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Abstract
Sleep–wake history, wake behaviors, lighting conditions, and circadian time influence sleep, but neither their relative contribution 
nor the underlying mechanisms are fully understood. The dynamics of electroencephalogram (EEG) slow-wave activity (SWA) 
during sleep can be described using the two-process model, whereby the parameters of homeostatic Process S are estimated 
using empirical EEG SWA (0.5–4 Hz) in nonrapid eye movement sleep (NREMS), and the 24 hr distribution of vigilance states. 
We hypothesized that the influence of extrinsic factors on sleep homeostasis, such as the time of day or wake behavior, would 
manifest in systematic deviations between empirical SWA and model predictions. To test this hypothesis, we performed parameter 
estimation and tested model predictions using NREMS SWA derived from continuous EEG recordings from the frontal and occipital 
cortex in mice. The animals showed prolonged wake periods, followed by consolidated sleep, both during the dark and light phases, 
and wakefulness primarily consisted of voluntary wheel running, learning a new motor skill or novel object exploration. Simulated 
SWA matched empirical levels well across conditions, and neither waking experience nor time of day had a significant influence 
on the fit between data and simulation. However, we consistently observed that Process S declined during sleep significantly faster 
in the frontal than in the occipital area of the neocortex. The striking resilience of the model to specific wake behaviors, lighting 
conditions, and time of day suggests that intrinsic factors underpinning the dynamics of Process S are robust to extrinsic influences, 
despite their major role in shaping the overall amount and distribution of vigilance states across 24 hr.
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Statement of Significance

The notion that sleep–wake history determines the levels of homeostatic sleep pressure, referred to as Process S, has been widely 
used to obtain insights into sleep regulatory mechanisms. Although time awake is considered the main variable affecting sleep 
need, investigating the role of additional extrinsic influences on the dynamics of Process S remains essential to understand its 
neurophysiological substrates. We used a combination of experimental and modeling approaches to investigate the influence of 
waking behavior and time of day on sleep homeostasis. Unexpectedly, the performance of our model was robust across experi-
mental conditions, suggesting that the mechanisms underlying Process S dynamics are resilient to external factors, which are 
mostly responsible for regulating the amount and daily distribution of waking and sleep.
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Introduction
The propensity for wake and sleep across the 24  hr day is 
thought to be determined by the time of day, lighting conditions, 
specific waking activities, preceding sleep–wake history, and 
homeostatically regulated needs such as hunger [1–7]. During 
nonrapid eye movement sleep (NREMS), slow waves (0.5–4 Hz) 
dominate the electroencephalogram (EEG) over the cortical sur-
face [8, 9]. Slow waves during sleep are considered a marker of 
sleep “intensity,” and in both animals and humans it has been 
shown that the levels of slow-wave activity (SWA, EEG power in 
the slow-wave frequency range) change as a function of prior 
waking and sleep. Specifically, SWA displays a global declining 
trend during sleep, and the level of EEG SWA at the onset of the 
first NREMS episode depends on prior waking duration [10–12], 
reflecting the homeostatic regulation of sleep. There are numer-
ous known mechanisms responsible for the daily distribution of 
waking and sleep and the homeostatic dynamics of SWA; yet, 
a fundamental and unanswered question is whether these two 
aspects of sleep regulation are independent.

Homeostatic regulation involves a sensor and an effector, 
which monitor changes in regulated variables and trigger 
adequate responses to keep them within a given range [13]. 
How these relate to homeostatic regulation of sleep intensity 
is unknown, but evidence suggests that sleep is implicated in 
a variety of restorative processes related to energy homeosta-
sis, synaptic homeostasis, and prophylactic cellular mainten-
ance [14–19]. At the cellular and molecular levels, it has been 
shown that the levels of adenosine increase progressively in the 
basal forebrain and in some cortical areas during wake [14, 20, 
21], which may influence activity in subcortical circuits respon-
sible for sleep control [16], or directly inhibit specific neuronal 
populations in the cortex [14, 16]. Furthermore, it has been pro-
posed that specific waking activities occurring in local cortical 
areas may contribute to the local accumulation of sleep need 
[16, 22, 23]. Consistent with this, several molecular markers of 
synaptic strength or neuronal excitability change across waking 
and sleep [24–27], although it is unclear whether they are dir-
ectly regulated by states of vigilance, or merely represent an epi-
phenomenon of other processes not implicated directly in sleep 
regulation [28–31].

Although much progress has been made in understanding 
molecular, cellular, and network mechanisms underlying sleep 
regulation [32–40], its temporal dynamics remain poorly under-
stood, and computer modeling approaches may provide import-
ant insights. The two-process model has been widely used as a 
framework to address the contribution of the homeostatic com-
ponent (Process S) and the circadian component (Process C) to 
the regulation of sleep [2, 41]. In humans, Process C reflects the 
daily variations of sleep propensity that keeps track of envir-
onmental time. This is controlled by the circadian pacemaker 
located in the suprachiasmatic nuclei of the hypothalamus [42]. 
Process S tracks instantaneous sleep need, and empirical EEG 
SWA—specifically in NREMS—is traditionally used to estimate 
the parameters necessary to simulate Process S.

In its original formulation, the two-process model assumed 
the presence of a single circadian pacemaker, which constrained 
the variation of Process S between two thresholds that were 
subject to a circadian oscillation [2, 41]. A later, so called “elabo-
rated,” version of the model accounted for the intraepisodic 
dynamics of SWA in humans and assumed that the levels of SWA 
determine the changes in Process S [43, 44]. The applicability of 

the original two-process model to rodent data was tested and 
shown as early as 1991 [45], and in 2000, the model was first 
used in mice, to show how the amount and distribution of sleep 
episodes differ between strains [46]. However, to date, the elabo-
rated version of the model has not been used in rodents.

Although originally the model tackled sleep homeostasis 
as a global process, it soon became apparent that SWA shows 
pronounced topographical variations, suggesting that cor-
tical regions differ in their dynamics [47–51]. Several studies 
in rodents have shown a frontal predominance of SWA dur-
ing sleep [52–54]. Although the underlying mechanisms are not 
fully understood, evidence suggests that preceding behavior, as 
well as anatomical differences between cortical regions, may 
be important contributing factors [22, 26, 55, 56]. It was there-
fore proposed that the dynamics of Process S should also differ 
between cortical regions [50], which has since been supported 
by several recent studies [47, 51]. Furthermore, sleep–wake dis-
tribution and the levels of SWA are markedly affected by lighting 
conditions as well as other factors [3, 57, 58], and it has been 
suggested that SWA may be influenced by a varying drive for 
wakefulness, which changes with circadian phase [59].

Several animal studies have used a simplified version of the 
model to describe the time course of Process S on a time scale 
of hours [45, 46, 58, 59]. However, SWA shows distinct region-
specific dynamics on a time scale of minutes, where both long-
term history and immediate preceding state play a role [60]. 
These important aspects have not been previously tackled using 
a modeling approach in laboratory rodents. Starting from the 
1993 model published by Achermann et  al. [44] (which used 
human data), we adapted the parameters and equations to fit 
baseline EEG recordings performed in mice from two different 
cortical regions. We then addressed the performance of the 
model in predicting SWA levels in several experimental condi-
tions, including learning a novel motor skill or sleep deprivation 
achieved by providing novel objects. The model performed well 
across conditions, and neither waking experience nor time of 
day was found to have a significant influence on the fit between 
data and simulation. Our results suggest that the intrinsic 
mechanisms underlying the dynamics of Process S are robust 
to extrinsic influences, and that those extrinsic factors instead 
determine the timing and duration of consolidated periods of 
waking and sleep.

