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Abstract The most widely used account of decision-
making proposes that people choose between alternatives
by accumulating evidence in favor of each alternative until
this evidence reaches a decision boundary. It is frequently
assumed that this decision boundary stays constant dur-
ing a decision, depending on the evidence collected but
not on time. Recent experimental and theoretical work has
challenged this assumption, showing that constant decision
boundaries are, in some circumstances, sub-optimal. We
introduce a theoretical model that facilitates identification
of the optimal decision boundaries under a wide range of
conditions. Time-varying optimal decision boundaries for
our model are a result only of uncertainty over the difficulty
of each trial and do not require decision deadlines or costs
associated with collecting evidence, as assumed by previ-
ous authors. Furthermore, the shape of optimal decision
boundaries depends on the difficulties of different decisions.
When some trials are very difficult, optimal boundaries
decrease with time, but for tasks that only include a mixture
of easy and medium difficulty trials, the optimal boundaries
increase or stay constant. We also show how this simple
model can be extended to more complex decision-making
tasks such as when people have unequal priors or when they
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can choose to opt out of decisions. The theoretical model
presented here provides an important framework to under-
stand how, why, and whether decision boundaries should
change over time in experiments on decision-making.
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Introduction

In many environmental settings, people frequently come
across decision-making problems where the speed of mak-
ing decisions trades off with their accuracy. Consider for
example the following problem: a financial advisor is
employed by a firm to make buy/sell recommendations on
their portfolio of assets. All assets seem identical but the
value of some assets is stochastically rising while the value
of others is falling. For each correct recommendation (advi-
sor recommends buy and the asset turns out to be rising or
vice-versa), the advisor receives a fixed commission and for
each incorrect recommendation (advisor recommends buy
and the asset turns out to be falling or vice-versa) they pay a
fixed penalty. In order to make these recommendations, the
advisor examines the assets sequentially and observes how
the value of each asset develops over time. Each observation
takes a finite amount of time and shows whether the value of
the asset has gone up or down over this time. Before recom-
mending whether the firm should buy or sell the asset, the
advisor can make as many of these up/down observations as
they like. However, there is an opportunity cost of time as
the advisor wants to maximize the commission every month
by making as many correct recommendations as possible.
How many (up/down) observations should the advisor make
for each asset before giving a recommendation?
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Sequential decision problems

The type of problem described above is at the heart of
sequential analysis and has been investigated by researchers
from Bernoulli (1713) and Laplace, (1774, 1812) to mod-
ern day statisticians (for a review, see Ghosh, 1991). This
problem is also directly relevant to the psychology and
neuroscience of decision-making. Many decision-making
problems, including perceptual decisions (how long to sam-
ple sensory information before choosing an option) and
foraging problems (how long to forage at the current patch
before moving to the next patch), can be described in the
form above. The decision-maker has to make a series of
choices and the information needed to make these choices
is spread out over time. The decision-maker wants to max-
imize their earnings by attempting as many decisions as
possible in the allocated time. Sampling more information
(up/down observations) allows them to be more accurate in
their choices, at the expense of the number of decision prob-
lems that can be attempted. Therefore the speed of decisions
trades off with their accuracy and the decision-maker must
solve (i) the stopping problem, i.e., decide how much infor-
mation to sample before indicating their decision, and (ii)
the decision problem, i.e., which alternative to choose, in
such a way that they are able to maximize their earnings.

The stopping problem was given a beautifully simple
solution by Wald (1945b), who proposed the following
sequential procedure: after each sample (up/down obser-
vation), compute the likelihood ratio, λn, of the samples
(X1, . . . , Xn) and choose the first alternative (buy) if λn ≥
A and second alternative (sell) if λn ≤ B, otherwise con-
tinue sampling for n = 1, 2, . . ., where A and B are two
suitably chosen constants. This procedure was given the
name the sequential probability ratio test (SPRT). Wald
(1945a, b) and Wald and Wolfowitz (1948) showed that
the SPRT is optimal in the sense that it can guarantee a
required level of accuracy (both Type 1 and Type 2 errors
are bounded) with a minimum average sample size (number
of up /down observations made).

