Require:x0 is fixed to s.

1:   for t = 0 to T do

2:       for each neuron i in each level l do

3:         update xi, tl  to minimize Et via Eq.(3)

4:       end for

5:   end for;

6:   update each θi, j
l + 1 and bi to minimize Et via Eqs. (4) and (5).

Salvatori et al. Page 3

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2022 June 02.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Inference

Only the value nodes of the network are updated, while both the weight parameters and the 

memory vector are fixed. Particularly, the value nodes are modified via gradient descent to 

minimize the global error of the network, expressed by the following energy function Et:

Et = 1
2∑i, l εi, tl 2 . (2)

Assume that we train a generative PCN on a training point s ∈ ℝd. To do this, the value 

nodes of the sensory layer are fixed to the training point s, and are never updated. Thus, 

the error on every neuron of the sensory layer is equal to εi, t
0 = si − μi, t

0 . The process of 

minimizing Et by modifying all xi, tl  leads to the following changes in the value nodes:

Δxi, tl = γ ⋅ −εi, tl + f′ xi, tl ∑k = 1
nl − 1

εk, t
l − 1θk, i, t

l if 0 < l ≤ L

0 if l = 0,
(3)

whereY is the integration step, which is a constant determining by how much the activity 

changes in each iteration. The computations in Eqs. (1) and (3) are biologically plausible, 

as they have a neural implementation that can be realized in a network with value nodes xi, tl

and error nodes εi, tl  [4], as shown in Fig. 1. The inference phase works as follows: starting 

from a given configuration of the value nodes x0, inference continuously upates the value 

nodes according to Eq. (3) until it has converged. We call the configuration of the value 

nodes at convergence xT , where T is the number of steps needed to reach convergence (in 

practice, it is a fixed large number).

Weight Update

When the value nodes of the sensory layer are fixed to an input signal s, inference may 

not be sufficient to reduce the total energy to zero. Hence, to further decrease the total 

error, a single weight update is performed: both the weight matrices and the memory vector 

are updated by gradient descent to minimize the same objective function Et, and behave 

according to the following equations, where a is the learning rate. Particularly, the derived 

update rule is the following:

Δθi, j
l + 1 = − α ⋅ ∂ET / ∂θi, j

l + 1 = α ⋅ εi, T
l f xj, T

l + 1 , (4)

Δbi = − α ⋅ ∂ET / ∂bi = − αεi, T
L . (5)

The phases of inference and weight update are iterated until the total energy Et reaches a 

minimum. This algorithm learns a dataset by using only local computations, which minimize 

the same energy function. Fig. 1 gives a graphical representation of generative PCNs, while 
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the pseudocode is shown in Alg. 1. Detailed derivations of Eqs. (3) and (5) are in the 

supplementary material (and in [13]).

3 Predictive coding for associative memories

So far, we have shown how PCNs can perform generative tasks. We now show how 

generative PCNs can be used as associative memories, i.e., how the model stores the data 

points that it is trained on, and how these data points can be retrieved when presenting 

corrupted versions to the network, returning the most similar stored data point. Let s be a 

training data point, and M be the PCN considered above, already trained until convergence 

to generate s. Moreover, assume that M makes the total energy converge to zero at iteration 

T. At this point, the energy function defined on the value nodes has a local minimum x
in which the value nodes of the sensory layer are equal to the entries of s. Note that x is 

actually an attractor of the dynamics of Et: when given a configuration that is not a local 

minimum, inference will update the value nodes until the total energy reaches a minimum. 

If this configuration lies in a specific neighborhood of x, inference will converge to x. So, 

given a dataset, we obtain an AM of the dataset if all the training points are stored in the 

above way as attractors.

The above can be used to retrieve stored data points s: given a corrupted version c ∈ ℝd 

of s, one can retrieve s as follows. First, we set the value nodes of the sensory layer to the 

corrupted points, i.e., xt0 = c for the whole process. Then, we run inference until convergence 

and save the prediction μT
0  of the sensory layer. If the original data point was stored as 

an attractor, we expect the prediction μT
0 , to be a less corrupted version of it. Let F: ℝd 

→ ℝd be the function that sends c to μT
0  just described, and summarized in Fig. 2. Many 

iterations of this function allow to retrieve the stored data point. Hence, summarizing the 

above, training points are stored in the memory vector bT  and the weight parameters, and 

what the algorithm does to retrieve them is simply the inference phase of PCNs. Since visual 

memories are stored in hierarchical networks of brain areas, PC could be a highly plausible 

algorithm to better understand how memory and prediction work in the brain.

