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Money is a fundamental and ubiquitous institution in modern
economies. However, the question of its emergence remains a
central one for economists. The monetary search-theoretic ap-
proach studies the conditions under which commodity money
emerges as a solution to override frictions inherent to interindi-
vidual exchanges in a decentralized economy. Although among
these conditions, agents’ rationality is classically essential and a
prerequisite to any theoretical monetary equilibrium, human sub-
jects often fail to adopt optimal strategies in tasks implementing a
search-theoretic paradigm when these strategies are speculative,
i.e., involve the use of a costly medium of exchange to increase the
probability of subsequent and successful trades. In the present
work, we hypothesize that implementing such speculative behav-
iors relies on reinforcement learning instead of lifetime utility cal-
culations, as supposed by classical economic theory. To test this
hypothesis, we operationalized the Kiyotaki and Wright paradigm
of money emergence in a multistep exchange task and fitted be-
havioral data regarding human subjects performing this task with
two reinforcement learning models. Each of them implements a
distinct cognitive hypothesis regarding the weight of future or
counterfactual rewards in current decisions. We found that both
models outperformed theoretical predictions about subjects’ be-
haviors regarding the implementation of speculative strategies
and that the latter relies on the degree of the opportunity costs
consideration in the learning process. Speculating about the mar-
ketability advantage of money thus seems to depend on mental
simulations of counterfactual events that agents are performing in
exchange situations.

search-theoretic model | reinforcement learning | speculative behavior |
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Money is both a very complex social phenomenon and easy
to manipulate in everyday basic transactions. It is an in-

stitutional solution to common frictions in an exchange economy,
such as the absence of double coincidence of wants between
traders (1). It is of widespread use despite its being dominated in
terms of rate of return by all other assets (2). However, it can be
speculatively used in a fundamental sense: Its economically
dominated holding can be justified by the anticipation of future
trading opportunities that are not available at the present mo-
ment but will necessitate this particular holding. In this study, we
concentrate on a paradigm of commodity-money emergence in
which one of the goods exchanged in the economy becomes the
selected medium of exchange despite its storage being costlier
than any other good. This is typical monetary speculation, in
contrast to other types of speculation, which consist in expecting
an increased price on the market of a good in the future. The
price of money does not vary: only the opportunity that it can
afford in the future does. This seems to us to be an important
feature of speculative economic behavior relative to the other-
wise apparently irrational holding of such a good. We study

whether individuals endowed with some information about fu-
ture exchange opportunities will tend to consider a financially
dominated good as a medium for exchange.
Modern behaviorally founded theories of the emergence of

money and monetary equilibrium (3, 4) are jointly based on the
idea of minimizing a trading search process and on individual
choices of accepting, declining, or postponing immediate ex-
changes at different costs incurred. We focus on an influent
paradigm by Kiyotaki and Wright (4) (KW hereafter) in which
the individual choice of accepting temporarily costly exchanges
due to the anticipation of later better trading opportunities is
precisely stylized as a speculative behavior and yields a corre-
sponding monetary equilibrium. The environment of this paradigm
consists of N agents specialized in terms of both consumption and
production in such a manner that there is initially no double co-
incidence of wants. Frictions in the exchange process create a ne-
cessity for at least some of the agents to trade for goods that they
neither produce nor consume, which are then used as media of
exchange. The ultimate goal of agents––that is, to consume––may
then require multiple steps to be achieved. The most interesting part
is that in some configurations, the optimal medium of exchange (i.e.,
the good that maximizes expected utility because of its relatively
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high marketability) can be concomitantly the costlier good to store.
Accepting this costly medium of exchange refers in the KW para-
digm to the “speculative strategy”: the agent accepts carrying the
high storing cost burden to maximize its chance to consume in the
future. Our question is how individuals can learn to use this mul-
tistep speculative strategy in this environment, disregarding current
cost increases in favor of longer-term benefits. It therefore locates at
the intersection of a particular type of economic game, an appli-
cation of learning models to individual behaviors in this type of
game, and an underlying question about the cognitive underpin-
nings of the speculative use of money.
In the last few decades, behavioral economics experiments

have repeatedly suggested that basic cognitive processes such as
reinforcement learning potentially better accounts for subjects’
choice behavior compared with theoretical equilibrium predic-
tions (5, 6). Roth and Erev systematically studied a set of well-
known economic games from that perspective (5) and found that
a one-parameter reinforcement learning model consistently out-
performs the theoretical equilibrium predictions (6). The analysis
of the learning processes in games typically implies repetition
of a similar choice. Each repetition of the game––or in other
terms, each step of the learning process––yields a payoff that
strategically depends on the actions of other players involved
in the same game and its repetition. In contrast, we analyze a
game structure that is inherently more complex in the sense
that the payoff of the action (in our case, the consumption of a
given good for each agent in that structure) is reached after
performing several actions that are not identical. The basic game
is then a multiple-step one, different from the typical game
structures to which learning models have been applied. For in-
stance, to consume, an agent must accept in a first trial a medium
of exchange and then trade the medium for her/his consumption
good in a following trial. Thus, learning by reinforcement in this
setting requires retention and updating of multiple values of
actions available in different states of the world, with not all of
the actions being directly connected to the final goal of agents.
Reinforcement learning models generally used in economics,
such as the Roth and Erev (5, 6) model and variants of the classic
Rescorla–Wagner and matching law models, were not conceived
to take into account this learning process and thus would not be
able to learn to speculate in the KW environment, a strategy that
requires adding value to the immediately worst action available
in states of the world only remotely connected to the final
agents’ goals.
To model learning in such a complex environment, several

