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Purpose: We introduce FSL-MRS, an end-to-end, modular, open-source MRS anal-
ysis toolbox. It provides spectroscopic data conversion, preprocessing, spectral simu-
lation, fitting, quantitation, and visualization.
Methods: The FSL-MRS package is modular. Its programs operate on data in a 
standard format (Neuroimaging Informatics Technology Initiative [NIfTI]) capable 
of storing single-voxel and multivoxel spectroscopy, including spatial orientation 
information. The FSL-MRS toolbox includes tools for preprocessing of raw spec-
troscopy data, including coil combination, frequency and phase alignment, and filter-
ing. A density matrix simulation program is supplied for generation of basis spectra 
from simple text-based descriptions of pulse sequences. Fitting is based on linear 
combination of basis spectra and implements Markov chain Monte Carlo optimiza-
tion for the estimation of the full posterior distribution of metabolite concentrations. 
Validation of the fitting is carried out on independently created simulated data, phan-
tom data, and three in vivo human data sets (257 single-voxel spectroscopy and 8 
MRSI data sets) at 3 T and 7 T. Interactive HTML reports are automatically gener-
ated by processing and fitting stages of the toolbox. The FSL-MRS package can be 
used on the command line or interactively in the Python language.
Results: Validation of the fitting shows low error in simulation (median error of 
11.9%) and in phantom (3.4%). Average correlation between a third-party toolbox 
(LCModel) and FSL-MRS was high (0.53-0.81) in all three in vivo data sets.
Conclusion: The FSL-MRS toolbox is designed to be flexible and extensible to new 
forms of spectroscopic acquisitions. Custom fitting models can be specified within 
the framework for dynamic or multivoxel spectroscopy. It is available as part of the 
FMRIB Software Library.
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1 |  INTRODUCTION

Recent years have seen the emergence and rapid prog-
ress of new MRS technologies, including spectral editing,1 

MRS imaging,2,3 time-resolved functional MRS,4 diffusion-   
weighted MRS,5 and MRS fingerprinting.6 Magnetic reso-
nance spectroscopy is, therefore, starting to have a range of 
techniques comparable to those of conventional proton MRI, 
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but with the added benefit of being able to quantify spe-
cific chemical compounds. However, unlike modern MRI-
based neuroimaging, MRS lacks standard data formats (eg, 
Neuroimaging Informatics Technology Initiative [NIfTI]), as 
well as standard preprocessing and analysis pipelines suit-
able for use by nonexpert users (eg, FSL,8 SPM,9 or AFNI10). 
This restricts the use of MRS in research, particularly in neu-
roscience, by requiring expertise in MRS acquisition, data 
analysis, and computing. Current processing toolboxes are 
typically linear and linearly dependent, lacking modularity or 
a standardized data format. It is therefore difficult to custom-
ize processing pipelines, inspect the results of single steps of 
a pipeline, or combine steps from different toolsets.

The tools currently available and commonly in use for 
processing, fitting, and visualization of spectra (eg, Refs.    
11-16) suffer from one or more of several limitations, namely:

• They may be black-box, closed-source implementations, 
sometimes with monetary cost;

• They may require licensed software to run, which is not 
universally deployable;

• They often require high user interaction, either through a 
graphical user interface or the need for setting and under-
standing many options;

• They have fixed forward-fitting models. Modifications re-
quire MRS and computing expertise; and/or

• They have limited or no handling of MRSI data, with no 
parallelization available.

For these reasons, currently available software is not eas-
ily extensible to new forms of MRS, such as high-resolution, 
high-voxel-count MRSI, or time-series modeling of func-
tional MRS or diffusion-weighted MRS.

In this work we present a new Python-based MRS fitting 
and processing tool, FSL-MRS. The toolbox is open-source, 
free as part of the FSL software package,8 and operates with 
a scriptable command line or interactive interface. It imple-
ments a modular approach to spectroscopy analysis with a 
common data format, allowing integration with other neu-
roimaging tools. Steps are parallelizable for MRSI data. The 
FSL-MRS package is end-to-end, comprised of modules for 
data conversion, preprocessing, basis spectra simulation, fit-
ting, quantification, and visualization.

The FSL-MRS fitting module works on the principle of 
linear combination of precalculated basis spectra.13 In keep-
ing with FSL’s tradition of favoring Bayesian inference ap-
proaches,17 our tool calculates full posterior distributions of 
the fitted metabolite concentrations using a Markov chain 
Monte Carlo (MCMC) algorithm, specifically Metropolis-
Hastings.18 The full posterior distributions can be used in 
further analysis, allowing efficient propagation of fitting un-
certainties into downstream modeling and statistical analy-
ses. Parameter covariances are also available from the fitting 

output, and point estimates of concentration and uncertainties 
may be calculated using appropriate summary statistics. The 
FSL-MRS toolbox incorporates an interactive reporting in-
terface that uses modern data-science visualization tools.

In this work we describe the FSL-MRS components, in-
terface and output, and describe the fitting model and ap-
proach. A validation of the tool’s fitting estimates is carried 
out on widely available simulated data, in phantom, and on 
three in vivo data sets at 3 T and 7 T, spanning 265 subjects.

2 |  METHODS

2.1 | Data conversion and format

The FSL-MRS toolbox operates on a modular processing 
principle. Modularity allows custom third-party additions to 
the processing pipeline without the need to alter the FSL-
MRS package or adhere to FSL-MRS-imposed code conven-
tions, languages, or possible limitations.

