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Neuroscience has seen substantial development in non-invasive methods
available for investigating the living human brain. However, these tools
are limited to coarse macroscopic measures of neural activity that aggregate
the diverse responses of thousands of cells. To access neural activity at the
cellular and circuit level, researchers instead rely on invasive recordings
in animals. Recent advances in invasive methods now permit large-scale
recording and circuit-level manipulations with exquisite spatio-temporal
precision. Yet, there has been limited progress in relating these microcircuit
measures to complex cognition and behaviour observed in humans.
Contemporary neuroscience thus faces an explanatory gap between
macroscopic descriptions of the human brain and microscopic descriptions
in animal models. To close the explanatory gap, we propose adopting a
cross-species approach. Despite dramatic differences in the size of mamma-
lian brains, this approach is broadly justified by preserved homology. Here,
we outline a three-armed approach for effective cross-species investigation
that highlights the need to translate different measures of neural activity
into a common space. We discuss how a cross-species approach has
the potential to transform basic neuroscience while also benefiting
neuropsychiatric drug development where clinical translation has, to date,
seen minimal success.

This article is part of the theme issue ‘Key relationships between
non-invasive functional neuroimaging and the underlying neuronal activity’.
1. Introduction: the explanatory gap
Measuring neural activity in the brain and relating it to complex behaviour
remains a central challenge for contemporary neuroscience. In humans, this
venture is limited by the non-invasive tools and techniques currently available.
Magnetic resonance imaging (MRI) and magnetoencephalography (MEG), for
example, are restricted to coarse measures of neural activity that aggregate
the diverse responses of thousands of neurons over space and time. These
tools provide macroscopic measures of cognitive processing that relate
to human behaviour but fail to provide insight into neural activity at the micro-
circuit, cellular and synaptic levels. To investigate neural activity at the
microscopic level, to reveal the division of labour across cell types in their
host circuit and assess causality, we instead rely on invasive procedures in
animal models. In recent years, we have seen the development of new recording
techniques that can simultaneously monitor activity from thousands of cells
across numerous brain regions. Furthermore, the expansion in the use of genetic
tools in rodents now permits manipulation of neural activity at unprecedented
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spatio-temporal resolution. Yet, in contrast with research
carried out in humans, these approaches rarely characterize
activity at the macroscopic level and interpreting animal
behaviour is challenging. This makes it difficult to establish
how neural mechanisms recorded and manipulated in
animal models relate to higher-order cognition.

Owing to the distinct training requirements for neuroscien-
tists conducting research in humans or animal models,
laboratories typically employ a species-specific approach
where research is focused on only one species. By and large,
this centres research on either the macroscopic or microscopic
level, leaving an explanatory gap between genetic, (sub)cellu-
lar and circuit-level mechanisms on the one hand, and
higher-order cognition on the other. The adverse implications
of this explanatory gap are made evident by high failure
rates observed in clinical trials, where neuropsychiatric drugs
have one of the highest failure rates at Phase III [1]. With an
ageing global population, neuropsychiatric disease presents
an increasing social and economic burden that the World
Health Organization (WHO) describe as the major public
health problem of all high-income countries [2]. There is, there-
fore, an urgent need to develop a more integrated approach to
neuroscientific research, one that seeks to close the explanatory
gap between human and animal research.

Here, we explore the view that investing in an interdisci-
plinary, cross-species approach will provide a means to
integrate different levels of neuroscientific description,
paving the way for a comprehensive understanding of how
the mammalian brain serves adaptive behaviour. We outline
a three-armed approach for effective cross-species investi-
gation. First, to provide appropriate interpretation of non-
invasive methods, different tools (i.e. both non-invasive and
invasive methods) need to be employed within the same
species. Second, to provide a direct means to relate signals
recorded across different species, the same tools need to be
employed across multiple species. Third, to obtain comp-
lementary datasets that take advantage of the best tools
available in each species, different tools should be employed
across different species using a comparative approach. Thus,
by complementing current approaches that provide detailed
descriptions of neural processing within one species, or
even within one brain region, a cross-species approach may
uncover a set of general principles that describe the neural
basis of cognition and behaviour in terms of cellular and
circuit-level mechanisms. Moreover, adopting a cross-species
approach may harness the translational value of fundamental
neuroscience to develop effective neuropsychiatric treatment.
2. What can we measure in humans?
Each tool used for measuring neural activity has its own
advantages and limitations. Of the non-invasive techniques
available for measuring brain activity, electroencephalogram
(EEG), MEG and functional MRI (fMRI) all provide readouts
of activity at the macroscopic level.

The temporal resolution of EEG and MEG out-performs
that of fMRI, and while EEG has poor spatial resolution,
MEG can match the spatial resolution of fMRI in cortical
brain regions. MEG uses highly sensitive magnetometers to
measure the weak magnetic fields generated by electrical
activity of neuronal populations within the brain [3]. The
recorded signal is thought to reflect fluctuations in membrane
potential across many neurons, with the amplitude depend-
ing upon the number of active neurons, their temporal
synchrony and spatial alignment [4]. The temporal resolution
(on the order of milliseconds) is sufficiently high to probe
oscillatory neuronal dynamics that directly map to the local
field potential measured using invasive electrophysiology in
animal models. Moreover, the evoked potential can be used
to study language and auditory processing [5,6], while
rapid changes in the spectral amplitude of oscillations over
time can be used to decode neuronal representations during
working memory maintenance [7] and memory recall [8].

Conventional MEG uses superconducting quantum
interference devices (SQUID). However, these sensors require
cryogenic cooling together with thermal insulation, which
limits the proximity between the SQUID and the subject’s
scalp. Recent developments have introduced new scalp-
mounted devices that operate at room temperature using
optically pumped magnetometers (OPMs) [9–12]. These
new sensors offer a significant advantage over SQUIDs as
they can be placed directly on the scalp, increasing the
magnitude of the measured signal [13] but also permitting
signal acquisition as the participant moves [10].

fMRI, on the other hand, is more widely available than
MEG and provides a means to image the entire brain at
relatively high spatial resolution. fMRI has the advantage of
being readily compared with other imaging modalities
that provide insight into brain anatomy, connectivity and
chemical composition, or combined with causal interventions
such as non-invasive brain stimulation. However, its
interpretation is not straightforward: the blood oxygen level
dependent (BOLD) signal measured using fMRI provides
only an indirect measure of neural activity and the relation-
ship between neural activity and the BOLD signal is
complex [14,15]. Remarkably, despite multiple opportunities
for nonlinearity (for example, the relationship from stimulus
to neural activity; and the relationship between neural
activity and the BOLD signal), evidence suggests the relation-
ship between neural firing rate and the BOLD signal is
approximately linear, at least over a limited range [16–22].
This approximately linear relationship underpins the use of
fMRI as an effective tool to infer neural activity using a
non-invasive method.