Materials and Methods

Animals

Adult male C57BL/6J mice (Harlan UK Ltd., Bicester, United 
Kingdom) were used in this study, with data obtained under 
three experimental conditions:

•	 Regular-wheel (RW): The first group (n = 7, age = 13 ± 2 weeks, 
mean ± SD) was used to investigate the temporal dynamics 
and regional differences in Process S during 48 hr of undis-
turbed baseline conditions (12:12  hr light/dark cycle) with 
access to a standard running wheel.

•	 Complex-wheel (CW): In the second group (n  =  7, age = 15 ± 1 
weeks, mean ± SD), complex wheels were used (i.e. wheels miss-
ing rungs with an irregular pattern, Supplementary Figure S1a) 
to investigate the influence of waking behavior, such as learning 
a novel motor skill, on the performance of the model. In this 
experiment, following an undisturbed 24 hr recording when a 
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RW was available (which the animals had been habituated to 
for at least 1 week), a CW was introduced and recordings were 
continued for at least 24 hr. One animal did not run at all and 
showed no sustained waking in the dark phase when the CW 
was introduced and was therefore excluded from some of the 
analyses wherever appropriate. No significant difference in 
time spent running was observed between RW and CW nights 
(ANOVA test, factor “day”; entire dark phase: F(1,6)  =  1.006, 
p = 0.355; long wake bout only: F(1,6) = 0.199, p = 0.671).

•	 Exploratory wakefulness (EW): In the third group of animals 
(n = 7, age = 17 ± 5 weeks, mean ± SD), an undisturbed 24 hr 
recording was followed by 6 hr sleep deprivation (from light 
onset) and 18 hr recovery recordings. This group was used to 
determine whether predictions of the model are affected by 
the time of day and the nature of waking behavior.

The number of animals used in this study was in line with previ-
ous studies where computer simulations or regional differences 
in SWA were investigated [45, 46, 52, 56, 58, 59]. No power cal-
culations were employed here as the elaborated version of the 
model has not been used previously in rodents, and the effect 
sizes were uncertain.

Age was similar between groups, as revealed by a one-way 
ANOVA (F(2,18)  =  2.57, p  =  0.104). Other general experimental 
conditions were as described previously [60–62]. Briefly, ani-
mals were individually housed in custom-made clear Plexiglas 
cages (dimensions: 20.3  ×  32  ×  35  cm3) placed in ventilated, 
sound-attenuated Faraday chambers (Campden Instruments, 
Loughborough, UK). Mice had free access to running wheels 
(Campden Instruments, Loughborough, UK, wheel diameter: 
14  cm), or to CWs on the specified days. Recordings started a 
minimum of 4 days after the mice were cabled for habituation to 
recording cables and running wheels. Mice were kept at 22 ± 1°C 
with a humidity level of 60 ± 10% and maintained on a 12:12 hr 
light-dark cycle (light levels ∼ 120–180 lux). Food and water were 
available ad libitum. All work was carried out under a UK Home 
Office PPL in accordance with Animal [Scientific Procedures] Act 
1986 and the University of Oxford’s guidelines.

Surgical procedure

The surgical procedure was performed using aseptic techniques 
and under isoflurane anesthesia (3%–5% for induction, 1%–2% for 
maintenance). Animals were head-fixed using a stereotaxic frame 
(David Kopf Instruments, CA, USA). Prior to surgery, mice were 
administered with Metacam (1–2  mg/kg, s.c.) and dexametha-
sone (0.2 mg/kg, s.c.). The surgery consisted of the implantation 
of EEG and electromyography (EMG) electrodes, which has been 
described previously [60, 62]. As reported in Fisher et al. [62], EEG 
screws were placed in the frontal (motor area, anteroposterior 
+2 mm, mediolateral 2 mm) and occipital (visual area, V1, antero-
posterior −3.5 to −4  mm, mediolateral 2.5  mm) cortical regions, 
a reference screw was placed above the cerebellum and an add-
itional screw was placed in the opposite occipital bone to ensure 
stability of the implant. Finally, two stainless-steel wires were 
implanted on each side of the nuchal muscle to record the EMG. 
Some of the animals were also implanted with a microwire array 
in the frontal cortex to record neuronal activity, which is not ana-
lyzed here. Postoperatively, animals were administered with saline 
(0.1 mL/20 g, s.c.) to compensate for fluid loss and were provided 
with thermal support. Metacam (1–2 mg/kg) and dexamethasone 

(0.2 mg/kg) were administered orally for a period of at least 3 days 
and 2 days following surgery, respectively. The animals were left 
undisturbed for at least 2 weeks before being cabled.

Data acquisition and signal processing

Data acquisition was performed using the Multichannel 
Neurophysiology Recording System (Tucker-Davis Technologies 
Inc. [TDT], USA). EEG and EMG were continuously recorded, fil-
tered between 0.1 and 100 Hz, amplified (PZ5 NeuroDigitizer pre-
amplifier, TDT), and stored on a local computer at a sampling 
rate of 256.9 Hz, before being resampled offline at 256 Hz. Using 
custom-written Matlab (The MathWorks Inc., USA) scripts, sig-
nals were converted to .txt format. Txt files were then trans-
formed to European Data Format (EDF) using the open-source 
Neurotraces software. For further details on signal processing, 
see Vyazovskiy et al. [63], Cui et al. [60], and Fisher et al. [62].

Scoring of vigilance states

Vigilance states were scored by visual inspection of consecu-
tive 4  s epochs (4  s epoch  =  1 ts, ts standing for “time step”), 
using SleepSign software (Kissei Comtec Co., Nagano, Japan). To 
facilitate scoring, two EEG channels (frontal and occipital) and 
EMG were displayed. For each animal, at least four consecutive 
12 hr light and dark periods were scored, starting with a light 
period. Vigilance states were defined as waking (low-amplitude 
high-frequency EEG with a high level of EMG activity), NREMS 
(presence of slow-waves, high-amplitude, and low-frequency 
EEG with a low level of EMG activity), rapid eye movement sleep 
(REMS, low-amplitude, high-frequency EEG with a low level of 
EMG activity), or brief awakenings (periods of no more than five 
consecutive 4 s epochs of waking, occurring during NREMS or 
immediately following REMS episodes, and characterized by the 
presence of EMG activity). If any of the EEG channels were con-
taminated by artifacts, the epoch was scored as artifactual (i.e. 
the vigilance state was defined, but SWA values were ignored in 
subsequent analyses). In the RW/CW groups, artifactual epochs 
represented 2.8 ± 0.6% (mean ± SEM) of all epochs. The percent-
ages of artifactual epochs within each vigilance state was below 
6% (Wake: 4.4 ± 1.2%; NREMS: 1.5 ± 1.2%; REMS: 1.3 ± 1.0%, mean 
± SEM). Once the scoring was complete, EEG power density spec-
tra were computed for all 4 s epochs by a fast Fourier transform 
(Hanning window; 0.25 Hz resolution; frequency range 0 to 20 
Hz) and exported from SleepSign for further analysis.

Calculation of EEG slow-wave activity

SWA was defined as EEG power in the slow-wave range (0.5–4 
Hz). Unless otherwise stated, values were subsequently normal-
ized to the mean over all NREMS epochs during the baseline 
recording (baseline 48  hr for the RW and CW conditions, first 
24 hr only for the EW condition, as described below).

RW recordings

This cohort of animals was left undisturbed with access to a 
standard running wheel. Therefore, in this group, the “baseline” 
recordings that we will refer to correspond to 48 hr that will be 
used for the modeling (see below).
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CW recordings

In seven animals, 24  hr baseline recordings were followed by 
a 24  hr recording during which the animals had access to a 
“complex wheel,” i.e. a wheel with rungs missing in an irregu-
lar pattern (Supplementary Figure S1a). In this cohort, as base-
line recordings had been performed for at least 48 hr before the 
replacement of the standard wheel with a CW, parameters were 
optimized (see below) using the 2  days prior to the RW being 
exchanged for the CW. For all subsequent analyses, the dataset 
consisted of the last day of access to a RW (i.e. prior to the wheel 
being exchanged) and of the first day the animals had access to 
a CW.