To experimentally show that generative PCNs are AMs, we trained a 2-layer network with 

ReLU non-linearity on a subset of 100 images of Tiny ImageNet and CIFAR10. After 

training, we presented the model with a corrupted variant (by adding Gaussian noise) of the 

training set. We then used the PCNs to reconstruct the original images from the corrupted 

ones. The experimental results confirm that the model is able to retrieve the original image, 

given a corrupted one. The obtained reconstructions for the Tiny Imagenet dataset (the most 

complex one, as each data point consists of 3 × 64 × 64 pixels) are shown in Fig. 4. We 

now provide a more comprehensive analysis, which studies the capacity of generative PCNs 

when changing the number of data points and parameters.

Experiments

We trained 2-layer PCNs with ReLU non-linearity and hidden dimension n ∈ {512, 1024, 

2048} on subsets of the aforementioned datasets of cardinality N = {100, 250, 500, 1000}. 
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Every model is trained until convergence, and all the images are retrieved as described in 

Section 3. To provide a numerical evaluation, an image is considered recovered when the 

mean squared error between the original image and the recovered image is less than 0.005.

To compare our results against a standard baseline, we also trained 3-layer autoencoders 

(AEs) with the same hidden dimension on the same task, and compared the results. Note 

that the number of parameters of a 2-layer PCN is smaller than the one of a 3-layer AE with 

the same hidden dimension. This follows, as the additional layer (input layer, not needed in 

generative PCNs) almost doubles the number of parameters in some cases. Further details 

about the experiments and used hyperparameters are given in the supplementary material.

Results

The analysis shows that our model is able to store and retrieve data points even when the 

network is not overparametrized (see Fig. 3). AEs trained with BP did not perform well: 

AEs with less than 1024 hidden neurons always failed to restore even a single data point on 

the Tiny Imagenet dataset, and very few on other ones. The performance of AEs with 2048 

hidden neurons were always worse than PCNs with 512 hidden neurons. This shows that 

overparametrization is essential for AEs to perform AM tasks, and that our proposed method 

offers a much more network-efficient alternative.

In terms of capacity, 2-layer PCNs with 512 hidden neurons correctly store datasets of 

250 images of both CIFAR10 and Tiny ImageNet, and networks with 2048 hidden neurons 

always store and retrieve all the presented datasets. As typical for AMs, small models 

trained on large datasets fail to store data points, as the space of parameters is not large 

enough to store each data point as an independent attractor. Our model is no different: PCNs 

with 512 hidden units are able to store almost 500 Tiny ImageNet images when trained on 

datasets of that size, but fail to store more than 200 when trained on larger ones.

4 Retrieval from partial data points

So far, we have shown how the proposed generative model can be used to retrieve stored 

data points when presented with corrupted variants. We now tackle the different task of 

retrieving data points when presented with partial ones. Let s be the stored data point, and 

assume that a fraction of pixels of s are accessible, and the goal is to retrieve the remaining 

ones. Let s′ be the vector of the same dimension of s, where a fraction of pixels are equal to 

the ones of the stored data point, and assume that the position of the pixels that are equal to 

the ones of s is known. We now show how to retrieve the complete data point by using the 

same network M, trained as already shown in Section 3.

Let M be a PCN trained to generate s. Then, given the partial version of the original data 

point s′, it is possible to retrieve the full data point using M as follows: first, we only fix the 

value nodes of the sensory layer xt0 to the entries of the partial data point s′ that we know 

are equal to the ones of the stored data point, leaving the rest free to be updated. Then, we 

run inference on the whole network until convergence. At this point, we expect the value 

nodes xT
0  to have converged to the entries of the original data point, stored as an attractor. 
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A graphical representation of the above mechanism is described in Fig. 5. To show the 

capabilities of this network, we have performed multiple experiments on the Tiny ImageNet 

and ImageNet datasets, and compared against existing models in the literature.

Algorithm 2

Retrieving s given a non-corrupted fraction s′

Require: if si′ a correct entry of the original memory, then xi,t
0  is fixed to si′.

1:   for t = 1 to T do

2:       for each neuron i in each level l do

3:         update xi, tl  to minimize Et

4:       end for

5:   end for;

6:   return xT
0 .