solutions can be envisioned. In the present study, we contrast the
predictions of two different reinforcement learning models, each
involving a specific cognitive process. The first is a temporal
difference reinforcement learning (TD-RL) model, which allows
the value to backpropagate from one state to previous ones while
not assuming any knowledge about the structure of the task. This
model implements the process via which an individual learns
intertemporal reinforcement contingencies by accounting for
future rewards when making decisions in the present. This ac-
count for future rewards has the potential to assign some positive
value to a behavior whose direct outcome (i.e., the outcome at
time t) is negative if it leads to rewards in the future (i.e., the
outcome at time t + 1). In the KW environment that we analyze,
this situation emerges following the speculative strategy. Spec-
ulative behaviors in the KW environment are thus explained in
terms of temporally discounted future reward expectations. The
second model is an opportunity costs reinforcement learning
model inspired by previous studies about learning to speculate
(7). This model allows the value to propagate from hypothetical
to actual states thanks to counterfactual thinking and requires a
minimal, but explicit, knowledge about the task structure. In this
model, the agent compares the actual outcome that he or she
received in a particular state to the outcome that he or she could

have potentially received holding a different good (i.e., a dif-
ferent medium of exchange). This counterfactual comparison
defines the opportunity costs. Speculative behaviors in the KW
environment are thus explained in terms of a solution to mini-
mize the opportunity costs of not holding the speculative me-
dium of exchange.
The present computational analysis contrasts two possible

cognitive mechanisms of speculative behavior by fitting re-
inforcement learning models to a multistep trading problem used
as an experimental paradigm for the emergence of money. We
show that compared with theoretical equilibrium predictions,
simple reinforcement learning models better account for spec-
ulative behaviors in a KW environment and that the winning
model relies on the consideration of opportunity costs rather
than intertemporal cost–benefit trade-offs.

Results
Behavioral Task. We collected behavioral data from 53 subjects
performing an exchange task derived from an economic theo-
retical model for the emergence of money (4) and adapted from
a previous implementation of this model (7, 8) (see SI Appendix
and/or SI Appendix, Methods for supplementary details). The
participants were a part of a virtual economy in which all agents
were specialized in terms of both consumption and production
according to three different types (Fig. 1A). At each time step,
participants were randomly matched and had to decide whether
they wanted to exchange the unique good that they were storing
for the only good that the other agent stored. To inform agents’
decisions, circulating goods were differentiated following the
three same aforementioned types, costly to store from one time
step to the next one (Fig. 1D) and brought utility when consumed
by the corresponding type agents (Fig. 1E). Initially, production
and consumption specializations prevented a double coincidence
of wants in each random pair of agents such that some of them,
to consume in a more or less remote future, had to exchange the
good that they produced for a good that they did not produce or
consume (Fig. 1B). When the latter good is less costly to store
than the one they previously had in storage, the corresponding
exchange strategy is called “fundamental” and derives from di-
rect cost reduction (i.e., direct utility maximization). When this
good is costlier to store than the one that they previously had in
storage, the corresponding exchange strategy is called “specula-
tive” and implies a direct loss in utility combined with an antic-
ipated and indirect utility gain in the following time step(s). This
strategy is based on the good’s marketability perceived to be
higher than that of the previously stored good; in other words,
the probability of exchanging the new good for the consumption
good in the future is greater. The choice between fundamental
and speculative strategy can then be reduced to an intertemporal
comparison between current costs and future marketability. The
economy was parameterized such that virtual agents behaved
according to the speculative equilibrium strategies from the be-
ginning (Fig. 1C), which means that the optimal strategy for
participants (who were all of the same type) was the speculative
one, with the speculative good’s marketability outpacing its di-
rect cost disadvantage. More precisely, virtual agents of all types
always accept their consumption good and refuse to trade when
proposed the same good that they are already storing or when
the partner is of the same type regardless of the good that the
latter is storing. In cases in which they are proposed a good that
they neither produce nor consume, types 2 and 3 agents use a
fundamental strategy by accepting only a less-costly-to-store
good. Fundamental here refers to direct utility maximization.
In such cases, type 1 agents use a speculative strategy and then
accept the costlier-to-store good type 3 (i.e., the good that they
neither produce nor consume). While subjects were informed of
the evolution of the virtual market, they were not allowed to
(verbally) communicate. We explicitly avoided communication
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between participants, to tackle or investigate the minimal cog-
nitive processes that may lead to the emergence of money at the
individual level.

Behavioral Results. As previously observed (7–9), subjects do not
generally speculate as much as predicted by the theory, and a
population of artificially intelligent agents also failed to achieve
the speculative equilibrium (10). At the population level, the
average speculation frequency was 0.39 ± 0.05, whereas the
theoretically expected frequency is 1.00. To better describe how
subjects used speculative and nonspeculative strategies, we ar-
bitrarily divided our population into two groups: those who
speculate more than 50% of the time are simply classified as
“speculators”, and those who do not are classified as “non-
speculators.” The two groups exhibited, by definition, distinct

behavior overall (average speculation frequencies: 0.77 ± 0.04 for
speculators and 0.15 ± 0.03 for nonspeculators) (Table 1). It
should be noted that a speculation rate lower than the equilibrium
prediction is not per se a guarantee that speculative behavioral is
acquired gradually, as a learning process would predict. To assess
whether speculative behavior was due to a learning process, we
analyzed the temporal dynamics by comparing the first and last
trials. Crucially, speculators seem to learn to speculate over time,
whereas nonspeculators learn not to speculate. Indeed, the spec-
ulation rate significantly increases from 0.43 ± 0.11–0.86 ± 0.08 in
speculators (McNemar’s χ2 = 4.9231, P = 0.0265) and significantly
decreases from 0.34 ± 0.09–0.09 ± 0.05 in nonspeculators (McNemar’s
χ2 = 4.9, P = 0.02686). The dichotomy cannot then be reduced to
a static difference in implemented strategies but should instead be
considered as the result of the dynamic interaction of learning
agents and the environment.