EW recordings

In the group of animals that underwent sleep deprivation, after 
at least 24 hr of baseline recordings, a 6 hr sleep deprivation was 
performed starting at light onset. As the mice were kept awake 
during the light phase, which is their habitual quiet phase, this 
provided an opportunity to investigate the impact of the time 
of day on the dynamics of Process S and on the performance of 
the model. The sleep deprivation was performed starting from 
light onset, as our aim was to test the ability of our model to 
accurately predict the increase in SWA levels which follows a 
long period of waking during the time of day when the animals 
are typically asleep. Given that long periods of waking natur-
ally occur in the dark, performing the sleep deprivation at dark 
onset would not have provided us with a condition significantly 
deviating from baseline condition, against which the param-
eters have been optimized. Animals were kept awake by giv-
ing them new objects to explore or, if the animals were getting 
very drowsy, by tapping gently on the cage. The procedure was 
successful as only 1.6 ± 0.2% (mean ± SEM) of time was spent 
asleep (NREMS and REMS episodes included) during the 6 hr of 
EW. Although mice became gradually more and more drowsy, 
they still engaged with object exploration until the end of the 
6 hr procedure of sleep deprivation. Importantly, our aim was 
not to merely sleep deprive the mice, but to make them engage 
in exploration, to contrast this behavior against wheel-running 
(RW and CW cohorts). Following sleep deprivation, animals were 
left undisturbed. The 48 hr EW datasets we will refer to here con-
sist of 24 hr of baseline followed immediately by 6 hr of EW and 
18 hr of recovery. However, as the optimization process required 
48 hr of baseline (BL) recordings (see below), we duplicated the 
first 24 hr to estimate the parameters in this cohort, but all sub-
sequent analyses were done on the dataset consisting of 24 hr 
baseline followed by the sleep deprivation and recovery day. We 
chose to duplicate the 24 hr of baseline in the EW group to keep 
an approach similar to the RW and CW groups where 48 hr of 
baseline were available. The reasons to optimize against 48 hr 
instead of 24 hr in all three cohorts were that previous work [44, 
64] and our initial simulations showed that this yields a better fit 
and a more stable and accurate estimation of parameter values.

Selection of NREMS episodes

In most analyses (including the optimization process), we refer 
to “NREMS episodes” [65] as periods of NREMS longer than 1 min, 
allowing for short interruptions of no more than 4 ts (=16 s) at a 
time. These are to be differentiated from “sleep bouts” describing 

periods of sustained sleep, including both NREMS and REMS 
and brief awakenings. The choice of keeping NREMS episodes 
of at least 1 min was based on previous findings [66, 67] and our 
observation that very short NREMS episodes of up to 1 min dura-
tion have lower levels of SWA on average, not reflecting the level 
of sleep pressure, as the shorter episode length does not allow 
a full build-up of SWA. To analyze the intraepisodic dynamics 
of SWA during NREMS episodes, it was sometimes necessary to 
differentiate between shorter and longer NREMS bouts. In this 
paper, we refer to episodes that were at least 3 min in duration 
as long NREMS episodes.

Description of the model

The model was based on the following equations, which were 
adapted from Achermann et al. [44]:

(1)  Slow-wave activity (SWA(t)): Empirical SWA (and therefore 
simulated SWA) is always expressed—unless otherwise 
stated—as a percentage of mean SWA across NREMS in the 
baseline period used for optimizations (RW and CW: 48 hr, 
EW: 2 × 24 hr—as described above),

	
dSWA

dt
S

SU
SWA

S
= −



 − ( )( ) −. . . . .(rc SWA 1 1 1WT t RREMT t( )) 	

– . – . ( )fc SWA SWA REMT tR L( ) 	

– . – . ( )fc SWA SWA WT tW L( ) 	
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REMT t

duringREMS trigger seebelow

otherwise
( ) =



1

0

’ ’ ( )


	

(3)	 Waking (WT(t)):

	 WT t
duringwake trigger seebelow

otherwise
( ) =







1

0

’ ( )’

	

(4)	 Process S (S(t)):

	
dS
dt

= − +( ). – .gc SWA S S rsU 	

Definitions and further descriptions of the parameters can be 
found in Table  1. The time step used here is 4  s, whereas the 
original 1993 model [44] used 1 min time steps. This change was 
necessary to account for the more frequent and rapid alterna-
tion between vigilance states observed in mice in comparison 
with human subjects. The differential equation (1) governs the 
time course of SWA and shows a sigmoid-like build-up com-
ponent followed by two fall components depending on the 
REMS (REMT) and wake (WT) triggers. Compared with REMS, a 
REMT episode starts ta epochs before a REMS episode and lasts 
tp epochs longer (Supplementary Figure  S2). This works simi-
larly for WT compared with wake (ta being replaced by taw and 
tp by tpw). Allowing the model to anticipate the occurrence of 
REMS and wake by introducing the trigger functions REMT and 
WT, which are directly derived from the data (Supplementary 
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Figure  S2), enables us to obtain a better fit, just as it did in 
the original version of the model from Achermann et  al. [44]. 
Equation (4) governing the time course of Process S displays a 
decline component proportional to the level of SWA and a per-
manently activated rise component. The terms in grey shade in 
equation (1) have been added to the original equations [44] to 
allow for a steeper fall of SWA levels at transitions from NREMS 
to REMS or to wake, as is observed in mice, as well as to cor-
rect for a deviation in the saturating increase of Process S dur-
ing wake. Without those additional terms, the decline of SWA at 
the end of a NREMS episode was initially steep and then much 
attenuated as SWA levels became lower; this did not reflect the 
variations we observed in the empirical data. “Switching off” 
the build-up component of equation (1) as soon as an animal 
enters REMS or wake—as those grey-tone multiplication fac-
tors allow—provided a better fit between data and simulation. 
The differential equations were implemented in Matlab; as our 
system of equations was stiff (mainly due to state transitions), 
we used the “ode15s” solver. The solver was constrained to take 
maximal steps of 4 s (to ensure that at least one data point was 
obtained for each 4 s epoch), but the solver was then left free 
to take smaller steps if necessary. Once the final 48 hr solution 
from ode15s was obtained, data points belonging to the same 
4 s epoch were averaged to obtain a single value per 4 s epoch. 
Annex functions were written to calculate REMS trigger (REMT) 
and wake trigger (WT) (Table 1).

Similarly to the original 1993 model, and to reduce com-
putational time, we chose to optimize only a few parameters. 
Since some of the parameters are interdependent, we decided 

to fix first those parameters that could be evaluated by a visual 
inspection and had little influence on the error term, such as 
the fall constants, which were estimated by evaluating the slope 
of the decrease of SWA at the transition from NREMS to REMS/
wake. We then allowed the optimization to adjust only a subset 
of remaining parameters (Table 1, see below for more details on 
those parameters which were chosen for automated optimiza-
tion). As a rigorous sensitivity analysis sometimes led to aber-
rant results (the error is based on one mean value per NREMS 
episode, which is not suited to evaluate parameters determining 
the fine time course of SWA within NREMS episodes, such as fcR, 
fcW, and rc), for some parameter values (fcW, SWAL, ta/taw, tp/
tpw), the final choice was based on visual inspection. By “vis-
ual inspection,” we mean that at least three different observ-
ers went through a zoomed-in version of a 48  hr simulation 
(such as in Supplementary Figure S2b) and evaluated whether 
the variations of SWA matched empirical levels well (timing of 
the increase/fall and maximum and minimum levels reached). 
In the first elaborated version of the two-process model [44], 
the constants fcR and fcW were introduced and governed the 
fall rate of SWA at the transition from NREMS to REMS and to 
wake, respectively. In this original paper, using human data, fcW 
was approximately equal to 5*fcR. In the present version of the 
model, using mouse datasets, these two parameters were found 
to give the best results when their values were in a similar range 
(approximately 0.2 ts−1). By visual inspection, the variations 
induced by small variations of fcW were almost nondetectable, 
which is why a value of 0.2 was applied. For fcR, however, the 
value chosen had a slightly bigger impact on the overall fit of the 