To enable this workflow, FSL-MRS processing and fitting 
operates on MRS data stored in the NIfTI format.7 The NIfTI 
format permits the storage of data resolved into three spatial 
dimensions, in addition to a time dimension and two further 
unspecified dimensions. The MRS and MRSI time-domain 
data may therefore be stored using the format (and will allow 
analysis of functional MRS and diffusion-weighted MRS 
data in the future). Data are loaded from, and written to, file 
after each operation. Additional required meta-data are stored 
in, read from, and written to JavaScript object notation “side-
car” files, as specified by the Brain Imaging Data Structure 
format.19

The FSL-MRS package provides the spec2nii program 
to convert from existing data formats to NIfTI. Spec2nii 
currently supports seven formats specified in Supporting 
Information Table S1. Spectroscopy volume position infor-
mation is translated into the NIfTI “qform” field, where it is 
available in the original format.

2.2 | Modular end-to-end processing

The FSL-MRS toolbox provides a complete set of command 
line tools for spectroscopy analysis. Here we define process-
ing as the steps required to make single-voxel spectroscopy 
(SVS) or reconstructed MRSI k-space data ready for fitting. 
Basis spectra creation is the process of using quantum me-
chanical simulations (or other methods) to create numerical 
descriptions of a metabolite’s response to a specific MRS 
pulse sequence. Fitting is the process of estimating relative 
metabolite concentrations from the processed spectrum and 
the basis spectra. Quantification turns those relative concen-
trations into real-world interpretable units of concentration. 
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Display incorporates viewing of the data and results at all 
stages of the process. Figure 1 shows an overview of the 
tool’s workflow.

2.2.1 | Processing

The FSL-MRS package provides tools for all of the process-
ing operations recommended in the community-driven con-
sensus paper (Tables 2-4 of Near et al20). These tools are 
accessed through the command line by fsl_mrs_proc and are 

found in Table 1. Coil combination is performed through the 
whitened singular value decomposition algorithm,21,22 spec-
tral alignment by spectral registration,23 and nuisance peak 
removal by Hankel Lanczos singular value decomposition 
(HLSVDPRO).24 fsl_mrs_proc operations are applied sequen-
tially to data stored in NIfTI format. Operations can be com-
bined, in order, to form a repeatable batch processing script.

In addition to the flexibility offered by this script, FSL-
MRS also provides a prepackaged processing pipeline for 
nonedited single-voxel data (fsl_mrs_preproc), which runs 
all appropriate steps with one command-line operation.

F I G U R E  1  The FSL-MRS organization and workflow. Raw data in proprietary or other formats are converted to NIfTI (Neuroimaging 
Informatics Technology Initiative) by spec2nii. Processing can then be carried out in stages, operating on NIfTI files using fsl_mrs_proc, or in 
a single Python script fsl_mrs_preproc for standard single-voxel spectroscopy (SVS) sequences. Basis spectra can be generated for fitting using 
fsl_mrs_sim, given a JavaScript object notation (JSON) description for the sequence. Fitting and quantitation are then carried out by fsl_mrs and 
fsl_mrsi as appropriate. Interactive HTML reports are generated for viewing in the user’s browser. Spectroscopy data in NIfTI format can be 
viewed overlaid with other MR contrasts in FSLeyes
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2.2.2 | Basis spectra simulation

Fitting in FSL-MRS works on the principle of linear combi-
nation (LC) modeling (see section 2.4), which requires that 
the user provide the algorithm with simulated (or measured) 
numerical responses of metabolite spin systems to the MRS 
pulse sequence being used. These responses are specific to 
the pulse sequence, the sequence timings, and the sequence 
RF pulse envelopes, and are known as basis spectra. Basis 
spectra must preserve the relative signal amplitude between 
metabolites.

The FSL-MRS package provides an interface (fsl_mrs_
sim) for the creation of basis spectra when provided with a de-
scription of the sequence timings, RF pulses, slice-selection    
gradients, and rephasing gradient areas. The RF pulses may 
have arbitrary amplitude and phase modulation (ie, be non-
ideal). The description is provided in a JavaScript object 
notation format; examples are provided in the software doc-
umentation. The simulation is based on the extended one-   
dimensional projection implementation of density matrix 
simulations.26,27 Unwanted coherences are removed with a 
coherence order filter.28 Standard literature values for com-
mon spin-system chemical shifts and coupling constants are 
included in the software.29,30

The fsl_mrs_sim script outputs a JavaScript object nota-
tion file for each simulated metabolite, which may be loaded 

by FSL-MRS’s fitting modules. The FSL-MRS toolbox also 
accepts LCModel (.BASIS) and jMRUI (.txt) basis spectra 
formats.

2.2.3 | Fitting and quantification

Fitting in FSL-MRS is provided by two command-line in-
terfaces: fsl_mrs (for SVS data) and fsl_mrsi (for MRSI 
data). Additional interfaces will be added in the future for 
other types of MRS (eg, diffusion-weighted MRS, func-
tional MRS). Fitting is carried out on each voxel of data 
independently. The user may optionally specify the limits 
of fitting (in ppm), the order of the complex polynomial 
baseline (see standard fitting model), whether to add de-
fault macromolecular peaks (at 0.9, 1.2, 1.4, 1.7, 2.08, and 
3.0 ppm), the optimization algorithm (see section 2.4.2). 
Metabolites in the basis spectra file may be optionally ex-
cluded by the user and, for output purposes only, metabo-
lites may be combined.