While fMRI boasts the highest spatial resolution of
available non-invasive methods, even submillimetre ultra-
high-field fMRI includes tens of thousands of neurons per
voxel. Researchers have, therefore, developed methodological
approaches to map the coarse spatial organization of
neurons. For example, fMRI can be used to measure retinoto-
pic [23–25], tonotopic [26,27] and somatotopic [25,28] maps
that resemble topographic maps measured using invasive
methods in animal models. Topographies that span connec-
tions (connectopies) may also be used to decipher the
overarching principles of organization inherent to different
brain regions in different individuals [29,30]. Moreover,
these methodological approaches have clinical relevance,
where somatotopic mapping in the primary somatosensory
cortex can be used to measure the persistent digit topography
of amputees’ missing hand [31], while retinotopic mapping
in V1 can be used to characterize the relative plasticity and
stability of visual cortex in patients with congenital visual
pathway disorders [32,33].

The improved spatial resolution afforded by an increase
in signal-to-noise ratio at high-field strength has further
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opened up the possibility for columnar fMRI [34,35] and
layer-specific (laminar) fMRI [36–39]. In contrast with
traditional fMRI, which captures the amalgamation of both
feed-forward and feedback responses [40], submillimetre
resolution fMRI can begin to dissociate the functional role
of feed-forward and feedback projections that activate differ-
ent cell layers within the cortex. For example, in human V1,
consistent with the known anatomy [41,42], laminar fMRI
shows that responses attributed to top-down feedback selec-
tively activate deep cortical layers, such as the representation
of an occluded part of an object or an illusory shape [43,44].
However, despite providing a unique opportunity to measure
cortical organization in vivo at a resolution previously restricted
to invasive methods in animals [45–50], laminar fMRI is
affected by sequence-dependent and depth-dependent
draining artefacts attributed to uneven vascular architecture
[39,51]. Reliable deployment of high-field fMRI, therefore,
requires a detailed understanding of neurovascular coupling.

Alongside improvements in spatial resolution, recent
advances in fast scanning techniques have pushed the tem-
poral resolution of fMRI. These include multiband and
simultaneous multi-slice sequences that achieve subsecond
sampling [52–54]. The temporal resolution of fMRI, however,
remains fundamentally limited by the slow nature of the
haemodynamic response function (HRF), which peaks at
approximately 5 s after stimulation, and is followed by an
undershoot that lasts approximately 30 s [55]. Overlap between
successive events can be explicitly modelled under the
assumption that the responses add in a linear fashion [56,57].
However, when the inter-stimulus interval is below about
1.5 s, ‘saturation’ in the mapping from neural activity to the
BOLD signal introduces nonlinearities [58,59] that cannot
easily be accounted for using the standard analysis pipelines.

To measure neural events at a subsecond resolution
requires alternative analytical approaches. Recent fMRI inves-
tigations demonstrate that relatively rapid neural sequences
(on the order of a few hundred milliseconds) may be decoded
using multivariate decoding techniques that assess subtle
differences in the activity patterns across voxels, measured
across consecutive repetition times (TRs) [60]. Simulations
further suggest this approach is, in principle, sensitive to
sequential neural events that occur on the order of 100 ms
[60]. The ability to decode these relatively rapid neural
sequences using fMRI can be understood as the consequence
of temporal blurring of neural events by the HRF. Two neural
events within the same multi-step sequence will affect the
BOLD signal over several seconds, thus being represented
by consecutive TRs. During periods of rest or sleep, this
approach, along with recent developments using MEG
[7,8,61,62], may be used to measure sequential activity pat-
terns in the hippocampus, analogous to ‘replay’ spiking
activity previously reported using invasive hippocampal
electrophysiological recording in rodents [63–65]. Hippocam-
pal ‘replay’ involves accelerated reactivation of specific
spiking activity patterns previously observed during the
wake/active state and is thought to play a key role in
memory consolidation and planning [66–68]. Using non-
invasive, whole-brain methods to measure relatively rapid
activity patterns in humans may provide insight into how
hippocampal ‘replay’ influences higher-order cognition and
activity in other brain regions [60,62].

But despite these improvements in spatio-temporal resol-
ution and analytical approaches, fMRI and other non-invasive
methods, such as MEG, continue to provide only limited
insight into cellular and synaptic processes that characterize
neural activity at the microcircuit level. Therefore, while
ongoing research is continuing to deepen our understanding
of the relationship between specific neuronal subtypes
and different vascular variables that affect the BOLD signal
[69–71], certain neurophysiological processes simply cannot
be measured non-invasively. Even with a dramatic advance
in the spatio-temporal resolution of non-invasive methods,
in vivo non-invasive recordings of the human brain will at
best provide an index or indirect measure for activity at the sub-
voxel resolution, as demonstrated by innovative approaches
showing insight into neural codes [72], temporal sequences
[60–62], synaptic plasticity [31,73,74] and excitatory and
inhibitory processes [74–76]. The validity of these measures,
the discovery of new principles of microcircuit organisation
and the precise contribution made by different cell types
to neural computation will continue to rely on invasive
recordings in animal models.
3. What can we measure in animal models?
Except in unusual circumstances, such as during electrocorti-
cographic and depth recordings in epilepsy and deep brain
stimulation patients [77,78], ethical restrictions limit the
study of the human brain to non-invasive methods. Although
this may change in the near future, with the advent of
implantable bidirectional devices that piggy-back chronic
neurophysiological recording capabilities on the delivery of
chronic therapeutic stimulation, such opportunities will
remain confined to selected conditions or disease states. To
monitor and manipulate physiological neural activity at the
cellular, synaptic and circuit level, we instead rely on invasive
methods in animal models. Recent technological developments
in invasive methods now permit large-scale and long-term
recording in animal models, alongside manipulation of neural
activity at unprecedented spatio-temporal resolution.