Table 1.  Summary of the parameters and functions used in the model

Parameters Definition Description
Value used for the 
simulations*

rc Rise constant Determines the rise of SWA within NREMS  
episodes

0.5

fcR Fall constant REMT Determines the fall of SWA triggered by REMT (0.1; 0.2; 0.3)
fcW Fall constant WT Determines the fall of SWA triggered by WT 0.2
SWAL Lower asymptote of SWA 20
SWA0 Initial level of SWA at the  

beginning of the simulation
Adjusted for each animal 

and derivation
REMT(t) REMS trigger Activates the fall of SWA 1 or 0 (see equations)
ta Advance of REMT Advance of REMT with respect to the onset of  

empirical REMS
8

tp Prolongation of REMT Prolongation of REMT with respect to the duration  
of empirical REMS

6

WT(t) Wake trigger Activates the fall of SWA 1 or 0 (see equations)
taw Advance of WT Advance of WT with respect to the onset  

of empirical waking
8

tpw Prolongation of WT Prolongation of WT with respect to the duration  
of empirical waking

4

gc Gain constant Determines the decay of Process S Optimized for each animal 
and derivation

rs Rise rate of S Determines the increase of Process S Optimized for each animal 
and derivation

S0 Initial level of S at the 
 beginning of the simulation

Adjusted for each animal 
and derivation

SU Upper asymptote of S Optimized for each animal 
and derivation

*The time unit used in the simulations is the time step ts = 4 s. rc, fcR, fcW, gc, rs are expressed in ts−1; ta, tp, taw, tpw are expressed in ts; SWAL, SWA0, S0, SU are expressed 

as a percentage of mean SWA over NREMS in baseline (regular wheel and complex wheel groups: 48 hr of baseline, enforced/exploratory wakefulness group: 24 hr of 

baseline). 

SWA = slow-wave activity; NREMS = nonrapid eye movement sleep; REMS = rapid eye movement sleep.
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simulation to the data at NREMS to REMS transitions, and thus, 
we allowed the value to vary between 0.1, 0.2, and 0.3 depend-
ing on the animal or the derivation. SWAL was fixed to 20% of 
SWA mean. The value of SWAL does not contribute significantly 
to the error as it is an arbitrary value at which SWA levels stay 
during wake and REMS. After exploring various possibilities, and 
with the aim to set the same value for all animals, a value of 
20% was kept as it was a good average of SWA levels in wake 
across animals. Starting values of rs, gc, SU and S0 were derived 
from Franken et al. [59]. rs, gc, and SU were then optimized, as 
described below, whereas S0 was chosen as equal to the mean 
value of SWA over the very first NREMS episode longer than 
3 min (45 ts) recorded in 48 hr. SWA0 was also chosen individu-
ally for each animal and derivation as equal to the starting value 
of empirical SWA (i.e. at the beginning of the first light phase). 
ta, tp, taw, and tpw were evaluated by estimating the time taken 
by SWA to increase (respectively, decrease) before (respectively, 
after) a NREMS episode preceded (respectively, followed) by a 
REMS (for ta and tp) or wake (for taw and tpw) episode (Table 1). 
Finally, rc was initially taken as equal to the average increase 
rate of SWA at the beginning of NREMS episodes following wake; 
we then optimized rc alongside gc, SU, and rs, but as its impact 
on the solution was small—while slowing the optimization pro-
cess down—we chose to try multiple arbitrary values ranging 
from 0.2 to 1.5. After visual inspection, a value of 0.5 was chosen, 
which revealed the best fit in most animals.

Optimization/estimation process of the parameters

We chose an optimization approach similar to the one used in 
the original elaborated version of the two-process model [44] 
and added an additional step to test the stability of the solution 
obtained at the end of the optimization (see Step-by-step opti-
mization approach, and Supplementary Figure S3b). Using cus-
tom-made scripts, the parameters gc, rs, and SU were optimized 
by minimizing the squared error (function fminsearch) between 
simulated and empirical SWA of NREMS episodes longer than 
1 min. The time course of empirical SWA was smoothed with a 
moving median filter (moving window of n = 35 ts), as shown in 
Supplementary Figure S3a.

The squared error between simulation and data was calcu-
lated as follows: for a given ith NREMS episode occurring in the 
light period, a mean SWA value was calculated from both the 
empirical data (mempirical(i)) and the simulated data (msimulation(i)). 
The difference between those two means was calculated: 
d(i)  =  mempirical(i) − msimulation(i). Those differences were squared 
and added over all NREMS episodes occurring in the light phase 
to give the following equation:

	 M light( )
( )=

=
∑
i

n d i
n1

2

	

The same was done in the dark phase to generate M(dark). The 
overall squared error was then simply

	 Err
M light M dark

= ( ) + ( )
2 	

The goal of the optimization was to minimize this squared error 
(i.e. to minimize the discrepancy between empirical and simu-
lated data). Note that with this procedure, the time course of 

SWA within NREMS episodes was not fitted, as only mean SWA 
per episode was considered.

The approach of differentiating the light and dark periods—
before averaging them together—aimed to avoid a bias in the 
optimization process, given that in mice there are naturally 
more NREMS episodes occurring in the light phase than in the 
dark phase (number of NREMS episodes over two light periods 
(2 × 12 hr): 155 ± 20 (mean ± SD); over two dark periods: 49 ± 22. 
Values calculated from the RW group). On the other hand, taking 
an equal weighing of the light and dark phases means granting 
greater confidence to NREMS episodes happening in the dark 
phase, given that they are three times less numerous than in the 
light phase; this is a concession we chose to make as the main 
changes in SWA usually occur during the dark period.

Step-by-step optimization approach

The starting values for the three parameters gc, rs, and SU were 
initially derived from Franken et al. [59], and after a few trials, 
a reasonable range of starting values was chosen and the fol-
lowing method was observed for each animal (Supplementary 
Figure S3b):

(1)	 A first step of nine optimizations combining three different 
starting values of gc with three different values of rs was 
performed individually for each animal and derivation. The 
starting value for SU was kept the same for these nine opti-
mizations. Those starting values were as follows:

•	 In the frontal derivation: gc(0)  =  0.0005, 0.0010, 0.0020 ts−1; 
rs(0) = 0.0001, 0.0002, 0.0004 ts−1; SU(0) = 400%.

•	 In the occipital derivation: gc(0) = 0.0002, 0.0004, 0.0008 ts−1; 
rs(0) = 0.0001, 0.0002, 0.0004 ts−1; SU(0) = 450%.

(2)	 From the results of this first set of optimizations, the param-
eters yielding the smallest squared error were chosen as the 
starting values of a new run of nine optimizations, with the 
following rules (Supplementary Figure S3b):

•	 gc(0) = gc value yielding best result − 0.0002 ts−1;
gc value yielding best result ts−1;
gc value yielding best result + 0.0002 ts−1;

•	 rs(0) = rs value yielding best result − 0.00002 ts−1;
rs value yielding best result ts−1;
rs value yielding best result + 0.00002 ts−1;

•	 SU(0) = �SU value yielding best result, for all nine [gc(0); rs(0)] 
combinations.

This means that for each animal and derivation, the set of 
starting values for the second set of optimizations was unique 
(unless two animals showed the smallest squared error for the 
same set of values). At the end of this second set of optimiza-
tions, the variation in the squared errors obtained was <10% (i.e. 
the ratio (highest squared error − smallest squared error)/small-
est squared error < 0.10), which was considered satisfactory, as it 
showed a relative stability of the solutions obtained. No further 
step was performed and the values kept were those that yielded 
the smallest squared error in this second set of optimizations 
(Supplementary Figure S3b).