For meaningful quantification, the user must supply a 
processed, unsuppressed, water data set, and for transverse 
relaxation–compensated concentrations, the user must 
supply the sequence TE and tissue volume fractions.31,32 
Water signal amplitude (SH2O_obs in Refs 20,31,32) is cal-
culated using numerical integration of the real part of 

T A B L E  1  Processing operations 
available using the fsl_mrs_proc command 
line tool

fsl_mrs_proc 
operation Description References

coilcombine Combine individual coils of receiver phased array Refs. 21,22

average Average FIDs, with optional complex weighting

align Phase and frequency-align FIDs using spectral 
registration

Ref. 23

align-diff Phase and frequency-align subspectra based on addition 
or subtraction of subspectra (eg, for ISIS localization)

Ref. 23

ecc Eddy current correction using a water phase reference 
scan

Ref. 25

remove Remove peak (typically residual water) using HLSVD Ref. 24

tshift Shift/resample in time domain

truncate Truncate/pad time-domain data by an integer number 
of points

apodize Apply choice of apodization function to the data

fshift Frequency domain shift

unlike Identify outlier FIDs and remove based on similarity 
metric

Ref. 14

phase Zero-order phase spectrum by phase of maximum point 
in range

subtract Subtract two FIDs

add Add two FIDs

Abbreviations: HLSVD, Hankel Lanczos singular value decomposition; ISIS, image-selected in vivo 
spectroscopy.
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the phase-corrected and eddy current–corrected, unsup-
pressed water spectrum. Water-scaled concentrations are 
calculated by taking the ratio of the integrated signal of 
a scaled reference metabolite basis spectrum (SM_obs in 
Refs 20,31,32; defaults to creatine between 2 and 5 ppm). 
The scripts svs_segment and mrsi_segment can calculate    
tissue-volume fractions within each voxel given an appro-
priate T1-weighted structural image. Default values for 
water concentration, tissue–water densities, and water and 
metabolite T2 time constants are provided for 3T and 7T 
field strengths. Hardcoded constants, correct as of time 
of publication, may be found in Supporting Information 
Tables S2-S4), and the values that are correct for the current 
version may always be found in the source-code module 
fsl_mrs.utils.constants or as part of the online documen-
tation. These defaults may be overridden in the interactive 
or python interface. Concentrations can be expressed as a 
ratio to an arbitrary internal reference metabolite (or com-
bination of metabolites) or in molar (mol/dm3) or molal 
(mol/kg) units.

The FSL-MRS fitting outputs the SNR and linewidths 
(FWHM) for each fitted metabolite. The SNR ratio is cal-
culated as the ratio of the peak height of the fitted metabo-
lite basis spectrum over the SD of a pure noise region of the 

spectrum after a matched filter has been applied to both.33 
The matched filter and linewidth are calculated for each me-
tabolite as the FWHM peak width in hertz, as calculated from 
the most prominent peak in the fitted basis spectrum. If the 
MCMC algorithm is used, the quality control metrics are cal-
culated over all samples.

2.2.4 | Reporting and display

The FSL-MRS modules generate self-contained interactive 
HTML reports (Plotly, Montréal, Canada), which can be 
viewed and interacted with in the user’s web browser. All 
components of the processing module (Table 1) produce 
short HTML reports that can be combined into a single in-
teractive report for each instance of data using the packaged 
merge_mrs_reports.

An interactive report is generated for each fit display-
ing the fitted spectrum, model fit, residuals and concen-
trations (Figure 1), concentration posterior distributions, 
metabolite covariances, and scaled basis spectra (Figure 
2). The report also contains summaries of SNR and line-
width  quality-control parameters for each fitted metabolite. 
The user, therefore, can quickly assess the quality of SVS 

F I G U R E  2  Extracts of the interactive 
HTML fitting report. Top: Metabolite 
concentrations summary and fit overlaid 
on data. Individual plots can be toggled on 
and off interactively. Bottom: Correlations 
between metabolite concentrations 
from the Markov chain Monte Carlo 
(MCMC) sampling and marginal 
posterior distributions of the metabolite 
concentrations. A full interactive fitting 
and preprocessing report is included as 
Supporting Information. Abbreviations: 
Ala, alanine; Asc, ascorbate; Asp, aspartate; 
Cr, creatine; GABA, γ-aminobutyric 
acid; Glc, glucose; Gln, glutamine; Glu, 
glutamate; GPC, glycerophosphocholine; 
GSH, glutathione; Ins, myo-inositol; 
Lac, lactose; Mac, macromolecules; 
NAA, N-acetyl aspartate; NAAG, 
N-acetyl aspartate glutamate; PCh, 
phosphocholine; PCr, phosphocreatine; PE, 
phosphorylethanolamine; Scylio, scyllo-
inositol; Tau, taurine
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data and fit visually in one location. Results of the fitting 
and quality-control metrics are also available as comma-   
separated value files from the command-line programs and 
as Pandas objects in memory.34

Visualization of both time and frequency-domain MRSI 
data alongside structural imaging data can be achieved using 
the FSL package tool FSLeyes35 (Figure 3).

2.3 | Interactive FSL-MRS

In addition to the command-line tools described previ-
ously, FSL-MRS may be run in an “interactive” way by 
loading the underlying python libraries into an interactive 
IPython environment. The same functionality and report-
ing interfaces that are available on the command line are 
also available interactively. In this way, FSL-MRS allows 
prototyping of new processing pipelines and tools, while 
also providing familiarity for users of interactive scripting 
languages.

2.4 | Bayesian fitting

The FSL-MRS toolbox implements linear combination mod-
eling for fitting of basis spectra to data using Bayesian sta-
tistics, to find an optimal solution. This method of fitting is 
robust, while also outputting full posterior distributions of 
fitted metabolite concentrations to estimate concentration co-
variances and uncertainties.