Computational Hypotheses. To investigate subjects’ behavior in
this setting and reveal unobservable learning process parameters,
we used a classic TD-RL model (11–13) (see SI Appendix and/or
SI Appendix, Methods for supplementary details) and an oppor-
tunity costs reinforcement learning (hereafter OC-RL) model.
We used the Q learning as an implementation of TD-RL,

which is by far the most frequently used model in cognitive
psychology (12). Two features make this model particularly
suited to track advantages and disadvantages of both funda-
mental and speculative strategies over time. First, the algorithm
computes the outcome of a particular action taken in a given
state as the sum of the reward immediately received and the
discounted expected reward from the next state (Fig. 2A and SI
Appendix, Methods for supplementary details). In other words,
the TD-RL model allows consideration of future rewards in the
learning process. Accordingly, the acceptation at time t of a good
that is costlier to store (i.e., speculation) can be associated with a
positive value despite the direct loss that it leads to if the time
t+ 1 state attained has a much more positive value (i.e., the ac-
quisition of the agent’s consumption good) (Fig. 3A). The second
feature, essential to implement a speculative behavior, is the
possibility to explore the environment. This possibility is imple-
mented in our model via a softmax policy (or decision rule) asso-
ciated with a temperature parameter (see Materials and Methods
and Eq. 3), which together allow the choice of an option, which is a
priori not the most advantageous one. In our setting, accepting a
costlier-to-store good is a priori not the best option for a subject
seeking to maximize her/his direct utility. However, the possibility to
accept the costlier-to-store good anyway is the first and compulsory
step to valorize it subsequently.
The second model (OC-RL) is a reinforcement learning model

that is able to learn from counterfactual situations through the
calculation of opportunity costs. In addition to learning the value of
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Fig. 1. Behavioral task and economy parameters. (A) Agent specialization.
The table represents each of the three types of agents active in the economy.
Their type (color) corresponds to the consumption good (i.e., the good as-
sociated with a positive utility). Crucially, each type of agent does not pro-
duce the good associated with consumption utility. A unit of the production
good is immediately generated after the consumption of the wanted good.
(B) Economy initialization. The economy is initialized without double co-
incidence of wants, making triangular exchanges necessary for each agent to
obtain their consumption good. This situation creates the need for some
agents to trade for a good that they neither produce nor consume. (C)
Speculative equilibrium illustration. The illustration represents possible ex-
changes resulting from steady-state speculative equilibrium strategies that
maximize each agent’s utility. In our virtual economy, all agents behave
deterministically in accordance with the speculative equilibrium-prescribed
strategies. (D) Storage costs. Storage costs are different across types of
goods; however, the storage costs are the same for all types of agent.
Storage costs are paid at the end of every trial. (E) Consumption utility. The
utility of consuming is greater than the storage cost of any type of good for
all types of agents. In our experiment, the consumption utility was the same
across all types of agent (100 points). (F) Time course of a trial. The diagram
represents a trial in which the subject is a blue agent (i.e., type 1 agent, as all
subjects in our experiment). To focus attention, subjects were first shown a
fixation cross. The “market” screen illustrated the repartition of the goods
across each type of agent. During the “choice” screen, subjects made a bi-
nary choice (accept or reject the exchange) with a randomly matched agent.
The “exchange” screen informed about the outcome of the exchange, which
was effective if and only if both parties agreed on exchanging their re-
spective goods. Finally, the “outcome” screen summarizes the amount of
points earned in the case of a consumption event and the amount of points
lost in payment of the storing cost.

Table 1. The table summarizes, for each group of subjects, the
actual and predicted average speculation decision overall and
at the first and last opportunities

Data Overall First opp. Last opp.

Observed
Speculators 0.77 ± 0.04 0.43 ± 0.11 0.86 ± 0.08
Nonspeculators 0.15 ± 0.03 0.34 ± 0.09 0.09 ± 0.05

TD-RL
Speculators 0.67 ± 0.04 0.38 ± 0.02 0.78 ± 0.05
Nonspeculators 0.14 ± 0.03 0.18 ± 0.03 0.10 ± 0.02

OC-RL
Speculators 0.76 ± 0.03 0.35 ± 0.05 0.85 ± 0.05
Nonspeculators 0.14 ± 0.03 0.24 ± 0.04 0.09 ± 0.02

opp., opportunity.
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the available actions in each state (i.e., to accept or refuse the ex-
change), the model also learns the value of the good stored in the
same states. Those values are then updated each time the good is
held in situations in which there is no possibility to obtain the other
storable good, taking into account the reward obtained at the end of
the trial and additionally, in case of nonexchange, the opportunity
cost of holding this particular good instead of the other storable
good (Fig. 2B). For instance, an agent unable to exchange her/his
production good for her/his consumption good reduces the value of
holding it by the maximum value he/she could have expected to
obtain by holding the speculative good instead in this situation (Fig.
3B). Contrary to the TD-RL, the OC-RL model enhances the rel-
ative value of the speculative good initially by devaluating the one of
the production good (Fig. 3C). A common feature of the two
models is the possibility to explore the environment through a
softmax decision rule. However, contrary to the TD-RL model, an a
priori exploration is in the OC-RL model not a precondition to
increase the relative value of the speculation good. The latter can
indeed be enhanced by the deterioration of the production good
value because of the opportunity cost.

Model Comparison. We fitted the behavioral data with both
models of interest and used Bayesian model comparison which
establish which model better accounted for the data (through
their respective predictive performance). For each model, we
estimated the optimal free parameters by maximizing the likeli-
hood of observing the participants’ choices, given the models and
the best-fitting parameters (see SI Appendix and Materials and

Methods for further details). The exceedance probability and
posterior probabilities based on the log-likelihood used as an
approximation of the model evidence indicated that the OC-RL
model better accounted for speculative behavior compared with
the TD-RL model [exceedance probability (XP) = 0.9999]
(14) (Fig. 4B and Table 2). To attest to the validity of our se-
lection procedure, we performed a model recovery analysis (15)
(Fig. 4A), generating two different datasets with simulated
agents behaving according to the two respective algorithms (n =
5,300, i.e., 100 * cohort size). We then fitted the newly gener-
ated data, adopting the same procedure as for the behavioral
data. As presented in Fig. 4A, the optimization procedure recog-
nizes as the best-fitting model the generative model for our two
models of interest, thus attesting that the two models are iden-
tifiable within the task (15).