(3)	 Final simulations (as opposed to optimizations) using those 
optimized values of gc, rs, and SU were obtained in each ani-
mal (and derivation) and are the simulated datasets referred 
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to in this paper. Simulations used the exact same set of 
equations (1)−(4) as the optimizations and therefore also 
make use of the trigger functions REMT and WT. Parameter 
values used are those mentioned in Table 1, and for gc, rs, 
and SU, the ones determined from the optimization process 
described above. It is important to note that parameters 
were optimized against BL recordings and these BL values 
were kept to predict SWA and Process S levels in EW and CW 
recordings, in order to look at how waking behavior could 
then affect the adequacy of the model’s predictions.

Calculation of the error to evaluate how well the 
model predicts the data

To compare empirical and simulated SWA, we used both an 
“absolute error” and an “error.” The absolute error consisted in 
taking the mean of the absolute differences d(i) described above 
over a given period of interest. The error is the mean of those 
differences (without taking their absolute value); this may result 
in an important bias, however, as the individual differences may 
cancel each other, but gives an indication of whether the model 
over- or under-estimates the empirical data.

Statistical analysis

All statistical analyses were performed using SPSS Statistics 
(IBM Corp., Release 23.0.0.2). Tests used and their results are 
reported within figure legends, or within the Results section for 
tests run on data not included in the figures.

Results

The intraepisodic dynamics of SWA in mice can be 
described using the elaborated model

First, we investigated the performance of the model based on 
recordings obtained in a group of animals well habituated to 
regular running wheels (RW). As typical for mice kept in 12:12 hr 
light/dark conditions, the animals slept predominantly during 
the light period and were mostly awake during the dark period 
(Table 2, Supplementary Figure S4a). Extended wake bouts, likely 
encouraged by the access to a running wheel [67, 68], could be 
observed, and animals used their wheels voluntarily, spend-
ing an average 33 ± 7% (mean ± SEM) of the time awake run-
ning (Supplementary Text). As expected, the average EEG power 
spectra during NREMS, REMS, and waking showed character-
istic differences (Supplementary Figure  S4b). The time course 
of EEG SWA showed a declining trend across the light period 
and an increase after prolonged consolidated waking episodes 
(Figure 1). The initial levels of SWA were significantly higher in 

the frontal (Fro) derivation compared with the occipital (Occ) 
derivation, as has been described previously [49, 52, 69].

To test whether the dynamics of SWA can be described by 
the model based on the 24 hr distribution of waking and sleep, 
we applied an “elaborated” version of the two-process model 
[44]. This version of the model accounts for the declining trend 
of SWA during sleep (as in the previous versions of the model), 
but also for the variations of SWA within successive NREMS epi-
sodes [44]. Figure 1, A and B depict SWA and Process S for an 
individual representative mouse. A good fit was apparent, both 
during periods with low SWA and during early sleep after pro-
longed waking bouts, when SWA levels are increased for both 
derivations. The empirical and simulated SWA values were simi-
lar across 24 hr, and the time courses of empirical and simulated 
SWA during NREMS fitted closely during both individual NREMS 
episodes (Figure 2C) and overall during the light periods, when 
mice are predominantly asleep (Figure 2B). We should point out, 
however, that as SWA decreased gradually throughout the light 
period (Figure 2A), the error between data and simulation also 
showed a weak increasing trend, mainly in the frontal deriv-
ation (Figure 2B).

Since SWA does show distinct region-specific dynamics 
on a time scale of minutes, where both long-term history and 
immediate preceding state play a role [60], we next investi-
gated further the performance of the model within individ-
ual NREMS episodes (Figure  2C; lengths of NREMS episodes 
included  =  7.9  ±  3.9  min, mean ± SD). Note that in Figure  2C, 
the dynamics of individual NREMS episodes (only NREMS epi-
sodes longer than 3 min were included and averaged) are rep-
resented, showing the build-up and decrease of SWA levels at 
the beginning and end of a NREMS episode. The two essential 
constants, which affect the rate at which SWA levels decrease 
at the transitions from NREMS to wake or REMS, are fcW and fcR, 
respectively (Table  1). The higher the value of fcW and fcR, the 
steeper is the decrease of simulated SWA levels at state transi-
tions. Consistent with previous studies [43, 70, 71], we observed 
that SWA decreases sharply at the transitions from NREMS to 
wake or to REMS and increases at the transition from REMS 
or wake to NREMS (Figure 2C). This time course was similar in 
both derivations (Supplementary Material). The simulation fol-
lowed these variations closely, although occasional mismatches 
with SWA levels could be observed. Relatively minor discrepan-
cies were apparent between the empirical and simulated SWA 
towards the end of NREMS episodes immediately preceding 
REMS (Figures 1B and 2C). This may be related to the intrusion 
of spindle-activity and an instatement of mixed states, which 
increases within the light period in mice [71–74].

Since absolute EEG power levels, spectral composition, and 
the dynamics of SWA differ substantially between cortical 
regions [49, 52, 69, 75], we then addressed whether the param-
eters describing the dynamics of Process S also show regional 
differences. To this end, we performed optimizations for three 

Table 2.  Percentage of time spent in different vigilance states in the RW condition across 12 hr light and dark periods

Nonrapid eye movement sleep Rapid eye movement sleep Wake Brief awakenings

Day1-Light 60 ± 1% 11 ± 1% 25 ± 1% 4 ± 1%
Day1-Dark 17 ± 2% 2 ± 1% 79 ± 3% 1 ± 1%
Day2-Light 60 ± 1% 11 ± 1% 25 ± 2% 4 ± 1%
Day2-Dark 19 ± 3% 2 ± 1% 78 ± 4% 1 ± 1%

Values expressed as mean ± SEM. Brief awakenings are characterized by movement (electromyogram activity) happening during sleep for no more than 20 s (5 ts).
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essential parameters of Process S: its gain constant gc, rise rate 
rs, and upper asymptote SU (see Materials and Methods) sep-
arately for the frontal and the occipital derivation (Table  1). 
Interestingly, we observed that gc, which affects the rate of 
decrease of Process S depending on SWA levels, was significantly 
higher in the frontal derivation (Figure  3A). Interestingly, rs, 
which determines the build-up of Process S, was similar in the 
two derivations (Figure  3B), whereas SU, the upper asymptote, 
was also significantly higher in the frontal derivation (Figure 3C). 
These results were conserved when pooling data from the RW 
and EW groups (Supplementary Figure S5) and suggest that both 
sleep–wake history and cortical region are the major intrinsic 
factors which determine the dynamics of Process S.

The model’s performance is similar in the light and 
the dark periods

The time of day and lighting conditions are major extrinsic fac-
tors, which influence sleep–wake amount and quality across 
24  hr. Is the model performance influenced by these factors? 
Importantly, as mice have much more waking time during 
the dark period (D), the squared error term could be biased by 
the larger contribution of the light period (L) towards NREMS. 