The fitting module contains a standard fitting model appro-
priate for the fitting of a single, independent spectrum. However, 
the fitting framework can accept an arbitrary forward model.

2.4.1 | Standard fitting model

The model for the complex-domain spectrum is

(1)

Y (�) = B (�) + exp
[

i
(

�0 + ��1

)]

NG
∑

g= 1

Ng
∑

l= 1

Cl,gMl,g

(

� ;γg, �g, �g

)

F I G U R E  3  Magnetic resonance spectroscopy imaging in FSLeyes. The results of processing and fitting of MRSI data are stored in 4D NIFTI 
files and can be viewed in a suitable viewer such as FSLeyes. Here, a map of total NAA +NAAG as measured using CONCEPT (concentric circle 
echo-planar trajectories; data set 3) is overlaid on a T1-weighted image. In the lower panel, the real part of the time-series data for the selected voxel 
is seen on the left, and on the right the real part of the spectral data is overlaid with the FSL-MRS fit and baseline estimate
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where � denotes frequency; B (�) describes an Nth-order 
complex polynomial estimate of the baseline; the second 
term applies a global zeroth and first-order phase; and the 
final term is the sum of all scaled, shifted, and broadened 
metabolite basis spectra Ml,g

(

� ; �g, �g, �g

)

. To avoid over-
fitting, there is no flexibility in the metabolite line shapes 
beyond shifting (ε) and broadening (γ, σ), which can be 
flexibly applied to NG groups of metabolites (where each 
metabolite belongs to one and one only group). ℱ is the 
Fourier transform, and ml,g(t) is the inverse Fourier trans-
form of Ml,g (� ; 0, 0, 0).

No prior information or constraints on relative metabolite 
scaling is incorporated. The default polynomial baseline is 
second-order, but can be specified (or disabled entirely) by 
the user.

2.4.2 | Optimization

Initialization is achieved using the truncated Newton algo-
rithm as implemented in the SciPy package.36,37 The final fit 
is carried out over all model parameters using Metropolis-
Hastings (an MCMC algorithm).18 The truncated Newton 
initialization can be used independently of the subsequent 
MCMC fit to provide a fast point estimate of the metabo-
lite concentration. In this work and in the summary reports 
generated by FSL-MRS, point estimates of the metabolite 
concentrations from the MCMC algorithm are the arithmetic 
mean of the posterior distribution.

The forward model in Equation 1 is combined with an 
additive Gaussian white noise to produce the Likelihood 
function (which combines both real and imaginary parts 
of the model prediction and data). The noise-variance pa-
rameter is integrated out with a Jeffrey’s (1/x) prior. Priors 
on the concentration parameters are set to broad zero-mean 
half-Gaussians (ie, with positivity constraint). Each of 
the line-broadening parameters (γ, σ) are set to broad 
Gaussians (SD of 2.5 Hz) with a small, positive center    
(5 Hz) and positivity constraints. Thus, the prior is cen-
tered at an additional 10 Hz of line broadening in addition 
to the linewidth of the basis spectra. Shift and phase pri-
ors are set to broad Gaussians centered at zero, with no 
additional constraints. Priors can be disabled (set to uni-
form) by the user. The baseline parameters are estimated in 
the initial nonlinear fitting, then kept fixed in the MCMC 
stage. More details of the optimization choices (including 
initialization, priors, and likelihood model) can be found 
in the “Optimization details” section of the Supporting 

Information. Note that these details pertain to the results 
shown in this paper. The online software documentation 
will be kept up-to-date should these optimization decisions 
change in future releases.

2.4.3 | Treatment of macromolecular signals

Macromolecular signal is observed as broad resonances in 
short TE spectra. The signal arises from amino acid residues 
of peptides. The methods described in section 2.2.2 are not 
suitable for the creation of macromolecular basis spectra: 
Macromolecular resonances are broad distributions of chem-
ical shifts arising from many different peptide molecules 
rather than a single metabolite molecule. The FSL-MRS 
toolbox, therefore, uses empirically measured macromolecu-
lar signal (eg, from metabolite T1-nulled acquisitions) as a 
basis. The complex polynomial-based baseline model is not 
designed to describe macromolecular signals.

For situations in which empirically measured macromo-
lecular signals are not available, simulated basis spectra, 
generated at known chemical shift positions, may be added 
to the set of basis spectra automatically. The details of these 
basis spectra at the time of writing are listed in Supporting 
Information Table S5) and in the online documentation. 
Users may add additional peaks or modify the defaults. In 
all cases, macromolecular basis spectra are treated identi-
cally to metabolite basis spectra, but are grouped separately 
to allow suitable separate optimization of frequency shift and 
line-broadening parameters.

2.5 | Validation of fitting

All methods in this work refer to version 1.0.5 of FSL-MRS.

2.5.1 | Simulation

Independently created simulated data were used to validate 
FSL-MRS. The simulated data were created by Malgorzata 
Marjanska, Dinesh Deelchand, and Roland Kreis for the 
ISMRM MRS Study Group’s Fitting Challenge.38 The data 
consists of 21 data sets (without artifacts) with varying 
SNR, linewidths, line shapes, metabolite concentrations, and 
macromolecule content. Briefly, data sets 0-2 have increas-
ing widths of Lorentzian line shapes; 3-5 have increasing 
widths of Gaussian line shapes; 6-9 vary the concentration of 
γ-aminobutyric acid/glutathione; 10 have no macromolecular 
content; 11-13, 14-16, 17-19, and 20 have different spectral 
SNRs (20, 30, 40, and 160, respectively). The data simulate a 
3T point-resolved spectroscopy sequence with a TE of 30 ms.