Model Simulations. To confirm the model comparison result, we
analyzed the model-predicted speculative choice rate on average
and as a function of the trial number. We found that the OC-RL
model predictions were closer to the observed data compared
with the predictions of the TD-RL model. At the aggregate level,
we found no significant difference between the average specu-
lation frequencies observed in the subjects and those predicted
by the OC-RL model (data: 0.39 ± 0.05, OC-RL: 0.39 ± 0.05,
Z = 1.17, P = 0.24, signed-rank test), but we found this difference
to be significant for the TD-RL model (TD-RL: 0.35 ± 0.04, Z =
5.09, P < 0.001, signed-rank test). At the group level, we found
similarly that the average speculation frequencies observed and

A

B

Fig. 2. Schematic description of the update processes in each model. (A) TD-RL model. The diagram represents the Q-learning algorithm. For each state s, the
agent computes, maintains, and updates the value of the available actions Qðst , aÞ. At each time t, the probability of choosing a given action Pðst , atÞ is
calculated by feeding the action values to a softmax function. The selected action at leads an outcome rt and a state st+1. The agent updates the value of the
chosen action Qðst , atÞ depending on the outcome received and the maximum action value of the state st+1. The TD-RL model has three free parameters: the
temperature β; the learning rate α, which controls the weight put on new information in actions’ value actualization; and the discount rate, γ. (B) OC-RL
model. For each state s in the environment, the agent computes, maintains, and updates the value of actions available in this state Qðsht ,aÞ, along with the
value of the good stored in this state VtðghÞ. At each time t, the values of available actions (i.e., accept and refuse the exchange) are transformed into
probabilities of choosing the corresponding actions Pðsht ,aÞwhen the agent is in a state st. In the state st, the selected action, at, and the good held, gh, lead to
a certain outcome and a certain state, st+1. The outcome is used to update the value of the selected action,Qðsht , atÞ, and the value of the good held, gh. In case
of nonexchange, an opportunity cost, corresponding to the maximum value of the available actions in state st but holding good g−h, is subtracted from the
outcome of the trial and used to update the value of the good held, gh. The OC-RL model has three free parameters: the temperature β; the factual learning
rate α; and the counterfactual learning rate ω.
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predicted by the OC-RL model were not significantly different
for both speculators (data: 0.77 ± 0.04, OC-RL: 0.76 ± 0.03, Z =
0.68, P = 0.50, signed-rank test) and nonspeculators (data: 0.15 ±
0.03 OC-RL: 0.14 ± 0.03, Z = 0.64, P = 0.52, signed-rank test),
whereas there were significant differences for the TD-RL model
(TD-RL: speculators: 0.67 ± 0.04, Z = 4.01, P < 0.001; non-
speculators: 0.14 ± 0.03, Z = 2.32, P = 0.0204, signed-rank tests).
This latter result is reflected in the dynamics of the average
speculation in both groups (Fig. 4 C–E), particularly in the
speculators group, for which the TD-RL predictions (Fig. 4D)
systematically underestimate the actual average speculation
evolution across trials (Fig. 4C), contrary to the predictions of
the OC-RL model (Fig. 4E). Finally, at the individual level, we
found that the individual speculation frequencies predicted by
the OC-RL model correlated almost perfectly with the observed
frequencies (OC-RL: R = 0.99), indicating that the categorical

result based on our cutoff of speculation still holds on a con-
tinuous scale (SI Appendix, Fig. S2).

Computational Phenotypes of Speculation. Our model comparison
indicates that a model implementing opportunity costs accounts
for speculative behaviors in a KW environment. Accordingly, we
found that the opportunity cost learning rate ω (i.e., the feature
of this model that allows accounting for missing speculative
opportunities) was significantly different for speculators and
nonspeculators (nonspeculators: 0.05 ± 0.02, speculators: 0.21 ±
0.07, Z = 3.76, P < 0.001, two-sided Wilcoxon rank-sum test),
whereas both the temperature and the factual learning rate were
the same across groups (temperature: nonspeculators: 0.11 ±
0.04, speculators: 0.18 ± 0.06, Z = 0.68, P = 0.50; learning rate:
nonspeculators: 0.26 ± 0.05, speculators: 0.24 ± 0.07, Z = 1.35, P =
0.18, two-sided Wilcoxon rank-sum tests) (Fig. 4F). Thus, the rela-
tive account of opportunity costs in the agents’ value estimation
process through the counterfactual learning rate ω seems to be
the key feature to understand and predict both speculative and
nonspeculative behaviors in the KW environment. The more
the opportunity costs are accounted for (i.e., the greater ω is),
the more striking the advantage of the speculative strategy.

Discussion
We found that in a multistep monetary exchange task, subjects’
behaviors were better explained by a counterfactual reinforcement
learning model implementing opportunity costs than by a tem-
poral difference reinforcement learning model. To note, both
of these models clearly outperformed theoretical predictions
about speculative strategy on average, in addition to its dynamic
changes. Bayesian model comparison and fine-grained analy-
sis of model simulations indicated that the opportunity-cost
model outperformed the temporal-different model in terms of
their capacity to explain subjects’ behavior for both the speculators
and nonspeculators.
The paradigm that we studied operationalizes the Kiyotaki and