Furthermore, overall SWA was substantially higher during the 
dark period compared with the light phase (Figure 2C). To account 
for this potential confound, we calculated the mean squared 
error separately for the L and D periods during the optimiza-
tion process and averaged the resulting values (see Materials 
and Methods, and Figure 4A). The simulation was found to fit 
empirical data similarly well during both L and D periods and in 
both derivations (Figure 4, B and C). To evaluate the fit between 
data and simulation further, we calculated the error in two ways 
(real and absolute values, see Materials and Methods). As shown 
by the error (Figure 4C), the model tended to slightly overesti-
mate empirical average SWA levels (positive error) in both light 
and dark phases and in both derivations (Figure  4C), particu-
larly towards the end of the light phase (Figure 2B; ANOVA, Fro: 
F(1,6) = 13.071, p = 0.011; Occ: F(1,6) = 26.667, p = 0.002), but no 
major difference between the L and the D periods was observed. 
Finally, we compared the performance of the model between the 
L and D periods by calculating SWA separately for NREMS epi-
sodes occurring during the L or D phase. Interestingly, despite a 
substantially higher overall level of SWA during the dark period, 
the performance of the model within individual episodes was 
similar across 24 hr (Figure 2C). However, as the amplitude of 
the absolute error seemed to be more variable in the dark phase 

Figure 1.  Simulated and empirical EEG SWA levels. EEG SWA levels are shown across 48 (A) and 2 hr (B) (from 20 to 22 hr) in one representative mouse, in the frontal (left 

panels) and occipital (right panels) derivations. Simulation results were plotted with one value per 4 s epoch, although the simulation solver was allowed to take steps 

of any size < 4 s (see Materials and Methods). SWA levels were normalized (expressed as percentage) against mean SWA over 48 hr in NREMS only. Light and dark phases 

are represented at the top of the figures (black bars = dark phase). NR = nonrapid eye movement sleep; R = rapid eye movement sleep; W = wake; ZT = zeitgeber time.
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across animals (Figure 4B), we tested the homogeneity of vari-
ances of the absolute error and error between L and D and across 
derivations by running paired-sample t-tests on the (absolute) 
differences between error-values and their group mean (as in a 
Levene’s test [76], but here the samples compared were not inde-
pendent as errors in L and D were measured in the same group 
of animals). The value of the variance of the absolute error, but 
not error, was somewhat higher in D than in L in both deriva-
tions, but this was not statistically significant (Fro: t(6) = −1.957, 
p = 0.098; Occ: t(6) = −1.586, p = 0.164).

The accuracy of the model’s prediction is robust 
irrespective of waking behavior

We next investigated the impact of specific waking experience 
on SWA levels and on the fit between data and simulation fol-
lowing a prolonged bout of spontaneous or induced wakeful-
ness (Figure  5, A and B). The direct comparison between the 
three conditions (RW, CW, and EW, see Figure 5A, and Materials 
and Methods) was enabled by the occurrence of an extended 
period of continuous wakefulness, which on average had a 
similar duration across groups and days (RW: 6.23  ±  2.58  hr, 
CW: 7.05 ± 2.74 hr, EW: 6.46 ± 1.50 hr, mean ± SD; Figure 5C and 
Supplementary Material for a detailed definition of long wake 
bouts). In all three conditions, the long wake bouts were invari-
ably followed by an increase in SWA (Figure  5D), which was 
significantly higher after EW than in the RW and CW cohorts 

(p = 0.042), but only in the frontal derivation and immediately 
following wake. We hypothesized that since predominant wak-
ing behavior is different among RW, CW, and EW conditions, 
if this is an essential factor which affects SWA, then perfor-
mance of the model should be different between the conditions. 
Interestingly, however, the model was robust to the preceding 
waking experience, and no statistically significant difference 
in the absolute error or error was observed between the groups 
(Figure 5E). However, as the CW and EW cohorts seemed more 
variable than the RW cohort, we performed a Levene’s test [76] 
to investigate differences in the homogeneity of variances. This 
revealed significantly different variances in the absolute differ-
ence d = |simulation-data| across the three conditions in the occip-
ital derivation (Fro: F(2,18) = 2.442, p = 0.115; Occ: F(2,18) = 4.46, 
p = 0.027); further analysis revealed that the variance of the abso-
lute difference (Occ) of the EW group was significantly higher 
(F(1,12) = 7.69, p = 0.017). As the absolute difference reflects the 
magnitude of the discrepancy between simulation and data 
(while the error gives an indication of the directionality of this 
discrepancy), this result shows that the model does not predict 
the data equally well in all animals in the minutes following 
total sleep deprivation (exploratory wakefulness, EW). To exam-
ine this aspect further, making use of a within-subject compari-
son, we compared the mean error over 40 min after long wake 
bouts occurring during the first (baseline) and second (EW) days 
specifically in the EW group. This analysis revealed only a minor 
difference in the error between days in the frontal derivation 

Figure 2.  A close fit was obtained between empirical and simulated SWA levels. (A) The time course of empirical NREMS SWA levels in the light phase of the second 

day of RW condition in the frontal (FRO) and occipital (OCC) derivations. n = 7; mean ± SEM. 2 hr values of SWA were normalized against the mean over the second light 

phase only (see Materials and Methods). (B) 2 hr values of the difference between simulated and empirical SWA in the light phase of the second day of RW condition. 

Only SWA values in NREMS episodes lasting longer than 1 min were included in this analysis. Red area: 95% CI, blue area: 1 SD. Dots represent individual animals. 

The significance of the results was assessed with an ANOVA for repeated measures (factors “derivation” and “time point”), which revealed a significant main effect of 

time point (F(5,30) = 5.518, p ≤ 0.001) and a significant interaction derivation*time point (F(5,30) = 5.49, p ≤ 0.001). (C) Average empirical and simulated SWA levels during 

NREMS episodes, in light (L) and dark (D) periods. Only NREMS episodes lasting >3 min were included (average length = 7.9 ± 3.9 min, mean ± SD). Individual episodes’ 

lengths were normalized to an arbitrary length of 1, to allow for averaging between episodes. Note that SWA is higher in the dark than in the light period. n = 7, mean 

± SEM. ZT = zeitgeber time.
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(Day1: 8.9 ± 2.3, Day2: −9.2 ± 8.7% mean SWA in NREMS, mean ± 
SEM, F(1,6) = 5.336, p = 0.060), and no difference was present in 
the occipital derivation (Day1: 9.1 ± 2.7, Day2: 11.5 ± 13.6% mean 
SWA in NREMS, mean ± SEM, F(1,6) = 0.034, p = 0.861). To rule 

out that this difference reflects a systematic difference in wake 
bout duration between conditions, we therefore asked whether 
the length of a long wake bout could have an impact on the fit 
between data and simulation directly following such a wake 

Figure 3.  Values retained for the three optimized parameters of Process S. (A–C) Mean (red line) and individual animal values (grey circles) of the parameters gc, rs, SU 

in the frontal (Fro) and occipital (Occ) derivations in the regular-wheel group. ts = 4 s; n = 7; red area: 95% CI, blue area = 1 SD. The significance of the difference in par-

ameter values between derivations was assessed with a nonparametric Wilcoxon signed-rank test; p-values are indicated above each plot. SWA = slow-wave activity; 

NREMS = nonrapid eye movement sleep.

Figure 4.  The SWA simulation fits empirical data similarly well in the light (L) and dark (D) phases. (A) Example of how the difference between mean values of empir-

ical and simulated SWA levels (plotted with one value per 4 s epoch) were taken for each NREMS episode, before being averaged over L or D phases (see Materials and 

Methods). Beginning and end of NREMS episodes (i.e. where each simulated and empirical SWA means are calculated) are indicated, respectively, with blue and green 

vertical lines. For each NREMS episode (delimited by a blue and green line), one average SWA value was computed, as required by the optimization process chosen. Here, 

only 24 min from one animal are shown for clarity. (B) Mean (red line) and individual (grey circles) absolute differences between simulated and empirical SWA levels 

in the RW group. Values calculated over NREMS episodes lasting longer than 1 min; n = 7. Red area: 95% CI, blue area: 1 SD. Significance was assessed with a two-way 

ANOVA for repeated-measures, factors “derivation” and “light phase.” No significant main effect or interaction were found (derivation, p = 0.056; light phase, p = 0.529; 

interaction, p = 0.488). (C) As in (B), but the error (and not absolute error) value of the difference d = SWAsimulation – SWAempirical is kept, allowing to see whether the model 

over- (positive difference) or under-estimated the empirical data. No significant main effect or interaction was found (derivation, p = 0.873; light phase, p = 0.956; inter-

action, p = 0.136). NR = NREMS; R = rapid eye movement sleep; sim = simulation; W = wake; ZT= zeitgeber time.
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bout. No statistically significant correlation was found between 
long wake bout durations and the absolute error in the following 
40 min (Supplementary Figure S6a). This suggests that if a sus-
tained wake bout is present, the model accurately predicts the 
following SWA increase, irrespective of ongoing wake behavior 
or its specific duration.