We now start by providing visual evidence on the effectiveness of this method. Note that 

the geometry of the mask does not influence the final performance, as our model simply 

memorizes single pixels.

Experiments

We trained two networks with hidden dimensions of 1024 and 2048, to generate 50 images 

of the first class of Tiny ImageNet (corresponding to goldfishes), and a network of 8192 

hidden neurons to reconstruct 25 ImageNet images. Then, we used inference as explained 

to retrieve the original images. We considered an image to be correctly reconstructed when 

the error between the original and the retrieved image was smaller than 0.001. Furthermore, 

we plotted the partial images together with their reconstructions, for a visual check. Note 

that we used the thresholds that provided the fairest comparison: the denoising experiments 

fail to have a perfect retrieval, despite the fact that most of the images look visually good. 

Hence, we determined the threshold to be equal to 0.005. Then, with the same threshold for 

the retrieval of partial images, our method always successfully retrieved all the images, and 

so we opted for a smaller threshold, which was more informative.

Results

On Tiny ImageNet, a generative PCN with 1024 hidden neurons managed to reconstruct 

all the images when presented with 1/8 of the original image, and more than half for the 

smallest fraction considered, 1/16. The network with 2048 neurons also failed to reconstruct 

all the images when presented with 1/16 of the original image. However, even when 

presented with a portion as small as 1/16 of the original image, the reconstruction was 

clear, although not perfect and hence now aove our threshold. This result is shown in Fig. 6 

(left).

Salvatori et al. Page 7

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2022 June 02.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Surprisingly, generative PCNs trained on ImageNet correctly stored all the presented 

training images, and correctly reconstructed them with no visible error. This shows that 

PCNs can be used to store high-dimensional and high-quality images in practical setups, 

which can be retrieved using only a low-dimensional key, formed by a fraction of the 

original image. Particularly, Fig. 6 (right) shows the perfect reconstruction obtained on 

ImageNet when the network is presented with only 1 /8 of the original image. Further 

experiments on ImageNet are shown in the supplementary material, where we present 

multiple high-quality reconstructions.

5 More training data points and/or deeper PCNs

In the above experiments, a shallow architecture is able to store 100 natural images from 

Tiny ImageNet, and to reconstruct them with no visible error when provided with 1/8 of the 

original images. We now study how this changes when either the cardinality of the dataset 

is increased, or the number of provided pixels during reconstruction is updated. To study 

this, we have trained two models with n = {1024, 2048} hidden units on subsets of Tiny 

ImageNet of cardinality N = {50,100, 250, 500}, and reconstructed images with only p = 
{1/2,1 /4,1/8,1/16} of the original images. According to our visualization experiments, we 

have noted that an image has no visible reconstruction noise when the error between the 

original image and the reconstruction is less than 0.001. Hence, we consider an image to be 

correctly retrieved if the reconstruction error is below this threshold.

Results

Every network with 50 stored memories was able to perfectly reconstruct the original image 

when provided with 1/4 of it, and about half when provided with only 1/8. However, this 

changes when increasing the training set, as no network trained on more than 50 images was 

able to correctly reconstruct an image when provided with 1/16 of it, besides a few cases. In 

terms of capacity, the more images we train on, the harder the reconstruction becomes: no 

training image was correctly retrieved when training on N = 500 images when provided with 

a fraction smaller than 1/2 of the original image, regardless of the width of the network. A 

summary of these results is given in Fig. 7.

These experiments show the limits of shallow generative PCNs on both reconstruction 

capabilities and capacity. As expected and common in standard AM experiments, increasing 

the number of training points and reducing the number of available information for 

reconstruction hurts the performance. We now show how increasing the number of layers 

solves this capacity problem.

Deep generative PCNs

We now test how increasing the depth of generative PCNs increases their capacity. We 

then compare the results against overparametrized AEs. Particularly, we trained generative 

PCNs with n = {1024, 2048} hidden neurons, depth L = {3, 5, 7,10} on N = 500 images 

of Tiny ImageNet. Furthermore, we reconstructed the stored images using a fraction of 

p = {1/2,1/4} of the original images. To further compare against state-of-the-art AEs, 

we trained equivalent AEs, which is the best-performing one according to [11]. Also, all 
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the hyperparameters used for training are the ones reported by the authors. To make the 

comparison completely fair, we also assume that the correct pixels of the incomplete images 

are known when testing the AE. Particularly, we fixed these pixels at every iteration of the 

reconstruction process of the AEs. As above, we consider an image to be correctly retrieved 

if the reconstruction error is less than 0.001.