Wright (4) search-theoretical model of money emergence and is
adapted from a previous implementation of the latter (7, 8). The
particularity of the task, in comparison with those generally used to
study reinforcement learning processes in economics (5, 6, 16–19),
is its multistep structure, which involves several different actions to
be performed to attain the ultimate goal of the game. This par-
ticular setting is essential to understand how an action available in
an intermediary step only remotely connected to a reward or to the
final goal of agents (i.e., in our case, consumption) and thus not
locally maximizing any utility––or even minimizing the latter––is
learned. This type of temporarily suboptimal intermediary deci-
sions is common in our economic lives––think of speculating on
stock options in a down market––and daily lives––purchasing an
umbrella on a sunny day. The two mechanisms hypothesized to
underlie such behavior that we tested are based on the consider-
ation of intertemporal and counterfactual outcomes, respectively.
Our computational analysis indicates that learning to use a

costly yet optimal medium of exchange depends on the account
of counterfactuals in the updating process. Counterfactuals, ex-
tensively studied in psychology (20) and neuroscience (21, 22),
can be observed as mental simulations of what could have been,
compared with what actually occurred. In the OC-RL model,
comparison of the two allows agents to learn about the mar-
ketability advantage of holding the speculative good compared
with their production good. The different situations that an agent
actually experiences holding a certain good, together with the
simulation of the same situations but holding the other good,
shape in a stepwise manner the respective and relative values of
these two goods. These values will be put to use by the agent at
the moment to decide which good to hold.
We implement and operationalize the notion of speculation in

a very stylized manner, relative to a particular economic model

A

B

C

Fig. 3. Schematic description of the computational principle underlying
speculative behavior. (A) TD-RL model. The diagram represents the process
via which the relative value of the speculative good increases in the TD-RL
model. Speculating in the TD-RL model compulsorily requires an initial ex-
ploration of the dominated option to accept the speculative good, the value
of which is a priori less than the value of refusing such an exchange, based
on the underlying storage costs [Qðst , acceptÞ<Qðst , refuseÞ]. Once the
speculative good is acquired, its subsequent exchange for the consumption
good allows the value of consumption to backpropagate to the initial de-
cision to accept the speculative good through the value of accepting the
consumption good in the depicted st+1 state Qðst+1, acceptÞ. (B) OC-RL model.
The diagram schematically represents the process via which the relative
value of a speculative good increases through evaluation of the opportunity
costs in the OC-RL model. Speculating in the OC-RL model does not require
an initial exploration. The relative value of the speculative good can indeed
increase even when the production good (i.e., the yellow good) is held. The
inability to exchange the latter in the st state will decrease its value
Vtðgyellow Þ by incurring an opportunity cost represented by max½Qðspinkt ,aÞ�.
(C) How the relative value of the speculative good increases in both models.
The diagram represents the learning-induced value change for the specu-
lative good in both models. In the TD-RL model (Left), the speculative
strategy is driven by an increase in the speculative good’s value. In the OC-RL
model (Right), the speculative strategy is driven by the reduction in the
production good’s value.
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of money emergence in a barter economy. We do not pretend to
cover every aspect of speculation here, and other studies about
learning in financial markets must be considered (23–25).
However, the speculative behaviors that we studied can be linked
to this common sense, insofar as holding money to realize sub-
sequent profitable exchanges is a possible, usual, and even fun-
damental sense of speculation (26, 27). Indeed, money in our
environment is the only asset with which agents can possibly
speculate given information about future exchange opportuni-
ties. In real economies, most assets present dominant futures in
terms of monetary holdings. Interestingly, reinforcement learn-
ing has been found to play a role in real-world financial envi-
ronments, where investors experienced returns in the past that
impact future personal investments (28, 29), and counterfactual
thinking has been proposed as a mechanism underlying stocks
repurchase behavior of both subjects in the laboratory (30) and
real investors (31). In the two latter studies, the price evolution
of a particular good not held at the moment is the counterfactual
information used by investors in their subsequent choices. In our
setting, good prices being fixed, this counterfactual information
is the situation-dependent marketability of the good not held at
this precise moment.

The concept of money that we used is model-driven. It endog-
enously emerges from economic exchanges, and its value is de-
termined through production, exchange, and consumption in the
economy. Its value is intrinsic and can be assimilated to a so-called
commodity money having intrinsic value in addition to its role in
exchange (1). The acceptance of such a good relies upon immediate
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Fig. 4. Model predictions and model selection. (A) Model recovery analysis. The confusion matrix represents the recovered model average posterior
probabilities (white = 0; black = 1) for synthetic datasets simulated using the TD-RL model (Top Row) and the OC-RL model (Bottom Row). (B) Model
comparison on the actual data. Bars show the estimated average posterior probabilities for each model of interest computed from the log-likelihood. The
horizontal dashed line represents the chance level. (C) Evolution of the observed average speculative choice across the trials. The plot shows the proportion of
speculative choices in both groups and its evolution across trials. (D) Evolution of the predicted average speculative choice across trials for the TD-RL model.
The plot shows the predicted proportion of speculative choice in both groups and its evolution across trials. The gray shadow represents the data from C. (E)
Evolution of the predicted average speculative choice across trials for the OC-RL model. The plot shows the predicted proportion of speculative choice in both
groups and its evolution across trials. The gray shadow represents the data from C. (F) Best-fitting model parameters. Bars show the average estimated OC-RL
model parameters in both groups. β is the temperature parameter, α is the learning rate, and ω is the counterfactual learning rate. In C–E, dots represent the
mean and error bars represent the SEM. In F, bars represent the mean and error bars represent the SEM. *P < 0.05, in a two-sided Wilcoxon rank-sum test.