Wake analysis in RW, CW, and EW conditions

Since studies have shown that enforced wakefulness is associ-
ated with characteristic changes in the wake EEG spectra [75, 77], 
and, conversely, that wake quality may affect the dynamics of 
Process S [78], we next performed a detailed spectral analysis of 
the EEG during prolonged waking bouts. Waking was invariably 
characterized by high levels of θ-frequency activity in all three 
experimental conditions (Supplementary Figure S7a). However, 
an increase in θ-frequency (6–9 Hz) power was apparent in the 

CW group in the last hour of the prolonged wake bout, com-
pared with the first hour (Supplementary Figure S7b). This sug-
gests that waking combined with learning a new motor task 
could have had a different impact on some brain regions (the 
increase in θ power was significant in both derivations), com-
pared with performing a stereotypical task such as running on a 
regular and familiar wheel. Interestingly, an analysis of running 
pattern, such as speed or time spent running (Supplementary 
Figure S1), revealed no significant difference between the base-
line and complex-wheel day in the CW cohort. Notably, however, 
the introduction of a CW resulted in a shift of the peak of the 
running speed distribution towards lower paces (Supplementary 
Figure  S1g), suggesting that the exposure of CW required an 
acquisition of a novel motor skill.

Additionally, although all three groups showed an increase 
in wake SWA in the last hour of the wake bout compared with 
the first hour, the EW group showed the highest increase in the 

Figure 5.  Impact of waking behaviour on SWA levels and on the accuracy of the model’s predictions following long wake bouts (Supplementary Material). (A) Definition 

of the 48 hr recordings used for each group: RW, CW, and EW. Blue rectangles: days used for optimization of the parameters; purple and green rectangles: days for which 

predictions were made. (B) Representation of a typical long wake bout in one animal from the RW group (plotted with one value per 4 s epoch). (C) Average “long wake 

bout” durations across three conditions (RW, CW, EW) in the first and second days. In each condition, n = 7; red area: 95% CI, blue area: 1 SD; grey circles represent indi-

vidual animals. A mixed-design ANOVA (factors “condition” and “day”) revealed no significant main effects or interaction. (D) Time course of EEG SWA in NREMS during 

the 40 min following long wake bouts (10 min intervals) in three conditions. Mean ± SEM, n = 7 in each condition. SWA levels were normalized against mean SWA levels 

in NREMS during the previous 24 hr of baseline. An ANOVA followed by independent t-tests revealed a significantly higher value in the EW group in the frontal deriv-

ation in the first 10 min only (t(12) = −2.272, p = 0.042). (E) Average error between empirical data and simulations in three conditions in 40 min following long wake bouts 

(day 2). Only NREMS epochs were considered. For each condition, n = 7; red area: 95% CI, blue area: 1 SD; grey circles represent individual animals. The significance of 

the results was assessed using a mixed design two-way ANOVA (factors “derivation” and “condition”). There was no significant main effect of group or derivation, and 

no significant interaction group*derivation. sim = simulation; ZT = zeitgeber time.
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occipital derivation (Supplementary Figure  S7b—lower panel). 
These observations are consistent with previous studies show-
ing that wake EEG undergoes changes across prolonged wak-
ing [77, 79–82]. However, there was no systematic relationship 
between the precise duration of the prolonged waking bouts 
and subsequent SWA levels in any of the three conditions 
(Supplementary Figure S6b). Furthermore, the value of the abso-
lute error |simulation-data| in the initial 40  min interval after 
long wake bouts did not depend on the corresponding levels of 
empirical SWA (Supplementary Figure S8), suggesting that the 
model performance was good irrespective of the magnitude 
of SWA increase. Finally, there was no correlation between the 
percentage of time spent running on a wheel during long wake 
bouts and subsequent SWA levels or the performance of the 
model (Supplementary Figure S9).

Discussion

Performance of the model

Here, we applied for the first time an elaborated version of the 
two-process model to sleep recordings obtained in mice. The 
primary aims of this work were to assess whether the model 
could describe the dynamics of sleep in mice, and whether 
the time of day, lighting conditions, or specific waking behav-
iors influence the performance and predictions of the model. 
Furthermore, by using the EEG recorded from two anatomic-
ally and functionally distinct cortical regions, we formally 
addressed whether sleep homeostasis in mice is a global pro-
cess or whether it has a local component. Our main result was 
that the elaborated model can be successfully used to simulate 
the dynamics of SWA in mice on time scales spanning from 
minutes to hours. Although some of the essential parameters 
differed between cortical areas, we found that the model was 
overall robust to extrinsic factors that are known to have a 
major influence on wake and sleep, such as the time of day or 
waking experience.

Regional differences in Process S regulation

It is well known that SWA levels and dynamics differ across 
brain regions [49, 52, 69, 75]. Topographic differences in the 
dynamics of Process S in mice were highlighted for the first 
time in 2000 [52], and accordingly, our study showed differences 
between frontal and occipital areas in the regulation of Process 
S. Specifically, we report that the decay rate (or gain constant) 
of Process S is higher in the frontal derivation in mice, mani-
fested as a faster decline of Process S in the anterior cortical 
area, which is consistent with human data [50, 51]. In 1998, it 
was suggested that recovery processes occur at specific loca-
tions in the brain and that SWA variations are closely controlled 
in a topographical way [83]. Our study, therefore, agrees with 
such observations, as Process S, which is intrinsically correlated 
to SWA levels, displays different dynamics between the frontal 
and occipital areas. Additionally, our findings show that EW 
induced a larger increase in SWA in the frontal derivation com-
pared with the RW condition, an effect which is not observed 
in the occipital derivation (Figure  5D). A  possible explanation 
for the topographical differences observed in the dynamics of 
Process S could be linked to prior waking activity. Indeed, it has 

been reported that sleep pressure, reflected in SWA levels, may 
build up at different rates in various areas depending on which 
brain regions have been mostly active during previous waking 
[53, 80, 84, 85]. It has also been shown that the increase of SWA 
following sleep deprivation is higher in the anterior prefrontal 
regions [8, 54, 82], suggesting again that there is a differential 
local build-up of sleep need. However, another likely explan-
ation is that the difference in the dynamics of Process S between 
cortical areas is related to anatomical differences [86].