Results

The results confirm the hypothesis: the deeper the network, the higher the capacity. 

Particularly, a 10-layer network was able to reconstruct more than 98% (against the 72% 

of the AE) of the images when providing half of the original pixels, and 74% (against 

the 48% of the AE) of the images when providing 1/4 of the pixels. This shows that 

our model clearly outperforms state-of-the-art AEs in image reconstruction, even in the 

overparametrized regime. Fig. 8 summarizes these results.

6 Comparison with Hopfield networks

In this section, we compare against the most popular AM models, namely, classical and 

modern Hopfield networks (MHNs) [8, 10]. Despite their popularity, both types of Hopfield 

networks fail to retrieve complex data such as natural images. We now show that the 

retrieval process of our model is significantly better, as it always converges to a plausible 

solution, even when provided with a tiny amount of information, or a large amount of 

corruption.

Classical Hopfield networks

We now compare against classical Hopfield networks [8]. We have trained a Hopfield 

network on N = {2, 3, 5,10} images of the MNIST dataset, and converted every grey-scale 

pixel to either 0 or 1, as Hopfield networks only work on binary data. However, this model 

was able to retrieve the original images when presented with 1/2 only when N = 2. To test 

generative PCNs on the same task, we used a small network with one hidden layer and 32 

hidden neurons. Our model was always able to retrieve the original images. Visual results of 

this experiments are shown in Fig. 9 (left).

Modern Hopfield networks

We trained an MHN to memorize 50/100/250/500 CIFAR10 images, and then performed 

three different experiments. In the first two, we tried to reconstruct the original memories 

when providing 1/2 and 1 /4 of the original image as a key. Then, we corrupted the original 

images by adding Gaussian noise. Despite the high capacity, MHNs do not perform well 

in image retrieval. Particularly, they were able to retrieve at most 9 images when presented 

with a corrupted image, and at most 5 when presented with an incomplete one. The results 

of the experiment are given in Table 1. In Fig. 9 (right), we provide a visual comparison 

between our method and MHNs, showing that they are only able to retrieve one image when 

trained on complex images taken from the Tiny Imagenet dataset. Further details about the 

experiments are given in the supplementary material.
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Deep associative neural networks

To improve their performance, MHNs have been augmented with a convolutional multilayer 

structure for unsupervised feature detection [18]. The resulting architecture, called deep 
associative neural network (DANN), is able to perform both AM and classification tasks. 

We now compare the image reconstruction experiments performed in [18] with the ones 

performed by our generative PCN. We replicate the experiment proposed, which consists 

in presenting the network an partial image of the CIFAR10 dataset, where a squared patch 

covers the centre of each image. Note that this is not a completely fair comparison, as 

(1) DANNs merge AM with convolutions and unsupervised feature detection layers, and 

(2) it is trained on the whole dataset. Hence, comparing it against a pure AM model such 

as ours may be unfair. However, we believe that presenting comparisons against models 

that perform AM tasks such as DANNs is still interesting in understanding how our model 

compares against existing ones in the literature.

We first ran the same experiment on CIFAR10 as in [18]. Particularly, we used 250 images. 

The comparison is given in Fig. 10. Unlike the image in [18], our reconstruction shows 

no visible error. Furthermore, we replicated the experiment using 50 images of ImageNet, 

and showed that our model is again able to provide perfect reconstructions of the original 

images.

7 Biological relevance

The model described in this paper is closely related with theories of functioning of the 

memory system in the brain. It is typically assumed that memories are stored in a network 

of cortical areas organized hierarchically, where sensory information is processed and 

encoded by several neo-cortical regions, and then it is integrated across modalities in the 

hippocampus [2, 5]. It has been recently proposed that this hippocampo-neocortical system 

can be viewed as a PCN [6] similar to the one in this paper. In particular, Barron et 

al. [6] proposed that the hippocampus could be viewed as a top layer in the hierarchical 

PCN (which would correspond to the memory layer L in our model), while neo-cortical 

areas would correspond to lower layers in the network. A contribution of our paper 

is to implement this idea and demonstrate in simulations that PCNs, which were only 

theoretically proposed to act as a memory system [6], can actually work and effectively store 

and retrieve memories.