(2)

Ml,g

(

� ;�g, �g

)

=ℱ

{

ml,g (t) exp
[

−
((

�g + �2
g
t
)

+ i�g

)

t
]}
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Both water-suppressed and unsuppressed data are pro-
vided in an already preprocessed state. Basis spectra for 
17 metabolites, including a macromolecular baseline, were 
provided by the challenge authors. The metabolites included 
are alanine, ascorbate, aspartate, γ-aminobutyric acid, glu-
cose, glutamine (Gln), glutamate (Glu), glutathione, gly-
cine, myo-inositol (Ins), lactate (Lac), N-acetyl aspartate 
(NAA), N-acetyl aspartate glutamate (NAAG), phosphory-
lethanolamine, scyllo-inositol, and taurine. In the analysis, 
the following metabolites were treated together: NAA + 
NAAG, Glu + glutamine, glycerophosphocholine (GPC) +    
phosphocholine (PCh), creatine (Cr) + phosphocreatine 
(PCr), glucose + taurine, and myo-inositol + glycine. True 
concentration values for each metabolite in each data set 
were supplied by the Fitting Challenge authors in a private 
communication.

Fitting was assessed for both the Newton and MCMC 
 algorithms. The polynomial baseline was restricted to zeroth 
order, and fitting was carried out between 0.2 and 4.2 ppm.    
After fitting, scaling of the raw metabolite concentrations 
was carried out using the unsuppressed water data, and    
concentration values were scaled, accounting for provided 
tissue-volume fractions.32

Fitting performance was assessed using the mean and me-
dian percentage difference and absolute concentration differ-
ence from the true concentration values for each metabolite 
in all data sets. In addition, a summary statistic for each me-
tabolite in each spectrum was calculated from the MCMC 
estimated posterior distribution as follows:

where �[M], �[M] are the mean and SD of the fitted concentration 
of metabolite M, and [M]True is its true value. Intuitively, this 
statistic can be interpreted as “how many SDs away from the 
true value is our estimate?”

2.5.2 | Phantom

Validation of unsuppressed, water-scaled concentrations 
was carried out in a uniform aqueous phantom (SPECTRE; 

Gold Standard Phantoms, London, United Kingdom) con-
taining six metabolites (N-acetyl aspartate, Cr, Cho, Ins, 
Glu, and Lac) using a previously published stimulated 
echo acquisition mode (STEAM) sequence at 7 T.39,40 The 
sequence parameters were 11-ms TE, 32-ms mixing time 
(TM), 10-second TR, 4096 samples, and 6000-Hz band-
width. Basis spectra were created using FSL-MRS. Basis 
spectra simulation used fully described (nonideal) pulse 
shapes, gradients, and timing parameters, and were con-
ducted using a spatial resolution of 30 points in each gradi-
ent dimension. The concentrations of six metabolites was 
determined from 5-Hz exponentially line-broadened spec-
tra from the phantom. This broadening was introduced to 
permit the use of the standard in vivo Bayesian priors in 
the optimization. An additional doublet near 1.4 ppm was 
observed in the spectrum. It was established to be contami-
nant of the Lac feedstock used to create the phantom. It 
was fitted as alanine and included in the Lac concentration. 
Absolute concentrations were calculated by referencing the 
integral of the scaled creatine spectrum to an unsuppressed 
water spectrum taken to be equivalent to 55.5 M H2O. The 
T2s were estimated from water, and an average of metabo-
lite singlet linewidths and concentrations were scaled for 
metabolite and water T2 relaxation.

2.5.3 | In vivo

The FSL-MRS fitting was validated against LCModel (ver-
sion 6.3-1M)13 in three in vivo data sets. The data sets cov-
ered different brain regions, sequences and field strengths, 
and are summarized in Table 2. Data sets 1 and 2 contain 
SVS data using STEAM and SPECIAL (special inversion 
at lipid)41 sequences, respectively, and data set 3 contains 
2D multivoxel MRSI data collected using density-weighted 
CONCEPT (concentric circle echo-planar trajectories) with 
a semi-LASER volume-selection module.2 The STEAM and 
SPECIAL data were processed using fsl_mrs_proc.

All subjects in these data sets were recruited in a manner 
approved by the appropriate research ethics committee for 
each originating study (see references in Table 2).

Identical basis spectra were used in both FSL-MRS and 
LCModel. Basis spectra for data sets 1 and 2 were created 

(3)
μ[M] − [M]True

�[M]

,

T A B L E  2  Description of in vivo data sets used for validation

No. Sequence B0 (T) Subjects Voxels (brain regions)
Measured 
MM? Vendor References

1 STEAM 7 37 3 (ACC, OCC, putamen) Yes Siemens Ref. 40

2 SPECIAL 3 220 1 (PCC) Yes Siemens Ref. 42

3 CONCEPT 3 8 126 (calcarine sulcus) No Siemens Ref. 43

Abbreviations: ACC, anterior cingulate cortex; CONCEPT, concentric circle echo-planar trajectories; OCC, occipital cortex; PCC, posterior cingulate cortex; 
SPECIAL, special inversion at lipid; STEAM, stimulated echo acquisition mode.