Light-dark differences

The effect of lighting conditions was investigated here using 
two complementary approaches. First, we compared the error 
between the light and the dark phases during spontaneous 
undisturbed conditions. Second, we compared the performance 
of the model during the initial sleep after a prolonged waking 
bout terminating in the middle of either  the dark or the light 
period. Although we found that the simulation fitted the data 
equally well in both L and D, the amplitude of the absolute error 
was more variable (although not significantly) in the dark phase 
across animals (Figure 4B). One possible interpretation for the 
fit between data and simulation being more variable across ani-
mals in D than in L is that there is generally a pronounced vari-
ability in sleep–wake distribution between individual animals 
during the dark phase, as the amount of sleep is lower and spe-
cifically NREMS episodes tend to be shorter. This finding is in 
agreement with Franken et al. [45], in which a better fit between 
data (recorded in rats) and simulation was obtained by using dif-
ferent time constants of the decrease of Process S in the light 
and dark periods. It cannot be excluded that there is a direct 
circadian influence—that the model does not currently tackle—
which would lead to different rates of increase and decrease 
of Process S depending on the time of day. Indeed, one study 
[87] using recordings performed in rats kept in constant dark-
ness also showed that the build-up rate of SWA changes with 
circadian time, thus showing that this is not caused by a direct 
influence of light, but rather by a circadian modulation of the 
SWA dynamics. Additionally, another study reported that circa-
dian rhythmicity significantly influences slow-wave character-
istics in humans [88], and a circadian influence was postulated 
earlier in simulations using the elaborated two-process model 
in humans [89]. It may be important to note that the circadian 
influence on the dynamics of SWA and Process S may be much 
stronger in some species than in others. For example, studies in 
humans [89] and rats [45, 87] obtained a better fit between data 
and simulation when allowing the time constants of the model 
to vary with the time of day, while this has so far not been pro-
posed in mice. Indeed, the fit is usually satisfactory when keep-
ing the constants unchanged across 24 hr [46, 59]. Accordingly, 
the performance of the model in our study was not markedly 
different between the initial sleep after a period of spontaneous 
waking during the dark period and after sleep deprivation dur-
ing the light phase. It was possible to make a direct comparison 
since the mean duration of the main waking bout was similar 
between the conditions (Figure  5C, Supplementary Material). 
However, it cannot be excluded that not only the lighting condi-
tions, but also the type of behavior is different between spon-
taneous wake in the dark period and sleep deprivation during 
the light phase.

12  |  SLEEPJ, 2018, Vol. 41, No. 7

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsy079#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsy079#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsy079#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsy079#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsy079#supplementary-data


Impact of wake experiences

Our next hypothesis was that waking experience is an import-
ant factor responsible for instantaneous changes in Process S. If 
this prediction was correct, the model would overestimate the 
levels of “sleep need” if prior waking was mainly “quiet” or dom-
inated by stereotypic behaviors, or conversely, underestimate 
sleep pressure if an animal is engaged in “demanding” activi-
ties, such as learning a novel motor skill or exploratory behav-
ior. Although wake has long been considered as a homogeneous 
state, it cannot be excluded that waking dominated by auto-
matic behaviors (such as regular wheel-running) may lead to a 
slower accumulation of sleep need than nonautomatic activities 
[62, 90]. To test the above hypothesis, we used data recorded in 
animals which had access to CWs during the dark period. Prior 
to the exposure to the CW, these animals were well adapted to 
run on a RW, which they used extensively. However, the use of 
a CW requires a different pattern of running, which is associ-
ated with sensorimotor learning. Surprisingly, we found that the 
introduction of a CW did not have a significant impact on how 
well the predictions of the model fitted the data, and the levels 
of SWA during subsequent sleep were not significantly differ-
ent from corresponding values after RW running. It cannot be 
excluded that this task was not sufficiently demanding, espe-
cially as the animals had previously obtained extensive experi-
ence of running on a RW. However, the presence of a CW did 
trigger an increase in EEG power density in the θ range over the 
course of waking. Although the interpretation of this finding 
is not straightforward, it suggests that in some respects wak-
ing involving running on a CW was qualitatively different. This 
could reflect either a higher arousal level or learning processes, 
both of which have been associated with an increase in EEG 
θ-activity [62, 77, 79, 91]. At any rate, our results suggest that 
wake duration is likely the main factor that accounts for the 
dynamics of Process S, above and beyond the contribution of 
specific wake experiences.

Although it has generally been assumed that homeostatic 
pressure increases with time spent awake, a recent study pro-
posed a reformulation of the sleep homeostasis model, whereby 
Process S would rise only during wakefulness dominated by 
high θ (5–10 Hz) activity [78]. Although this is an interesting pos-
sibility, an important potential caveat is that the occurrence of 
θ-rich waking may be related to an overall longer waking dur-
ation, which makes it difficult to disentangle the two factors. 
We argue that rather than Process S building specifically during 
θ-dominated waking, it is possible that other factors, which are 
manifested in more active waking behaviors, may in turn result 
in prolonged sustained wakefulness and therefore a robust 
build-up of sleep need. Additionally, it cannot be excluded that 
factors such as an elevation of brain temperature or metabolic 
rate during active waking may influence the rate at which sleep 
need increases [59, 92, 93].

Limitations

One aim of the present study is to investigate the applicability of 
an elaborated version of the two-process model to mouse data. 
However, all analyses were performed using data recorded in a 
single strain (C57BL/6J). Given the variations already observed 
by Huber et  al. [46], significant variations in the parameters—
and the performance—of the model between different strains 

may be expected. Similarly, we did not use recordings per-
formed in female mice, and the possibility remains that there 
are gender differences in the effects of extrinsic factors on 
sleep homeostasis. In addition, only two areas of the neocor-
tex were investigated (motor and visual cortex) and the study 
of the topographical variations of SWA dynamics could benefit 
in the future from recordings performed in other regions. Since 
the main finding of this study—that the model appears robust 
to some important extrinsic factors—could be considered as a 
negative result, the possibility remains that adding further ani-
mals could reveal significant differences. However, we find this 
possibility unlikely since the number of animals we used was in 
line with previous studies [45, 46, 52, 56, 58, 59] and no system-
atic trends were apparent among individual mice.

Finally, we did not find any significant impact of varying 
waking behaviors on the performance of the model. This does 
not exclude the possibility that sleep pressure may build up or 
dissipate at different rates with or without access to a RW or CW, 
but that our modeling approach was not sensitive enough, nor 
does it exclude that other waking experiences may have had a 
stronger influence on the dynamics of Process S. For instance, 
more stressful activities, which have been shown to enhance 
sleep intensity in the following sleep episode [94], may have 
resulted in an increased error between data and simulation 
when using parameters optimized on baseline. Additionally, to 
test the possibility that a stereotypic waking behavior such as 
wheel-running reduces the build-up of Process S, a preferable 
approach would have been to compare to a nonrunning waking 
behavior (e.g. sleep deprivation by handling or spontaneous wak-
ing without access to a running-wheel during the dark period), 
instead of the approach chosen here where mice had always 
access to a running wheel, and where therefore the impact of 
the “nature” of the wheel (RW versus CW) was analyzed.

Conclusions

The striking robustness of the model that we observed across a 
variety of conditions may reveal a fundamental—although yet to 
be fully defined—aspect of sleep homeostasis. It appears that as 
long as a mouse is awake, Process S builds up, and if the mouse 
is asleep, it decreases, regardless of circadian time, light or wak-
ing behavior; the only difference that was consistently observed 
was between cortical regions. We therefore hypothesize that initi-
ation, maintenance, and termination of wake and sleep states are 
largely independent of sleep–wake history, and instead primarily 
determined by ecological and extrinsic factors, such as circadian 
time or lighting conditions, and vital needs, such as hunger. This 
aspect of sleep regulation is thus likely distinct from the system 
that keeps track of time spent awake or asleep. Although this 
hypothesis remains to be tested empirically, our findings, sup-
ported by the modeling approach, are consistent with numerous 
observations that homeostatic sleep drive can be overridden by 
a variety of factors, and sometimes for extended periods of time, 
such as during migration [95, 96] or when food is restricted [97–
99]. Furthermore, this scenario is compatible with the view that 
sleep has features of a default state [100–104], which suggests 
that the necessity and the capacity to sustain wakefulness are 
the main target of regulation. Clearly, even if the biological neces-
sity to remain awake is high, it is unlikely that sleep can be fully 
uncoupled from the circadian rest-activity rhythm for longer than 
a short period of time without deleterious consequences [105]. On 
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the other hand, the continual interaction between intrinsic and 
extrinsic factors regulating sleep may be essential to allow most 
efficient sleep, both with respect to internal needs and taking into 
account ecological factors [106].

Supplementary Material
Supplementary material is available at SLEEP online.
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