Table 2. The table summarizes the fitting performances for
each model

Optimization/model -LLmax XP PP

All trials
TD-RL 31.9 ± 2.8 0.0378 0.37 ± 0.05
OC-RL 31.6 ± 3.0 0.9722 0.63 ± 0.05

Speculation only
TD-RL 8.04 ± 0.84 0.0001 0.22 ± 0.03
OC-RL 6.81 ± 0.83 0.9999 0.78 ± 0.03

All trials: The likelihood is calculated taking into account all trials. Specula-
tion only: The likelihood is calculated taking into account only the choice with
an opportunity to speculate. LLmax, maximal log-likelihood; XP, exceedance
probability; PP, posterior probability. Data are expressed as the mean ± SEM.
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interests of the agents, and this motivates applying reinforcement
learning to this context. There exist other concepts and types of
money, and further studies could consider the application of re-
inforcement learning and the relevance of learning processes to the
analysis of behavior with respect to money in its fuller varieties. We
indeed live in an economy of fiat money that has no intrinsic value
and the price of which is exogenously determined by monetary in-
stitutions on which agents have no direct impact. Adaptations to
these external institutions may involve reinforcement learning issues,
simply if we consider fluctuations of money price, risk of money il-
lusion, and failure to process and act on the correct signals of the
whole economy. Moreover, fiat money as a secondary reinforcer (i.e.,
having similar reinforcement properties as a primary reinforcer, such
as food, by being associated with the latter) has been repeatedly
evidenced in appetitive (32, 33) and aversive conditioning (34, 35). In
this sense, our study sheds some light on the process by which a type
of money “in the making” acquires this secondary reinforcing prop-
erty through strategic interactions and the cognitive traits underlying
this process. The fact that both primary and secondary reinforcers
have been found to rely on overlapping neural regions (36) raises
an intriguing question that could be addressed in a future study
dedicated to exploring whether the reward-related neural activity
from using a speculative medium of exchange evolves in specu-
lators toward an overlapping of the neural representation of the
latter and the one of the consumption good.
An important aspect of our results is the interindividual vari-

ability regarding the use of this speculative commodity money.
Both groups of subjects were found to learn over time to adopt it,
or on the contrary, to reject it. This aspect is reminiscent of Carl
Menger in On the origin of money (1892) (1): “Nothing may have
been so favorable to the genesis of a medium of exchange as the
acceptance, on the part of the most discerning and capable
economic subjects, for their own economic gain, of eminently
saleable goods in preference to all others.”
Speculators in our experiments would refer to those particularly

discerning subjects, extracting from their experience the relatively high
saleability of the speculative good. Our computational results tend to
indicate that this variability relies on the integration of counterfac-
tual outcomes in the value-updating process. The interindividual
variability observed in our task may appear in contradiction with the
fact that the use of money is pervasive in contemporary society and
has been almost simultaneously or independently discovered and
implemented by distant––ancient––societies. Consistent with our ob-
servation of high interindividual variability in our experiments vis-à-vis
money adoption, we hypothesize that this behavior is “discovered”
by few individuals (the speculators in our experiment) and
then transmitted to the nonspeculators via social learning.
An important question concerns the generalizability of the

OC-RL model. Importantly, our results hold in another experi-
ment, whose parameters were closer to those used by Duffy (7)
(SI Appendix). It is possible that the exact algorithmic imple-
mentation that we propose for the OC-RL model would not be
easily transferable to other tasks because of its adequacy to the
specific structure of the money emergence paradigm. Particu-
larly, the algorithm distinguishes between two types of states,
those in which the agent can decide which good to hold in the next
step and those in which he/she does not have such a choice, and this
feature is characteristic of the operationalized KW environment that
we used. In this sense, the OC-RL model lies between model-free
algorithms that learn by trial and error and model-based algorithms
that make use of the structure of the task to make decisions (37, 38).
Generally, model-based algorithms involve the acquisition of a
“cognitive map” of the task (38, 39), describing how different states
are connected and agents learn, through state-prediction error, these
state transitions. Whereas the OC-RL model neither knows nor
learns the full task structure, it is able to differentiate some states
from others. Few adjustments would then be needed to adapt the
OC-RL model to other tasks. The counterfactual feedback pro-

cessing per se is highly flexible and adaptable while permitting a
richer knowledge of the learning environment (40).
In fact, beyond any specific algorithmic implementation, oppor-

tunity costs per se are pervasive in economics whether in finance,
investments, labor, or education. Although this notion has been
operationalized in relation with macroeconomic issues, it also has
clear behavioral and individual relevance. Intertemporal decisions
of the individual can be modeled as sequential trade-off computa-
tions of opportunity costs vs. long-terms benefits (41). Moreover,
whenever the setting involves repeated interactions, feedback, and
the opportunity of learning, computational principles are of po-
tential interest. In financial decisions, knowledge of opportunity
cost is not different from full post hoc information on prediction
error. But, there are also contexts in which feedback is not given in
such a direct way and yet opportunity costs are the key determinants
of optimizing one’s choices. To stick with search-theoretical envi-
ronments, this is in general the case in labor markets in which one
cannot afford to exceed an upper opportunity cost during her/his
search and therefore optimizes her/his decision on that cost mini-
mization across repeated trials. In both types of examples, the
application of the OC-RL model to study agents’ behaviors
may be relevant and the model would only require a minimal
adjustment of the state space representation.
Although the OC-RL model outperforms the TD-RL models in

terms of its predictive power at the population level, this result does
not mean that intertemporal valuation of future rewards is totally
irrelevant in the process of learning to speculate and that no subject
implemented this computational process instead of, or in addition
to, the counterfactual learning of opportunity costs. Further studies
would be necessary to clarify the possible interaction between the
two processes, and one can easily envision a hybrid model that
accounts for both types of reward simultaneously, at the price,
though, of greater computational complexity.

Materials and Methods
Sample. Our sample included 53 healthy subjects (30 females and 23 males
between the ages of 20 and 41 y old, with a median age of 24 y old). The
participants earned a fixed amount of money (V10) for their participation
and had the possibility to double this amount according to their perfor-
mance. Indeed, 20 consecutive trials were drawn, and the total number of
points accumulated in those 20 rounds was transformed into a probability of
winning the extra 10V. The experimental protocol was in accordance with
experimental economics standards such that subjects were perfectly in-
formed about the economic game functioning and the remuneration rules
(i.e., there was no deception throughout the experimental process).