2958 |   CLARKE Et AL.

in FSL-MRS using fully described RF pulses and gradients, 
coherence filtering, and were simulated with 30 spatial points 
in each gradient dimension. The basis spectra consisted of 19 
and 17 simulated metabolites, respectively, to match previous 
analyses. Previously measured macromolecular spectra from 
metabolite inversion-nulled sequences were included in the 
basis spectra. For data set 3, existing basis spectra (as de-
scribed in Steel et al43) were used. They were simulated in the 
simulation module of VeSPA (Versatile Simulation, Pulses 
and Analysis)44 and consist of 19 simulated metabolites. 
Macromolecular spectra were not included; instead, eight 
LCModel or FSL-MRS-simulated Gaussian macromolecule 
resonances were included in the analysis at the following po-
sitions: 0.91, 1.21, 1.43, 1.67, 1.95, 2.08, 2.25, and 3.00 ppm. 
For all data sets, default “concentration ratio priors” (also re-
ferred to as soft constraints) for metabolites were specified 
for the LCModel fit (ie, the LCModel control file parameter 
“NRATIO” was set to the default value of 12, corresponding 
to the first 12 ratio priors specified in §11.8 of the LCModel 
manual, of which numbers 8-12 are active in data sets 1 
and 2, and numbers 1-6 and 8-12 are active in data set 3). 
In LCModel, the baseline flexibility parameter DKNTMN 
was set to 0.25, slightly above the default (0.15), while in 
FSL-MRS, the baseline order was set to second order, second 
order, and fourth order for data sets 1, 2, and 3, respectively.

Data sets 1 and 2 were fitted using LCModel and FSL-
MRS (MCMC algorithm). Data set 3 was fit in LCModel and 
FSL-MRS (Newton algorithm) for speed. Highly correlated 
peaks (correlation coefficient < −0.5) were combined (eg,    
Cr + PCr, NAA + NAAG, PCh + GPC, Glu + Gln). 
Metabolite concentrations were expressed as a ratio to total 
creatine (Cr + PCr) and as molality concentrations using un-
suppressed water as an internal reference. T2 relaxation was 
accounted for, but the unsuppressed water peak was assumed 
to correspond to pure water, as anatomical images for tissue 
segmentation were not available for all data sets.

Data were compared voxel-wise for each metabolite in 
each data set using the Pearson correlation coefficient and 
Bland-Altman bias and limits of agreement.45 Bias and lim-
its of agreement were calculated in concentration units or as 
ratios to total creatine (Cr + PCr). They were summarized by 
expressing the bias as a percentage of the mean concentration 
value, and the limits of agreement as the width of the 95% 
confidence intervals expressed as a percentage of the mean 
value before averaging these values across all metabolites. In 
the comparisons, data were excluded if the estimated percent-
age Cramér–Rao lower bounds on the metabolite concentra-
tions exceeded 100% for either FSL-MRS or LCModel, or if 
the fitted value was more than four SDs from the mean value 
for that metabolite in that data set. Metrics were calculated 
for both the water-scaled concentrations (water) and me-
tabolite ratios (total creatine) for all metabolites, excluding 

the combined values (all), and for all metabolites including 
combined values but excluding those that were combined 
(combined).

3 |  RESULTS

3.1 | Output and reports

Figure 2 shows extracts of an example FSL-MRS fitting re-
port. The extracts include a summary of the fit and metabo-
lite concentrations, MCMC-estimated correlations between 
metabolite concentrations, and visualizations of the MCMC 
estimated distributions of the metabolite concentrations. 
Example fully interactive HTML reports for both fitting and 
processing are included as Supporting Information. The same 
reports can be generated from example data included in the 
FSL-MRS package.

Figure 3 shows the results of fitting an MRSI grid of vox-
els from a single-density-weighted CONCEPT from data    
set 3 (Table 2). The NIfTI format viewers such as FSLeyes can 
be used to simultaneously view anatomical images, fitted me-
tabolite concentrations, the spectral data, and the FSL-MRS 
fit. In Figure 3, the total NAA concentrations are overlaid on a 
T1-weighted image centered around the calcarine sulcus.

Fitting results may be exported in NIfTI or comma-   
separated value format, or carried forward in Python for fur-
ther analysis.

3.2 | Validation

3.2.1 | Simulation

Figure 4 summarizes the results of the validation on simu-
lated data for all metabolites in all simulated data sets. 
Detailed plots for each metabolite are included as Supporting 
Information Figure S1.

For all metabolites across all 21 data sets, the Newton 
algorithm achieved a mean (median) absolute concentration 
difference of 0.60 (0.41) mM and a mean (median) absolute 
percentage difference of 30.6% (14.9%). The MCMC algo-
rithm achieved a mean (median) absolute concentration dif-
ference of 0.60 (0.37) mM and a mean (median) absolute 
percentage difference of 35.2% (11.9%). For the five most 
prominent signals (NAA + NAAG, Cr + PCr, Glu + Gln, Ins 
+ Gly, and GPC + PCh), the MCMC algorithm had a mean 
difference of 0.48 mM or 5.4%. The mean (± SD) number of 
SDs from the true value (Equation 3) was 0.57 ± 0.43. A total 
of 98.9% of true metabolite concentration values were be-
tween the 5th and 95th percentiles of the MCMC-estimated 
posterior distributions. Uncombined choline (GPC and PCh) 



   | 2959CLARKE Et AL.

F I G U R E  4  Simulation validation. A, Comparison of FSL-MRS-measured concentrations for each MRS Fitting Challenge data set for seven 
metabolites. B, Percentage difference from true values for all metabolites for all data sets. The metabolites are sorted by mean difference. Both 
fitting algorithms (Newton [top] and Metropolis Hastings [bottom]) are shown

(A) (B)

F I G U R E  5  Phantom validation. A, Absolute concentration of fitted metabolite compared with known concentrations. Cramér–Rao lower 
bound is indicated by vertical bars. B, Percentage difference from true value. C, Data overlaid with FSL-MRS fit (each metabolite fit is shown in a 
different color). The doublet at 1.4 ppm is fitted as Ala and included with Lac

(A)

(C)

(B)
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and creatine (PCr and Cr) peaks were excluded from the cal-
culation, as described in the original Fitting Challenge results.