Invasive methods available for recording neural activity
during behaviour include in vivo electrophysiology that has
temporal resolution sufficient to resolve individual action
potentials, the fundamental currency of neural information.
The micro-machined silicon probes developed in recent
years, such as neuropixels [79], can be used to simultaneously
record activity from thousands of neurons across numerous
brain regions [80], thus representing an important advance
from traditional recording techniques. The introduction of
polymer electrode-based systems further supports stable
single-unit recording with longevity extending to five
months or more [81]. When coupled with automated spike
sorting methods [82,83] and sophisticated analysis pipelines,
large-scale electrophysiology can begin to reveal the organiz-
ing principles, distribution and character of neural activity
supporting behaviourally relevant variables [84]. Furthermore,
the relationship between neuronal spiking and the local field
potential can be used to reveal how synchronized networks
and particular oscillatory patterns support effective neuronal
communication during well-defined behaviours [85,86].

While distinct cell types, including excitatory and inhibi-
tory neurons, may be deduced from electrophysiological
features, complementary methods must typically be
employed to cross-validate identified neuronal types [87–91].
Notably, recent advances in genetic tools afford the necessary



royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

376:20190633

4
specificity and precision to relate the function of particular
neuronal subtypes to well-defined behaviour in rodents
[92]. When combined with highly sensitive optical probes
used for imaging intracellular calcium (a proxy for spiking
activity) [93], genetic tools can also be employed to dissociate
distinct interneuron subtypes within neural circuits [94,95].
In the worm [96], zebrafish [96–98] and Drosophila [99],
genetically encoded calcium indicators permit whole-brain
imaging, a powerful approach for establishing the relation-
ship between brain-wide circuits and behaviour. However,
interpreting neuronal calcium signalling is not straightfor-
ward [93]. While spiking activity in neurons triggers large
changes in the concentration of cytoplasmic-free calcium,
the resulting intracellular calcium dynamics are slow and
derive from multiple sources that sum nonlinearly. Despite
iterative improvement in the sensitivity and kinetics of
calcium indicators, it remains highly challenging to decon-
volve single action potentials from calcium transients.
Instead, the ongoing development of membrane voltage indi-
cators promises a tool that provides both genetic targeting
and temporal precision with subthreshold sensitivity [100].

Particularly in small animals, genetic tools further sup-
port causal manipulations, such as optogenetics where
light is used to control neural activity with cell-type and
millisecond precision [101,102]. The specificity and breadth
of optogenetic methods support both activation and inacti-
vation experiments. When combined with well-defined
behavioural tasks, these methods provide a toolkit to relate
physiological mechanisms to behaviour.

These readouts and manipulations of microcircuit-level
activity go hand-in-hand with an understanding of structural
neuroanatomy where axonal tracing in animal models still
provides what is often termed the ‘gold-standard’. Such
invasive tools are currently the only methods available for
identifying the direction of a connection and the presence
of synapses. While non-invasive anatomical methods, such as
diffusion-weighted MRI-based tractography, have the advan-
tage of providing in vivo reconstructions and visualization of
the three-dimensional architecture of white matter tracts, they
do not trace axons directly, and variables such as crossing
fibres and fibre geometry, among others, influence the accuracy
of the results. Therefore, results need to be carefully interpreted
and often validated in animal models when possible.

Invasive methods in animal models are, however, not
without their own limitations. Hubel & Wiesel [103], who
pioneered some of the earliest use of electrophysiology in
the late 1950s, recognized the drawbacks of their approach:
‘to attack such a three-dimensional problem with a one-
dimensional weapon is a dismaying exercise in tedium, like
trying to cut the back lawn with a pair of nail scissors’.
Despite recent developments, these criticisms do, in part,
still ring true: electrophysiology can be biased towards the
large spikes discharged by a subset of neurons, leading to
under-sampling of smaller spikes discharged by other
neuron types. Moreover, electrophysiology typically samples
a subset of neurons at a restricted location, potentially
overlooking the macroscopic structure of neural activity and
system-wide dynamics. And even when large numbers of
neurons are recorded simultaneously, interpreting the
neural activity is no mean feat, somewhat analogous to
trying to decipher the ‘operation and function of an orchestra,
without knowing much about the role of strings, woodwinds,
brass or percussion instruments’ [104].
The rapidly expanding use of optical and genetic tools
available in rodents has also been met by growing recog-
nition of the pros and cons associated with these methods.
For instance, the slow kinetics of calcium imaging complicate
interpretation of the signal [93], and voltage indicators cur-
rently have limited brightness and photostability to support
in vivo imaging during ongoing behaviour. Optogenetic stimu-
lation risks driving neuronal responses outside their typical
physiological range, causing bulk activation and the potential
for unnatural plasticity; and the resulting behavioural effects
may reflect the function of a manipulated circuit, as opposed
to a loss- or gain-of-function manipulation.

However, perhaps the most pressing concern is simply that
these contemporary invasive tools are predominantly employed
in rodents. Rodents are used as model organisms that allow
comprehensive measurement and manipulation, but research
is restricted to the repertoire of rodent behaviours that are
easy to interpret. This may in part be overcome by improved
characterization and quantification of ethological rodent behav-
iour using more precise and automated tools [105,106].
However, difficulties will persist in relating rodent behaviour
to higher-level cognition observed in humans. While beha-
viours in non-human primates are arguably more closely
aligned with those in the human, non-human primate research
will always be limited by numbers. These limitations of invasive
research in animal models have implications for fundamental
and translational neuroscientific research. The stark conse-
quence of these shortcomings is perhaps most evident in
psychiatric research, where the full complexity of disorders
can rarely, if ever, be modelled (see §10).
4. Can a cross-species approach bridge the
macroscopic–microscopic divide?