The mechanisms of learning and retrieval proposed in the PC account of the brain memory 

system in [6] closely resemble those occurring in our model. Barron et al. proposed that 

during learning, the generative model of the hippocampus is updated until the hippocampal 

predictions correct the prediction errors by suppressing neo-cortical activity [6]. The training 

phase of our generative model closely resembles this framework, as it also accumulates 

prediction errors from the sensory neurons to the hidden layers and memory vector, while a 

continuous update of the value nodes corrects the errors in the sensory neurons. Then, the 

parameters of our generative model are updated until its predictions reach low/zero error 

in the sensory neurons. Learning in PCNs relies on local Hebbian rules, i.e., the weights 

between co-active neurons are increased, and such form of synaptic plasticity has been 

first demonstrated experimentally in the hippocampus [19]. It has been further suggested 
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that during the reconstructions of past memories, the hippocampus sends descending input 

to the neocortical neurons to reinstate activity patterns that recapitulate previous sensory 

experience [6]. In the reconstruction phase of our generative model, the memory vector 

provides descending inputs to the sensory neurons, to generate patterns that recall previous 

sensory experience, e.g., stored data points.

Our model captures certain high-level features of the brain memory system, but many 

details of the model will have to be refined to describe biological memory networks. Barron 

et al. [6] reviewed in detail how the architecture of a PC model could be related to the 

known anatomy of neo-cortical memory areas, and how different populations of neurons and 

connections in the model could be mapped on known groups of neurons and projections in 

the neo-cortex. Interesting future work is to extend the top layer of our memory network 

to include key features of the hippocampus, i.e., recurrent connections, known to exist in 

the subfield CA3, as well as an additional population of neurons in dentate gyrus and 

CA1, which have been proposed to play specific roles in learning new memories [20]. It 

is also interesting to investigate if our model can reproduce experimental data on how the 

hippocampus drives the reinstantiation of stored patterns in the neo-cortex during retrieval 

[21, 22].

8 Related work

Predictive coding [4] and AM models [8, 23] have rarely been related in the literature to 

date. However, they share multiple similarities, the main of which is that both are energy-

based models that update their parameters using local information.

Associative memories (AMs)

In computer science, AMs date back to 1961, with the introduction of the learn matrix [24], 

a hardware implementation of hetero-associative memories using ferromagnetic properties. 

However, the milestones of the field are Hopfield networks, presented in the early eighties 

in their discrete [8] and continuous [23] version. Recently, AMs have increasingly gained 

popularity. Particularly, a 2-layer version of Hopfield networks with polynomial activations 

has been shown to have a surprisingly high capacity [10], which can be increased even more 

with exponential activations [25, 26]. The recent focus of the machine learning community 

on AM models, however, does not lie in applying them directly to solve practical hetero-

associative memory tasks. On the contrary, it has been shown that modern architectures 

are implicitly AMs. Examples of these are standard deep neural networks [27, 11] and 

transformers [28]. Hence, there is a growing belief that understanding AM models will help 

the understanding and improvements of deep learning [29, 27, 30, 31]. In fact, different 

classification models perform well when augmented with AM capabilities. DANNs [18], 

e.g., use deep belief networks to filter information, while [32] improves over standard 

convolutional models by adding an external memory that memorizes associations among 

images.
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Predictive coding (PC)

This framework includes both a biologically plausible neural architecture and a learning 

algorithm [4] developed to emulate learning in the visual cortex. Particularly, PC allows 

to describe multiple phenomena happening in the brain, using a single framework, such as 

free-energy minimization with local computations [33–36]. From the more practical point 

of view, PC can be used to train high-performing neural architectures [13, 37, 38], as it has 

been shown that it can exactly replicate the weight update of BP [14–16].

9 Conclusion

In this paper, we have shown that predictive coding (which was originally designed to 

simulate learning in the visual cortex) naturally implements associative memories that have 

a high capacity and a high retrieval accuracy and robustness, and that can be expressed 

using small and simple fully connected neural architectures. We have shown this empirically 

in a large number of experiments. Particularly, we have performed denoising and image 

reconstruction tasks, comparing against standard autoencoders. Furthermore, we have shown 

that this model is able to reconstruct with no visible error natural high-resolution images 

of the ImageNet dataset, when provided with a tiny fraction of them. Overall, this work 

strengthens the connection between the machine learning and the neuroscience community. 