3.2.2 | Phantom

Figure 5 summarizes the results of the absolute concentration 
validation in phantom. The mean absolute percentage differ-
ence from the true concentration across all metabolites was 
3.39% (range −7.1% [Lac] to 1.1% [Glu]).

The single creatine basis set used was unable to simul-
taneously fit both creatine singlet peaks (CH2 at 3.93 ppm, 
CH3 at 3.03 ppm) with small residuals. The creatine singlets 
have been observed to have different T2 relaxation properties, 
which is unmodeled in these basis spectra,46 and could ac-
count for the observed difference in fit quality between peaks.

3.2.3 | In vivo

Table 3 summarizes the in vivo fitting validation correla-
tions and Bland-Altman metrics for each data set. The per-   
metabolite correlations for each of the three data sets and 
for both referencing methods are provided in Supporting 
Information Table S6.

Mean correlations between FSL-MRS and LCModel in 
all data sets achieved a correlation over 0.5, and correlations 
were similar for both water-scaled concentrations and metab-
olite ratios. Correlations for the combined metabolite group 
were higher than the uncombined “all” group, as the high 
SNR combined metabolites (Cr + PCr, PCh + GPC, Glu + 
Gln, NAA + NAAG, and Ins) achieved correlations in the 
range of 0.81-0.98 for all data sets. The highest metabolite 
correlation across all three data sets was achieved by total 
choline (0.85), the lowest was glucose (0.34), and the median 
per-metabolite correlation was 0.70. Figure 6 shows scatter 
plots for a sample of metabolites for each data set (for display 
purposes only, concentrations and ratios were normalized to 
the maximum value fitted by either LCModel or FSL-MRS). 

The scatter plots for all metabolites for each data set are in-
cluded in Supporting Information Figures S2-S4).

When averaged across all metabolites, Bland-Altman 
metrics showed a consistent bias for higher metabolite con-
centrations (mean of 14%-37%) and metabolite ratios (mean 
of 11%-24%) in FSL-MRS compared with LCModel. Bias 
was higher for water-scaled concentrations compared with 
metabolite ratios, and lower for the combined metabolites. 
Bland-Altman plots are shown for high-SNR metabolites 
(Cr + PCr, PCh + GPC, Glu + Gln, NAA + NAAG, and 
Ins) in Supporting Information Figure S5. These metabolites 
showed much lower bias when referenced to total creatine 
(Supporting Information Table S7) versus water referencing 
(Supporting Information Table S8).

4 |  DISCUSSION

The FSL-MRS toolbox is an end-to-end spectroscopy anal-
ysis package. It is designed to be used flexibly: either im-
plementing all stages of the MRS analysis pipeline or being 
used as a modular part of another pipeline. The package is 
scriptable on the command line, requiring no interaction, and 
is suitable for analysis of large data sets and for deployment 
with high-performance computing, or it can be used interac-
tively, such as for pipeline prototyping and novel analyses.

The FSL-MRS package achieves modularity by operating 
on data stored in a standard file type, NIfTI, which is already in 
use throughout neuroimaging. Existing packages for handling 
NIfTI data exist in many programming languages (eg, NiBabel 
in Python and the “image processing toolbox” in MATLAB 
[The MathWorks, Natick, MA]), enabling FSL-MRS to be in-
tegrated with other MRS analysis programs. Results generated 
in NIfTI format allow straightforward integration of MRS data 
into multicontrast analysis in existing neuroimaging toolboxes 
(eg, FSL). Both FSL-MRS and Python are open source and free 
for academic and noncommercial use.

The package includes visualization modules for generat-
ing interactive HTML reports, viewable in a wide range of 

T A B L E  3  Summary of in vivo validation—correlation and Bland-Altman statistics

Data set Scaling Correlation all
Correlation 
combined % Bias all

% Bias 
combined % LoA all

% LoA 
combined

1) 7T STEAM Water 0.69 ± 0.18 0.74 ± 0.19 22 ± 21 14 ± 12 120 ± 71 93 ± 64

tCr 0.71 ± 0.17 0.75 ± 0.18 20 ± 21 11 ± 11 108 ± 63 84 ± 64

2) 3T SPECIAL Water 0.68 ± 0.13 0.75 ± 0.12 44 ± 25 45 ± 27 414 ± 329 369 ± 345

tCr 0.77 ± 0.18 0.81 ± 0.14 34 ± 34 28 ± 33 277 ± 337 259 ± 408

3) 3T CONCEPT Water 0.53 ± 0.16 0.56 ± 0.14 37 ± 22 37 ± 20 216 ± 109 193 ± 92

tCr 0.54 ± 0.15 0.58 ± 0.13 27 ± 22 24 ± 23 162 ± 90 138 ± 96

Note: All values are presented as mean ± SD.
Abbreviations: All, all metabolites (excluding combined); combined, after combination (excludes those combined); LoA = limits of agreement (width of 95% 
confidence interval); tCr, total creatine.
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internet browsers. Visualization of data and fitting results 
can also be accomplished in NIfTI format viewers due to the 
use of standard data types. Visualization of data remains im-
portant, while fully automatic quality control of MRS data 
remains not widespread.20

Validation of the FSL-MRS fitting module was carried 
out on simulation, phantom, and in vivo data. Validation on 
the simulated data showed low absolute concentration errors 
except in those data sets with low spectral SNRs (20 and 30) 
and in peaks with low SNR and high correlation with neigh-
bors (eg, GABA). MCMC fitting of metabolites with low 
concentrations generates skewed distributions that are not 
well described with a single point statistic (the mean value), 
which may contribute to the marginally better performance of 
the Newton algorithm. Phantom validation indicated that the 
package correctly implements calculation of absolute con-
centrations using scaling to unsuppressed water in the case 
of pure water.