Having examined current state-of-the-art tools available for
investigating neural activity in both humans and animals,
the explanatory gap between non-invasive and invasive
tools is evident and highlights the limitation of a species-
specific approach. On the one hand, non-invasive methods
available in humans can relate measures of macroscopic
activity to complex cognition and behaviour. Yet, these
non-invasive techniques are limited by poor spatial or
temporal resolution, and, at least for fMRI, they provide an
indirect measure of neural activity. On the other hand, inva-
sive methods available in animal models can measure neural
activity and synaptic changes at high spatio-temporal resol-
ution, but often limit investigation to a single neural circuit
or brain region and behaviours that are easy to interpret.
Microscopic measures in animal models therefore fall short of
providing insight into distributed computations that underlie
the diverse and complex repertoire of human behaviour.

Can we use a cross-species approach to bridge the
macroscopic–microscopic divide? After all, different species
have different lifestyles, occupy and adapt to different ecologi-
cal niches, and are exposed to different evolutionary
pressures. While these different evolutionary pressures may in
part account for differences between species [107,108], overall
we see that preserved structure and function of neural circuits
and the encoded sequences within the human genome are
highly overlapping with that of other mammals (99% overlap
between human and mouse, for example) [109,110]. More sub-
stantial differences are observed in gene expression at the
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cellular level (79% overlap between humans and mice,
for example), but species-specific expression differences
appear to have discrete, non-widespread expression patterns
that are considered to reflect subtle rather than global
changes [111]. Thus, despite important differences, the general
organization of neural circuits within the mammalian brain
appears conserved.

At the structural level, early work by Brodmann [112] and
others revealed the cytoarchitectural organization of cortex
across species. Researchers have since shown that while
some species-to-species variability in neuronal subtypes
does exist [113–115], by and large, the same neuronal
subtypes, defined by molecular expression profiles and den-
dritic patterns, can be found in the same brain regions of
humans and other mammals [116,117]. For example, in both
humans and rats, axo-axonic GABAergic cells show equival-
ent innervation patterns and initiate a stereotyped series of
synaptic events in cortical networks [118]. The interaction
between different neuronal subtypes together forms the
basic microcircuit that appears to have been replicated several
thousand times in larger mammalian brains [108]. Therefore,
despite 17 000-fold variability in brain volume leading to sub-
stantial differences in the number of brain areas across the
mammalian order [119–121], the general principles of organ-
ization, defined by neuronal subtypes and microcircuit
structure, appear broadly conserved. Arguably, this means
that even brain regions or neural circuits that are uniquely
human may be understood using a set of general principles
that derive from animal models [122].

Similarly at a functional level, resting-state fMRI in pri-
mates reveals a remarkably conserved profile for functional
connectivity across large-scale networks such as the default
mode network (macaque: [123]; chimpanzee: [124]), with
similar connectivity hubs across species [125]. In both
humans and non-human primates, similar functional
responses have also been observed during visual processing
[126], tool use [127], sequence processing [128] and
decision-making [129]. Furthermore, in the hippocampus, a
brain region situated towards the apex of the visual proces-
sing hierarchy [130], neurons show equivalent functional
significance across mammals. Indeed, ‘place cells’—neurons
that are activated when animals pass through a specific
location in the environment have been identified in the hip-
pocampus in rats [131], mice [132], chinchillas [133], bats
[134], monkeys [135] and humans [77] (figure 1). In addition,
in all tested species, place cells in the CA1 region of the hip-
pocampus are reported to be pyramidal cells that have
characteristic bursting activity with peak firing rates residing
within a similar range [137]. The significance of these cross-
species comparisons is that place cells are reported to consti-
tute a cognitive map that aids high-level cognitive function,
including navigation, planning and memory [138].

Thus, as we move to larger brains, compensatory mech-
anisms appear to preserve brain-size-invariant neural
dynamics and computation. Signal delay caused by increas-
ing transmission distance is offset by increasing axon size
and myelination, which increase conduction velocity and
reduce signal attenuation. A minority of disproportionately
large axons further help preserve transmission time while
minimizing the cost of increasing brain volume [139,140].
Across mammals, these compensatory mechanisms appear
to preserve neural codes, temporal dynamics and the core
function of neural circuits.
5. Developing a cross-species approach
Preserved homology of neural circuits across mammals
underpins the rationale for conducting investigations across
multiple species. But even when investigating aspects of
cognition that are considered to have uniquely human
components, such as language, a comparative cross-species
approach (e.g. between humans and non-human primates)
can reveal structural and functional specialization [141].
Thus, a cross-species approach may be used to bridge the
gap between human neuroimaging and invasive animal
research. Here, we outline three complementary approaches
for efficacious cross-species investigation (figure 2).

(a) Approach 1
Different tools need to be simultaneously employed within
the same species to provide appropriate interpretation of
non-invasive methods. With regard to fMRI, the relationship
between the BOLD signal and neural activity can be charac-
terized in animal models by simultaneous fMRI and
electrophysiological recordings [142–144], or by optical ima-
ging of both neural activity and haemodynamics [145]. By
continuing to combine measures of the BOLD signal with
invasive recording, Approach 1 will establish a deeper under-
standing of the relationship between the BOLD signal and the
underlying neural activity. Since the relative merit of this
approach and interpretation of the BOLD signal have been
detailed elsewhere [14,15,146], in this opinion piece, we will
only consider Approach 1 in passing.

(b) Approach 2
The same tools need to be employed across multiple species,
to allow direct comparisons to be drawn between different
species. For example, to reveal functional properties that
generalize across species, MRI may be used to perform
comparative investigations (see §6). Alternatively, electro-
physiology may be employed across different animal
models and compared with pre-operative recordings in epi-
lepsy patients. Functional comparisons can be established
by matching behavioural assays (see §7).