It underlines the importance of predictive coding in both areas, both as a highly plausible 

algorithm to better understand how memory and prediction work in the brain, and as an 

approach to solve corresponding problems in machine learning and artificial intelligence.
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Figure 1. 
Generative PCN with two layers. Each line linking neurons denotes a pair of connections 

(excitatory in the left direction, and inhibitory in the right direction). At t = 0, the value 

nodes of the output layer are fixed to the vector representing the pixels of the figure. Then, 

during the learning phase, both weight parameters and value nodes are updated.
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Figure 2. 
Left: Representation of the function F, used to retrieve stored images. It can be decomposed 

into three steps: (1) The value nodes of the sensory layer are fixed to the pixels of the 

corrupted image Fm (c). (2) Inference runs for T operations (until convergence). (3) We 

set Fm+1 (c) to the prediction of the sensory layer μT
0 . Note that the weight parameters are 

never updated during the above steps. We have omitted the error nodes for simplicity. Right: 

Representation of an AM, where an image s (photo of a dog) is stored as an attractor of the 

dynamics. A corrupted image that lies in a specific neighborhood of s converges to it when 

minimizing the total energy via running inference.
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Figure 3. 
Percentage of correctly retrieved images by 2-layer generative PCNs (PC) and 3-layer 

autoencoders (AE) with hidden-layer dimensions of 512, 1024, and 2048, when presented 

with a corrupted image with Gaussian noise of variance 0.2 of CIFAR10 and of Tiny 

ImageNet.

Salvatori et al. Page 17

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2022 June 02.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 4. 
Reconstructions of 64 × 64 Tiny ImageNet images with noise levels 0.2, 0.7, and 0.9, 

respectively (original, noisy, and reconstructed image in first, second, and third row, 

respectively).
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Figure 5. 
Algorithm used to retrieve a stored data point from a fraction of it: (1) The value nodes 

of the sensory layer that correspond to the available entries of s are fixed to the respective 

values. (2) Inference runs for T operations (until convergence). (3) We set our prediction 

to be equal to the value nodes of the sensory layer xT
0 . The weight parameters are never 

updated during the above steps. The error nodes are omitted for simplicity.
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Figure 6. 
Partial images and their reconstructions (from top to bottom: partial image, reconstructed 

image, original image, and reconstruction error (difference between original and 

reconstruction)). Left: 64 × 64 Tiny ImageNet images presented with 1/4, 1/8, and 1/16 

of the original image, respectively, using a network of 1024 hidden neurons. Right: 224 × 

224 ImageNet images presented with 1/8 of the original image, using a network with 8196 

hidden neurons.
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Figure 7. 
Percentage of perfectly retrieved images given different fractions of the original images for 

PCNs with 512, 1024, 2048, and 4096 hidden neurons trained on datasets of different sizes. 

Note that here we count as retrieved only images with non-visible errors. Most of the images 

that are not considered retrieved in this plot, were correctly retrieved, but only slightly noisy.
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Figure 8. 
Percentage of correctly retrieved images as a function of the number of hidden layers, for 

both AEs and generative PCNs, on a dataset of 500 images. We used networks with n = 

{1024,2048} hidden neurons, and the images are taken from Tiny ImageNet.
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Figure 9. 
Left: Recovery of 2, 3, 5, and 10 MNIST images using a generative PCN and classical 

Hopfield networks [8] when presented with 1/2 of the original image as a key. As shown, 

Hopfield networks only recovered the original images when N = 2, but otherwise always 

failed to retrieve them when trained on more than two images. Right: Reconstruction of 100 

Tiny ImageNet images when provided with 1/2 of the original image, using a generative 

PCN and a MHN with β = 2.
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Figure 10. 
Left: Our reconstruction on 25 ImageNet 224×224 images and a network with 8192 hidden 

neurons. Centre: Our reconstruction using a generative PCN with 1024 hidden neurons on 

CIFAR10 32x32 images. Right: Reconstruction of a DANN on the same dataset (taken from 

[18]).
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Table 1
Number of correctly retrieved images on different tasks by a MHN trained on fractions of 
CIFAR10.

N p = 1/2 p = 1/4 η = 0.2

50 5 4 4

100 4 3 3

250 1 1 9

500 1 1 3
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