Behavioral Task. The exchange task is based on the Kiyotaki and Wright (4)
model of money emergence and adapted with a few slight variations from a
previous implementation of the model (7, 8).
The experimental economy. There are three different types of good, 1, 2, and 3
(corresponding to the color codes cyan, yellow, and magenta, respectively),
and the same three types of agents are represented in equal number (480/3
agents of each type). Each agent of type i is specialized in consumption and
production such that he/she consumes good i and produces good 1+ i
(modulo 3) (Fig. 1A). The experiment is divided into 200 trials. For a subject,
each trial consists of an exchange opportunity with a virtual agent with whom
he/she has been randomly paired. The same also occurs to any virtual agent in
the economy. Agents can store only one good at a time (i.e., from one trial to
the next), and each good type has a fixed storage cost that is common to all
agents and defined such that c1 < c2 < c3 (Fig. 1D). Producing a good is cost-free
and automatically occurs after consumption. Consumption brings utility, the
value of which is also common to each type of agent and fulfills the following
condition: c1 < c2 < c3 <u (Fig. 1E). The economy is initialized with all agents
storing their production good (Fig. 1B); they then face a problem called the
absence of double coincidence of wants (i.e., no matched agents will be able to
trade and obtain both of their consumption goods at the same time). Virtual
agents play deterministically according to the prediction of the steady-state
equilibrium implied by the chosen parameters (SI Appendix, Table S1). More
precisely, agents of all types always accept their consumption good and refuse to
trade when proposed the same good that they are already storing or when the
partner is of the same type regardless of the good that the latter is storing. In
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cases in which they are proposed a good that they neither produce nor consume,
types 2 and 3 agents use a fundamental strategy by accepting only a less-costly-
to-store good. Fundamental here refers to direct utility maximization. In such
cases, type 1 agents use a speculative strategy and then accept the costlier-to-
store good type 3 (i.e., the good that they neither produce nor consume). The
latter strategy is optimal given the parameterization of the economy, which is in
accordance with a speculative equilibrium (Fig. 1C). The increase in direct storage
cost that type 1 agents suffer is compensated by the higher marketability of the
type 3 good. In other words, the probability of exchanging the type 3 good for
the consumption good in following trials is higher than the probability of ex-
changing the production good. Subjects were told that the other agents were
controlled by the computer but not what the latter’s strategies were. While
subjects were informed of the evolution of the market of virtual subjects, they
were not allowed to (verbally) communicate. We explicitly avoided communi-
cation between participants, to investigate the minimal cognitive processes that
may lead to the emergence of money at the individual level.
Subjects’ task. All subjects played in different virtual economies and were all type
1 agents. They played a fixed number of trials decomposed as followed (Fig. 1E):

i) A focus screen.
ii) The market state screen, where subjects were informed of the propor-

tion of each good type in each population type.
iii) The choice screen, where subjects discovered the agent with whom they were

randomly matched and had to decide whether they wanted to exchange the
good that they were storing for the good that the other agent stored.

iv) The exchange screen, where subjects observed the result of the exchange.
v) The outcome screen, where subjects were prompted with the actual

storage cost, the potential consumption, the net number of points
earned at the end of the trial, and the total number of points earned
from the beginning of the block.

Discrepancies between our implementation and the previous one. Our model
implementation is based on a treatment of Duffy’s (7) task “Eliminating Noise:
Automating the Decisions of Type 2 and Type 3 Players.” We made three es-
sential changes in our experiment, all oriented toward the goal of transforming
a learning/coordination problem into a pure learning problem. First, we au-
tomatized all but one virtual agent, including those of type 1, to further
“eliminate noise” in the subjects’ environment. Second, we increased the num-
ber of trials and eliminated the session subdivision into blocks to give the sub-
jects more time to learn and interact with the rest of the economywithout being
perturbed by economy reinitializations. Third, we increased the number of vir-
tual agents (480 instead of a maximum of 24 previously) to standardize and
stabilize the proportions of each type of good stored by each type of
agent. This modification allowed the virtual economy to run much closer
to the equilibrium predictions (SI Appendix, Fig. S1).

Computational Modeling.We fitted the data with two reinforcement learning
models: a TD-RL and an OC-RL. The model space included then the stan-
dard Q-learning model originally introduced by Watkins (11–13) and a re-
inforcement learning model based on opportunity costs. The models are
described under the perspective of type 1 agent modeling, the only agent
type we are interested in in this study.
Q-learning model (TD-RL). This model is a classic off-policy reinforcement learning
model. For each exchange situation (characterized by the stored goods’ type, the
proposed goods’ type and the partner’s type), the model estimates the expected
choices and outcomes. These Q values essentially represent the expected reward
obtained by taking a particular option in a given context, here, the exchange of the
stored good for the proposed good and the nonexchange of this good. In both
experiments,Q values were set for all situations, in accordance with the goods’ costs
and utility. The action value of refusing an exchangewas set equal to the cost of the
good stored at themoment of exchange. The action value of accepting an exchange
was set to the net utility of the proposed good (i.e., the utility that it eventually
provides in case of consumption minus the cost of the good to be stored until the
next round). These priors on the initial Q values are based on the fact that subjects
were explicitly informed in the instructions about the different storing costs and the
utility value of consumption. After every trial t, the value of the chosen option at

(“accepting the exchange” or “refusing the exchange,” henceforth, accept and
refuse, respectively) in the state st is updated according to the following rule:

Qt+1ðst , atÞ=Qtðst , atÞ+αδt , [1]

where δt is the prediction error and calculated as

δt = rt + γmax
at+1∈A

Qtðst+1, at+1Þ−Qtðst , atÞ, [2]

where rt is the reward obtained as an outcome of choosing at in the state st
and max

at +1∈A
Qtðst+1, at+1Þ the maximum of the action values of the t + 1 state. In

other words, the prediction error δt is the difference between the expected
reward Qtðst , atÞ and the actual reward rt + γ max

at + 1∈A
Qtðst+1, at+1Þ. The reward

magnitude range is [−0.09; 0.96], from the net utility of the costlier-to-store
good to the net utility of the consumption good. The learning rate, α, is a
scaling parameter that adjusts the amplitude of value changes from one trial
to the next, and the discount factor, γ, is a scaling parameter that adjusts the
value of future outcomes. Following this rule, option values are increased if
the outcome is better than expected and decreased in the opposite case, and
the amplitude of the update is similar following positive and negative
prediction errors. Finally, given the Q values, the associated probability (or
likelihood) of selecting each option is estimated by implementing the soft-
max decision rule for choosing accept, which is as follows:

Ptðst , acceptÞ= e½Qðst , acceptÞ�=β

e½Qt ðst , acceptÞ�=β + e½Qt ðst , refuseÞ�=β
. [3]

This rule is a standard stochastic decision rule that calculates the probability of
selecting one of a set of options according to their associated values. The tem-
perature, β, is another scaling parameter that adjusts the stochasticity of
decision-making and by doing so controls the exploration–exploitation trade-off.
The OC-RL model. This model is a model-based reinforcement learning model that
we developed to implement opportunity costs within a reinforcement learning
process. It has been inspired in its integration of opportunity costs by a half-
deterministic half-reinforcement learning model previously presented to explain
speculative behaviors in a KW environment (7). It distinguishes two types of ex-
change situations in the KW environment. The first type corresponds to situations
in which an agent has the opportunity to exchange the good that she/he is storing
for another storable good (type 1 agents can store only types 2 and 3 goods; the
first type of situations concerns exchanges involving those two goods). In such
situations, agents decide what type of good they prefer holding. The second type
corresponds to situations in which the agent has the opportunity to exchange the
good that she/he is storing for her/his consumption good or a same-type good.
They then constitute the experience the agent has with the good that she/he is
storing. The experience is positive when she/he is able to consume and negative
when she/he has to wait another round to eventually consume. As implemented in
the Q learning, the values of actions (i.e., accept or reject the exchange) for each
exchange situation take the form of Q values, updated according to two distinct
learning rules depending on the situation types described above.

In the “experience” situations (second type), the Q values are updated
with the same rule as they are in the Q-learning model (Eq. 1), but the
prediction error is differently defined in the sense that it does not include
future rewards (i.e., γ = 0). The predictions error becomes

δt = rt −Qt

�
sht , at

�
. [4]

The agent is thus myopic regarding future rewards attainable in following
states. Note that the notation of states st in the OC-RL model includes a
specification about which good is held in this state, sht .

In the “storing good choice” situations (first type), only two values are used
for all situations, the value of holding good 2 and the value of holding good 3.
Those values are computed and updated in the experience situations according
to a principle of classical conditioning and including opportunity costs. Each time
that an agent receives an outcome from a choice in the experience situations,
she/he updates not only the Q value of the corresponding choice as previously
described but also the value of holding the good that she/he had in storage at

Table 3. The table summarizes, for each reinforcement learning models, the free parameters

Models Temperature
Factual

learning rate
Counterfactual
learning rate

Discount
rate

Number of free
parameters

TD-RL β α None γ 3
OC-RL β α ω None 3
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the beginning of the trial. For instance, if a type 1 agent holds a type 2 good,
accepts to exchange it for her/his consumption good, and is successful at doing
so, she/he updates the Q value of the action “accept” in this situation and the
value of holding the type 2 good in general. Now, to implement opportunity
costs, two cases must be defined. The first is the case of a realized exchange (i.e.,
when both matched agents mutually agree on it), in which the held good value
is updated with the same rule used for actions’ Q value in experience situations
(Eq. 1) and with a similar prediction error calculation:

δt = rt −VtðghÞ, [5]

where VtðghÞ is the value of the good held at the beginning of the round. Note
that the same learning rate α is used here as the information concerned actual
outcomes. A second learning rate ω for “counterfactual” information is
introduced below.

The second case concerns unrealized exchanges in which the value of the
good held at the beginning of the trial is updated in a similarmanner butwith
a second learning rate ω and a prediction error including opportunity costs.
The updating rule is then

Vt+1ðghÞ=VtðghÞ+ωδ′t , [6]

with δ′t calculated as follows:

δ′t = rt −OCtðghÞ−VtðghÞ, [7]

where OCtðghÞ is the opportunity cost of holding good h instead of −h and
equals

OCtðghÞ=max
at∈A

Qt

�
s−ht ,at

�
, [8]

where max
at∈A

Qtðs−ht , atÞ is the maximum value expected from choosing action a

in the same situation but holding −h instead of h.

We implemented the same decision rule as for the Q learning, namely, a
softmax policy. For choice in experience situations, the equation is the same as
before (Eq. 3), whereas for “storing good choice” situations, the equation
becomes

PtðghÞ= e½Vt ðghÞ�=β

e½Vt ðghÞ�=β + e½Vt ðg−hÞ�=β
. [9]

Model Comparison. We optimized the model parameters by minimizing the
negative log-likelihood of the data given different parameters settings using
Matlab’s fmincon function, as previously described (42). Parameter recovery
analyses based on model simulations show that our parameter optimization
procedure and model selection correctly retrieves the generating model as
the wining model (Fig. 4A). Note that as our two models of interest have the
same number of degrees of freedom (i.e., three free parameters each, Table
3), we did not have to take into account their complexity in the model
comparison when calculating the Bayesian and Akaike information criterion.
Individual negative log-likelihoods values were fed into mbb− vb− toolbox
(14), a procedure that estimates the posterior probabilities and the
exceedance probability for each model within a set of models, given the
data gathered from all participants. The exceedance probability (denoted
XP) is the probability that a given model fits the data better than all other
models in the set.
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