(c) Approach 3
The third approach takes advantage of behavioural assays
that can be implemented across species but uses the best
tools available in each species to characterize the macroscopic
and microscopic levels in tandem. To compare complemen-
tary datasets, this approach requires quantitative analytical
approaches that translate different measures of neural activity
into a common space (see §§§7,8,9). In this manner, data
obtained from different recording modalities can be directly
compared. This third approach can thus facilitate an interplay
between human and animal research that goes beyond the
sum of its parts.
6. Cross-species magnetic resonance imaging
The same tools need to be employed across multiple
species (Approach 2). Cross-species MRI seeks to do exactly
this, using non-invasive MRI to quantify neural structure
and function in vivo across both animals and humans.
First, comparable signals can be obtained across species,
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providing a means to assess structural and functional
homology while also identifying brain regions and connec-
tions unique to a particular species [147–150]. Second,
cross-species MRI can be combined with invasive methods
available in animal models. Therefore, histology, optogene-
tic manipulations and other invasive methods can be
carried out after or in combination with MRI assessments.
Although potential limitations must be acknowledged [151],
cross-species MRI has the potential to bridge the divide
between aggregate measures of neural activity acquired
with imaging and microcircuit-level activity measured with
invasive methods.

At a structural level, diffusion-weighted MRI-based
tractography can be used to provide direct anatomical
comparisons across species, with validation using tract-
tracing techniques and histology. For example, direct
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Figure 2. A three-armed approach for efficacious cross-species research. To bridge the explanatory gap between macro- and microcircuit measures of neural activity,
we propose a three-armed cross-species approach. First, different tools need to be simultaneously employed within the same species to aid appropriate interpretation
of non-invasive methods (Approach 1). Second, the same tools need to be employed across different species to perform comparative investigations (Approach 2).
Third, different tools should be employed in parallel across different species, to provide state-of-the-art measures of neural activity at both a macro- and microcircuit
level, while employing methods to translate neural signatures across different recording modalities (Approach 3).
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structural comparisons can be made between human and
macaque cortex using surface-based registration to align a
few known homologous cortical landmarks. Evolutionary
expansion maps generated using this approach can reveal
areas in the human brain that have disproportionally
expanded [152]. Alternatively, connectivity blueprints can be
generated for each brain region (or grey matter vertex), and
for each species. Within a common space, these connectivity
profiles can then be compared to identify common principles
and homologies between species, while also revealing unique
specializations [153]. For example, when comparing the
human brain with the macaque and chimpanzee brain, a
large expansion can be observed in the arcuate fasciculus that
mediates frontal–temporal connections, suggesting evolution-
ary divergence since our most recent common ancestor
6 million years ago [120,154,155]. Arguably, these comparative
investigations reveal evolutionary relationships between
species, while also delineating key differences that obviate the
possibility for direct comparison [153].

Perhaps the real versatility of cross-species MRI becomes
apparent when considering small-animal MRI. Small-animal
MRI, in mice and rats, is complicated by the small size of the
rodent brain (approx. 0.4 g in mouse versus approx. 1.4 kg
in humans). Yet, recent developments in cryo-coils [156],
optimized imaging sequences and ultra-high-field imaging
ensure sufficient signal-to-noise for submillimetre spatial
resolution. Small-animal MRI can, therefore, support reliable
whole-brain fMRI in rodents and can be coupled with inva-
sive methods that characterize neural circuits and establish
causal specificity. Particularly in mice, this opens up an
opportunity to take advantage of transgenic lines and geneti-
cally engineered mouse models that can be combined with
multiple invasive methods. Small-animal MRI, therefore, pro-
vides a unique opportunity to characterize microcircuits
while concomitantly acquiring whole-brain signatures of
neural activity during behaviour.

Small-animal MRI is predominantly carried out in anaes-
thetized or sedated animals, primarily owing to the
requirement to hold the head in the same position during
imaging. This makes small-animal MRI highly suitable for
studies investigating structural changes throughout develop-
ment and ageing and in response to interventions [157].
Long-lasting structural changes attributed to learning can be
observed via regional changes in brain volume [158,159], or
diffusion properties [160–162], even after only 1 day of learn-
ing [163]. With the introduction of quantitative imaging and
microstructural modelling approaches, structural imaging is
moving closer to accurate estimates of neural morphometry
[164–166].

Under anaesthesia, small-animal fMRI has been acquired
during stimulus-evoked paradigms to successfully map
layer-specific BOLD activation [167], whole-brain circuits
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[168] and monitor recovery and interventions following
experimental stroke models [169]. However, given the techni-
cal challenge associated with these approaches, small-animal
fMRI is more commonly used to probe whole-brain func-
tional connectivity (resting-state fMRI) [170]. Although
small-animal resting-state fMRI is subject to variability in pre-
clinical equipment, animal handling protocols and sedation
regimes, recent multi-centre comparisons show how standar-
dized pre-processing pipelines and analytical steps can
promote reproducibility and facilitate meta-analysis [151].
When these standardized pipelines are applied to multi-site
mouse resting-state fMRI, spatially defined motifs and local
connectivity show a high degree of convergence across
datasets [171]. When implemented across species, resting-
state fMRI provides a tool to reveal macroscopic organization
common to the mammalian brain, by permitting comparison
between functional connectivity fingerprints in rodents,
non-human primates and humans [172].

Moving beyond tools that facilitate direct comparison
between animals and humans, small-animal imaging has
seen recent advances in multi-modal imaging where fMRI
is combined with invasive neurophysiological measures
(Approach 1). For example, multi-modal imaging can reveal
linear fits between neuronal and capillary responses
(two photon microscopy) and mesoscopic responses detected
with BOLD fMRI, demonstrating that even low levels of
neuronal activation can trigger elevations in blood flow
[173]. Combined fMRI with optogenetically driven neuronal
calcium signals can further be used to identify neurovascular
coupling patterns at the level of a single vessel [174]. For
example, optic fibre-based calcium recordings of neural
populations local to cortex and thalamus can now be com-
bined with whole-brain BOLD fMRI to relate slow-wave
oscillations to the BOLD signal [175]. Together, these studies
illustrate how multi-modal imaging can bridge the explana-
tory gap between different levels of neuroscientific inquiry
and establish a more detailed understanding of the BOLD
signal and its relationships with neurophysiology.