In in vivo data, the validation was against LCModel, an 
established and widely used fitting program. Bias toward 
higher metabolite ratios in FSL-MRS was observed for water-   
scaled concentrations and, to a lesser extent, for relative 
metabolite ratios. The latter might arise from FSL-MRS 
not implementing priors between relative metabolite con-
centrations, a default setting in LCModel that was enabled 
in this analysis. Soft constraints in LCModel restrict certain 
metabolite concentration ratios (ratios of low-SNR metab-
olites to a weighted average of NAA, total creatine, and 
total choline) to be within a certain normally distributed 
range. The larger differences in water-scaled metabolite 
concentrations are likely due to the different implementa-
tions of flexible baselines in the two packages. LCModel 

and other programs47,48 implement a spline-based baseline; 
in this work we chose a complex polynomial implemen-
tation. The inclusion of a zeroth-order term allows a uni-
form vertical shift in baseline across all frequencies, not 
typically possible with spline baselines. Across all voxels 
in the MRSI data set, negative correlations were observed 
between absolute concentrations and the zeroth-order poly-
nomial baseline parameters. A baseline below zero will 
increase the reference peak’s absolute integral and result 
in a large ratio when compared with the integral of unsup-
pressed water. The effect of the precise implementation of 
flexible baselines on metabolite concentrations in fitting 
packages is complex,49,50 with dependence on acquisition, 
description of macromolecules in basis spectra, and opti-
mization algorithm. The FSL-MRS’s implementation of a 
complex polynomial baseline does not offer a solution to 
this complexity, but the implementation is simple to under-
stand and implement, is unlikely to cause overfitting, and is 
only parametrized by 2n nuisance parameters for an order-n 
baseline. If enabled, the MCMC algorithm enables the user 
to calculate the covariance of the baseline parameters with 
the metabolite concentrations. An example MCMC cor-
relation matrix of a single spectrum from data set 1 (7T 
STEAM), including baseline parameters, shows that base-
line parameters only correlate strongly with the macromol-
ecule concentration (Supporting Information Figure S6). 
Efforts to widely measure and account for differences in 
fitting software51 will be essential to provide program qual-
ity assurance and allow for meaningful use of pooled data 
analyzed using different tools.

Fitting using the MCMC algorithm allows the user to gen-
erate the full posterior distribution for each fitted parameter, 

F I G U R E  6  Summary of in vivo validation. Correlation plots of a selected group of metabolites for each validation data set. Solely for display 
purposes, ratios to unsuppressed water and total creatine (Cr + PCr) are normalized to the maximum value fitted by either FSL-MRS or LCModel. 
Correlation plots for all metabolites are shown in the Supporting Information
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including metabolite concentrations. This information is es-
sential to understanding the uncertainties inherent in the es-
timation of the parameters. It also offers the opportunity to 
carry forward this information into subsequent study analy-
sis, reducing the need for arbitrary quality cutoffs to be used. 
However, fitting using the MCMC algorithm is inherently 
slower than methods that provide only point estimates, taking 
tens of seconds rather than seconds to compute the results 
for each voxel. It may be possible to achieve the estimation 
of the posterior distributions in the time frame of a few sec-
onds using a variational inference optimizer, which is under 
development.52

Operation of the package still requires the user to provide 
expert knowledge in two places: data conversion and gener-
ation of basis spectra. At the data-conversion stage, the user 
must either use a file format understood by spec2nii and must 
interpret the structure of the data within that format, or pro-
vide a full conversion, including orientation information, for 
their own data format. Generating correct basis spectra re-
quires the user to provide an accurate description of the RF 
pulses, timings, and gradients in the localization module of 
their sequence. Documentation for the package has been cre-
ated to mitigate difficulties in these stages. The fsl_mrs SVS 
fitting can interpret a select few other formats (LCModel 
“.RAW” and jMRUI “.txt”).

The FSL-MRS MCMC fitting module accepts an arbitrary 
forward model. In future work we intend to use this frame-
work to investigate the advantages of fitting multiple spectra 
simultaneously with a specialist model (such as for diffusion-   
weighted, edited, or functional MRS). The FSL-MRS pack-
age is under continued development and refinement; online 
documentation provides the latest and up-to-date information 
on the package. Currently, the package is optimized for 3T 
and 7T in vivo human 1H-MRS data, fitting routines, basis 
spectra, and prior knowledge, which need to be suitably mod-
ified for a greater range of data.

5 |  CONCLUSIONS

We have presented a new end-to-end spectroscopy process-
ing package that incorporates Bayesian fitting of spectra. 
The package is open-source, modular, and freely available. 
This work has provided validation of the package by simu-
lation, in phantom, and in three in vivo data sets. The com-
plete package is available for download at git.fmrib.ox.ac.
uk/fsl/fsl_mrs, through the open-source package manage-
ment system Conda (Continuum Analytics, Austin, TX), 
and will be available as part of FSL (fsl.fmrib.ox.ac.uk).
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