However, it is important to recognize the limitation of
studies that rely on imaging animals under anaesthesia.
Anaesthetics introduce known confounds to fMRI measure-
ments. First, anaesthetized animals have lower baseline
levels of neural spiking activity and show reduced BOLD
signal intensity [176]. Second, anaesthetics affect cerebral
blood flow and vasodilation, thus modulating the BOLD con-
trast itself [177]. Proper interpretation of the BOLD signal
when using anaesthesia is further complicated by variability
in vasodilation caused by different levels of anaesthesia, the
use of different anaesthetics across studies [170] and different
responses to anaesthesia across species. To separate the
neural and vascular effects of anaesthesia on the BOLD
signal, parallel acquisition of fMRI and calcium imaging
can be implemented [81], highlighting how both the effect
of anaesthetics and CO2 on the BOLD signal must be con-
sidered [178]. Despite these confounding effects, anaesthetic
protocols are being identified that deliver long-lasting
sedation with robust and time-invariant stimulus-evoked
BOLD responses. For example, the administration protocol
for the anaesthetic medetomidine has been clearly defined
in rats, thus providing a suitable reference for protocols that
require stable stimulus-evoked and resting-state fMRI in
this species [179].
The alternative to using anaesthetics involves implement-
ing imaging during awake behaviour but minimizing animal
movement, and potential distress presents a significant
challenge. Despite these technical difficulties, fMRI in
awake behaving rodents has recently been demonstrated
in a Pavlovian fear conditioning paradigm in rats [180] and
in an inhibitory control task in mice [181].

The versatility of small-animal imaging has further led to
widespread use of preclinical imaging as a test bed for
pharmaceutical research. For example, preclinical imaging
is now being used for high-throughput phenotyping of
transgenic animals, profiling of new disease models,
pharmacological and pharmacokinetic analysis for target
identification, safety testing and evaluation of drug effects
on host anatomy, function and metabolism [182,183]. The
non-invasive nature of preclinical imaging renders longitudi-
nal studies possible, along with experimental designs that use
each animal as their own control. As most preclinical imaging
techniques are analogous to those available in the clinical set-
ting, results have the potential to be translated into humans
[184,185]. Thus, this approach seeks to obtain non-invasive
markers of neural activity that can be readily measured in
human health and disease.
7. Cross-species behavioural assays
Although structural and functional homology across the
mammalian brain broadly justifies adopting a cross-species
approach, neural representations that support cognition
cannot be measured and compared across species without
comparable behavioural assays.

The systematic monitoring of overt behaviour in humans
and animals began with the work of behaviourists in the
early twentieth century. Work by Tolman [186], among
others, further introduced the idea that overt behaviour
may be considered the effect of a number of variables that
include inputs from the environment (stimuli), but also moti-
vational and emotional state, and internal representations of
the environment stored within a ‘cognitive map’. This
nuanced perspective of behaviour accounts for the rich and
flexible repertoire observed in humans and animals, but
also highlights the challenges associated with modelling
human behaviour in animals. In the absence of direct com-
munication, animal behaviour is difficult to interpret.
Furthermore, some behaviours are difficult to model or
simply considered unique to humans. The high failure rates
reported in clinical trials for neuropsychiatric drugs may, in
part, be attributed to poor behavioural assays that fail to
either simulate or quantify the full complexity of behaviour
observed in patients (see §10).

To take advantage of the potentially rich behavioural
repertoire of animals, first we need to develop more
advanced tools to quantify animal behaviour [105,106].
Second, we need to develop behavioural assays that can be
implemented in both humans and animal models. One
approach involves using virtual reality (VR) to simulate
three-dimensional (3D) environments. VR provides a means
to deliver sensory stimulation within a dynamic, immersive
and realistic environment, while ensuring tight control
over experimental variables during physiological and behav-
ioural monitoring. By carefully considering species-specific
differences in the processing and response to stimuli, including
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their perceived saliency, near-equivalent VR environments can
be employed across multiple species [187]. In this manner,
behavioural assays that employ VR can permit direct compari-
son of microscopic and macroscopic neural measures during
the same cognitive task.

VR in humans has been used to assess performance
on well-characterized spatial mazes previously used to
investigate learning, memory and spatial navigation in
rodents. For example, by combining VR with fMRI in
humans, it is now possible to obtain a non-invasive measure
of grid cells [72], previously reported using physiological
recordings in rodents [188]. A similar approach has been
used to ask whether the hippocampus represents 3D space,
by combining VR with fMRI in humans [189,190] and com-
paring the data with physiological recordings acquired in
rodents during spatial navigation in a comparable 3D
environment [191].

However, VR in humans has been limited by traditional
non-invasive imaging methods that require participants to
remain motionless. With the introduction of scalp-mounted
OPMs for acquisition of MEG data, it is now possible to
obtain non-invasive measures of unconstrained head move-
ment in humans [10]. When coupled with precise control of
the background magnetic field, lightweight OPMs can be
used to obtain MEG data as participants execute naturalistic
movements within 3D VR [192]. This emerging technology
provides a unique opportunity to directly compare neural
measures of freely moving behaviour in humans with those
obtained in animal models.

These VR behavioural assays may further bridge preclini-
cal and clinical research as they are easy to translate into
clinical populations. For example, performance on VR
environments designed to mimic well-characterized spatial
mazes previously investigated in rodents are sufficiently
sensitive to detect clinical impairments observed in
Alzheimer’s disease [193] and schizophrenia [194]. Convert-
ing well-established behavioural paradigms into VR may,
therefore, provide a means to compare data across species
[195] and within patient populations [196].

In addition to VR, more complex behaviours can be
captured by continuous monitoring via microchips and
radio-frequency antennas or cameras [197–199]. In rodents,
these measures can capture social hierarchies and exploration
patterns, all in the ethologically valid—and potentially
enriched—home environment, which in turn can be trans-
lated to equivalent human behaviours. For behaviours that
cannot be readily modelled in rodents or other animal
models, such as tool use, the complex behavioural repertoire
of non-human primates provides a unique opportunity to
model higher-order cognitive processes that are shared
with humans.
8. Cross-species neural analyses: a common space
To integrate micro- and macroscopic levels of description, we
must also take advantage of state-of-the-art tools available in
different species (Approach 3). This necessitates cross-species
comparison across different recording modalities using a
common unit measure for neural activity.

Across different recording modalities, oscillatory dynamics
provide a common signature of neural activity. Oscillations
reflect changes in the amplitude and/or synchrony of
transmembrane currents across a large number of neurons.
They can be used to characterize the physiological state of a
network or even predict neuronal spiking activity that
shows phase-dependent excitability. The different classes of
oscillation and their behavioural correlates appear broadly
conserved throughout mammalian evolution [85]. Therefore,
oscillatory dynamics recorded at the scalp using non-invasive
methods, such as MEG in humans, can be directly related to
invasive measures of the local field potential recorded in
animal models. For example, when humans perform a spatial
memory task in a virtual environment, theta frequency
oscillations (6–10 Hz range) measured using MEG increase
with virtual movement-onset [200], as observed using inva-
sive electrophysiology in the hippocampus of both rodents
[138,201] and epilepsy patients [202]. Similarly, gamma oscil-
lations (30–70 Hz) measured in the human visual cortex
using MEG [203] concur with invasive measures acquired
in primate visual cortex [142].

While oscillatory brain dynamics provide a common
signature for neuronal activity recorded across humans
and animals, it is more challenging to relate non-invasive
measures to spiking activity or synaptic processes. To
translate between different recording modalities, we need
to develop quantitative analytical approaches that assess
shared features and deviations in anatomical and functional
organization within a common space [180]. For anatomy,
standardized templates are required to accurately assess
coordinates within a common reference space [153]. For func-
tional comparisons, a common data-analytical framework is
called for. One possible approach involves extracting the
representational geometry of a given brain region or neural
circuit [204]. Building on mathematical literature on
similarity analysis [205,206], this can be achieved using
representational similarity analysis (RSA) (figure 3).

RSA involves estimating the relative similarity in multi-
channel measures of neural activity between different
conditions (e.g. stimuli or events). Therefore, for each pair
of experimental conditions, the similarity in the response
pattern elicited by the two conditions is assessed using a cor-
relation or distance metric [208,209]. The resulting similarity
measures for all pairs of conditions are then entered into a
similarity matrix, where each cell in the matrix represents
the similarity in neural activity between a pair of experimen-
tal conditions. In this manner, the similarity matrix describes
the representational content carried by a given brain region
(figure 3). This representational content can be quantified
using the correlation distance between the similarity matrix
and a theoretical model matrix, or by applying multi-
dimensional scaling to the similarity matrix. RSA, therefore,
provides a common framework to quantify the represen-
tational content of a given brain region across different
recording modalities. Compared to other multivariate
methods that aim to extract pattern information (such as
multivariate pattern analysis), RSA is unique in abstracting
the higher-order structure of representational information
(second-order isomorphism) [204].

RSA has been successfully used to compare neural
responses to visual objects in humans and non-human
primates. Using fMRI and electrophysiological recordings,
respectively, highly comparable representational structure
can be observed in human and macaque inferotemporal
cortex (area IT) [207] (figure 3). Similarly, RSA applied to
fMRI data in humans and electrophysiological recordings in
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rodents reveals equivalent representational structure in the
hippocampus on an inference task [210].

While this convergence between electrophysiology in
animal models and multivariate human fMRI is encoura-
ging, we must bear in mind the limitations of both fMRI
and electrophysiology. As discussed above, for fMRI, the
relationship between neural activity and the BOLD signal
measured from a given voxel is non-trivial. For electrophysi-
ology, only a biased subsample of neuronal responses are
monitored and RSA overlooks information in the precise
timing of spikes. The limitation of these recording modalities
and differences in methodological sensitivity to represen-
tational information may give rise to differences in RSA or
other multivariate methods employed across species. For
example, multivariate pattern analysis applied to both
fMRI and electrophysiology data from the macaque reveals
that fMRI multivariate pattern analysis is insensitive to
some representational information that can otherwise be
decoded from single-unit recordings [211]. The accuracy of
cross-species RSA will improve if we can account for the
missing information inherent to each recording modality,
which will be made apparent from investigations where
multiple recording modalities are deployed in the same
species (Approach 1).

Identifying spatial homologies between species as distant
as the mouse and human presents a further challenge. The
classic method of mapping like to like in anatomical ontolo-
gies, i.e. the mouse hippocampus is equal to the human
hippocampus, remains the most employed method. Yet, it
is likely that homologies between rodent and human will
not be best captured by this type of one-to-one mapping.
Instead, it is plausible that, over the course of evolution, func-
tions that are highly localized in one species might be more
distributed in another. Using additional information, such
as the expression patterns of homologous genes or connec-
tivity mapped via resting-state fMRI or diffusion MRI [212],
could allow for more complex spatial transformations from
one species to the other.
9. Cross-species computational modelling
In addition to analytical tools (see §8), computational models
may be used to bridge the explanatory gap between neural
recordings in humans and animal models (Approaches 2
and 3). By mathematically formalizing the complex inter-
actions inherent to the brain, computational models can
extract common quantitative descriptions for neural activity
at both micro- and macroscopic levels. The resulting models
may further be used to simulate and predict the effect of
biophysical activity at both a cellular and systems level.

Perhaps the most elegant example of a computational
model that provides a common description for neural activity
at both the microscopic and macroscopic level comes from
reinforcement learning algorithms. Based on animal learning
experiments of classical conditioning [213,214], the Rescorla–
Wagner algorithm was devised to account for the fact that
learning is dependent upon the degree of unpredictability
of a reinforcer [215,216]. The real-time extension of this algor-
ithm, called temporal difference (TD) learning, incorporates a
reward prediction error signal to learn a reward prediction
signal. While this prediction error signal was initially
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hypothetical, researchers later discovered that it provides a
good approximation for the temporal profile of activity
in midbrain dopamine neurons, recorded using electro-
physiology in the macaque [217,218] and in mice [89]. The
TD learning algorithm can also be fit to human behaviour.
When combined with fMRI, this model-based approach
reveals a reliable signature of reward prediction error signals
in the human midbrain during classical conditioning
paradigms [219].

While computational models of reinforcement learning
provide a compelling case study, their ability to successfully
explain cellular and macroscopic descriptions of neural
activity, together with behaviour, may be the exception
rather than the norm. Such close correspondence between
neural activity and algorithms that describe behaviour may
simply be a rare find. More commonly, computational
models fall short of such parsimonious mathematical abstrac-
tion, but may nevertheless constrain interpretation of data to
provide hypothetical insight into the underlying circuit
mechanism or predict brain responses to a set of stimuli.

For example, conceptual models, such as hippocampal
models for pattern separation and completion, have explana-
tory power and constrain interpretation of data recorded at
both a neural circuit level [220] and using human fMRI
[75,221]. Biophysically plausible models inspired by invasive
recording in animal models [222–225] can provide mechanis-
tic insight into aggregate neural activity measured using non-
invasive methods in humans [74,226–228]. More extensive
network models, such as deep-neural networks trained
using supervised learning, can account for visual represen-
tations in both the human and macaque brain [229]. In
addition to performing image classification, extracting the
internal representations of these deep-neural networks
may inform our understanding of the mammalian visual
cortex, holding predictive power for data acquired across
different species.

Meanwhile, across biology, an alternative set of compu-
tational models are being developed to provide a means to
directly translate findings across species. While avoiding the
onerous task of biophysical realism, these models aim to
explicitly translate findings from one species to another by
describing a mapping between physiological parameters
across species. Allometric scaling techniques can account
for differences between species, where, for example, simple
relationships between species are estimated using differences
in body or brain weight. More accurate attempts to model
physiological approaches have involved developing physio-
logically based pharmacokinetic (PBMK) modelling, where
physiological and biochemical differences between species
are used to translate mechanistic knowledge from one species
into another [230–232]. These biophysical models are playing
an increasingly important role in assessing the effects of
potential therapeutic intervention across the biomedical
sciences. This is critical for translational work where different
phases of drug development are necessarily conducted in
different species, and attrition rates for first-in-human studies
are above 30% [233]. While currently used for translational
work, these models may also provide the necessary tools
for reliable cross-species extrapolation of basic research.
Thus, by explicitly accounting for differences between
species, computational models may formalize translation
from microcircuit-level measures in animal models to
macroscopic-level measures in humans.
10. Translational value of bridging the
macroscopic and microscopic levels

Non-invasive measures of human brain activity are not routi-
nely used as a tool for diagnosis, despite being readily
available. As discussed above, this may be attributed to the
explanatory gap between macroscopic measures of neural
activity acquired using tools such as fMRI, and microcircuit
mechanisms recorded in animal models.

Across medicine, this is perhaps most evident in modern
psychiatry [234]. Diagnosis in psychiatry is still dependent
upon subjective behavioural tests that are not linked with
physiological or histological abnormalities. This is further
complicated by poor delineation between disease categories
and heterogeneity across the current disease classification
schemes. But without an understanding of the underlying
pathophysiology or the full complexity of psychiatric disease,
assumptions made when selecting an animal disease model
are compromised. Consequently, animal disease models
often show limited predictive power and fail to translate to
humans. The majority of neuropsychiatric drugs have instead
been discovered serendipitously and the molecular targets
largely reverse engineered [235].

Even in cases where there is a single gene disorder, prom-
ising results in animal models have at times failed to translate
into drug development. A good example is the recent
mGluR5 trials in Fragile X Syndrome. This high failure rate
may in part be attributed to poor methodology. For example,
animal studies appear to overestimate the likelihood of a
treatment being effective, simply because negative results
are often unpublished [236]. For disorders of brain develop-
ment or ageing, a further challenge involves identifying
common timepoints and stages of disease progression. Fur-
thermore, despite highly conserved neuronal mechanisms
via evolutionary descent, critical genetic, molecular, cellular
and immunologic differences do occur between humans
and animals. Therefore, animal models may provide a good
model for a set of processes within a disease while failing
to account for the full spectrum of physiological changes
that occur in humans [237]. Critically, current measures in
preclinical trials are often poorly translated to human clinical
trials, providing a further translational challenge.

In the current socioeconomic climate, the cost of develop-
ing new neuropsychiatric drugs and neurotechnologies is
rising, and as a result, pharmaceutical companies will move
away from neuroscience to shift resources to more profitable
areas. By developing a cross-species approach within funda-
mental neuroscience, we propose a means to build a
foundation from which to bridge the explanatory gap
between a behavioural characterization of neuropsychiatric
disease and the underlying pathophysiology. This may be
achieved by developing sensitive and effective tools for
cross-species basic research that include imaging, behavioural
assays, analytical methods and computational models, as
outlined above.
11. Conclusion
Neuroscience has seen substantial development of non-inva-
sive methods available for investigating the living human
brain. Yet, owing to ethical and practical difficulties, these
methods rarely permit insight into microcircuit-level
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mechanisms. To access the microcircuit, researchers instead
rely on invasive recordings in animals, where recent
advances in genetic tools now permit circuit-level manipula-
tions with exquisite spatio-temporal precision. However,
owing to challenges associated with animal research, there
has been limited progress in understanding how neural cir-
cuits interact or relate to complex behaviour. Contemporary
neuroscience thus faces an explanatory gap between macro-
scopic descriptions of cognition and behaviour in humans,
and microscopic descriptions of cellular and synaptic pro-
cesses in animal models. To close this explanatory gap and
establish a more holistic description of brain function, here
we call for an integrative cross-species approach. This
approach is broadly justified by evidence showing preserved
homology of neural circuits across mammals.

To embark on effective cross-species investigation, first
we highlight the need to establish a deeper understanding
of the relationship between non-invasive methods, such as
the BOLD signal, and underlying neural activity. This may
be achieved by employing multiple different tools within
the same species. Second, to promote comparative investi-
gation across species, we need to employ the same tools
across multiple species. Cross-species MRI provides a
unique opportunity to achieve this, by obtaining non-inva-
sive markers of neural activity in both humans and animals
that can be directly related to invasive manipulations in ani-
mals. When combined with cross-species behavioural assays,
as exemplified by studies using VR, this comparative
approach has the potential to reveal non-invasive markers
of microcircuit mechanisms. Third, by taking advantage of
the best tools available in each species, cross-species analyses
and computational modelling may provide a means to trans-
late measures of neural activity into a common space, despite
differences in species and recording modality. Together, these
three approaches may bridge the explanatory gap between
macroscopic and microscopic descriptions of neural activity
in the living human brain. In the context of clinical
translation, where we have seen minimal success in neuro-
psychiatric drug development, a cross-species approach
has the potential to reveal pathophysiology mechanisms
responsible for neuropsychiatric disease.
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