This sequential procedure of continuing to sample evi-
dence until a decision variable (likelihood ratio for SPRT)
has crossed a fixed threshold also forms the basis for
the most widely used psychological account of decision-
making. This account consists of a family of models, which
are collectively referred to as sequential sampling mod-
els (Stone, 1960; LaBerge, 1962; Laming, 1968; Link &
Heath, 1975; Vickers, 1970; Ratcliff, 1978) and have been
applied to a range of decision tasks over the last 50 years
(for reviews, see Ratcliff & Smith, 2004; Bogacz, Brown,
Moehlis, Holmes, & Cohen, 2006). Like the SPRT, sequen-
tial sampling models propose that decision-makers solve
the stopping problem by accumulating evidence in favor
of each alternative until this evidence crosses a decision

boundary. Also like the SPRT, the standard sequential sam-
pling account assumes that this decision boundary remains
constant during a decision. In fact, Bogacz et al. (2006)
showed that, under certain assumptions, including the
assumption that all decisions in a sequence are of the same
difficulty, the decision-maker can maximize their reward
rate by employing the SPRT and maintaining an appro-
priately chosen threshold that remains constant within and
across trials.1 In the above example, this means that if the
financial advisor chose the stopping criterion, stop sampling
if you observe three more ups than downs (or vice-versa),
they stick with this criterion irrespective of whether they
have observed ten values of an asset or a hundred.

A number of recent studies have challenged this account
from both an empirical and a theoretical perspective, argu-
ing that in many situations decision-makers decrease the
decision boundary with time and that it is optimal for them
to do so (Drugowitsch, Moreno-Bote, Churchland, Shadlen,
& Pouget, 2012; Huang & Rao, 2013; Thura, Cos, Trung, &
Cisek, 2014; Moran, 2015). The intuition behind these stud-
ies is that instead of determining the decision boundaries
based on minimizing the average sample size at a desired
level of accuracy (as some formulations of SPRT do),
decision-makers may want to maximize the expected reward
earned per unit time, i.e., the reward rate. Psychological
studies and theories of decision-making generally give lit-
tle consideration to the reward structure of the environment.
Participants are assumed to trade-off between accuracy and
reaction time in some manner that is consistent with the—
typically vague—experimenter instructions (e.g., “try to be
as fast and accurate as possible”). Models integrating to a
fixed threshold often work well for these situations, giving
good accounts for participants’ accuracy and reaction time
distributions. However, it has been shown that using models
integrating to a fixed threshold leads to sub-optimal reward
rate in heterogeneous environments—i.e., when decisions
vary in difficulty (Moran, 2015). This leads to the natu-
ral question: how should the decision-maker change their
decision-boundary with time if their aim was to maximize
the reward rate.

Optimal decision boundaries in sequential decision
problems

A number of models have been used to compute the optimal
decision boundaries in sequential decision-making. These
models differ in (a) how the decision problem is formu-
lated, and (b) whether the decision boundary is assumed to
be fixed across trials or vary from one trial to next.

1Throughout this article, we use ‘threshold’ to refer to a decision
boundary that remains constant within and across trials.
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Rapoport and Burkheimer (1971) modeled the deferred
decision-making task (Pitz, Reinhold, & Geller, 1969)
where the maximum number of observations were fixed
in advance (and known to the observer) and making each
observation carried a cost. There was also a fixed cost
for incorrect decisions and no cost for correct decisions.
Rapoport and Burkheimer used dynamic programming
(Bellman, 1957; Pollock, 1964) to compute the policy that
minimized the expected loss and found that the optimal
boundary collapsed as the number of observations remain-
ing in a trial decreased. Busemeyer and Rapoport (1988)
found that, in such a deferred decision-making task, though
people did not appear to follow the optimal policy, they
did seem to vary their decision boundary as a function of
number of remaining observations.

A similar problem was considered by Frazier and Yu
(2007) but instead of assuming that the maximum num-
ber of observations was fixed, they assumed that this
number was drawn from a known distribution and there
was a fixed cost for crossing this stochastic deadline.
Like Rapoport and Burkheimer (1971), Frazier and Yu
showed that under the pressure of an approaching deadline,
the optimal policy is to have a monotonically decreasing
decision-boundary and the slope of boundaries increased
with the decrease in the mean deadline and an increase in its
variability.

Two recent studies analyzed optimal boundaries for a
decision-making problem that does not constrain the max-
imum number of observations. Drugowitsch et al. (2012)
considered a very general problem where the difficulty of
each decision in a sequence is drawn from a Gaussian
or a general symmetric point-wise prior distribution and
accumulating evidence comes at a cost for each observa-
tion. Using the principle of optimality (Bellman, 1957),
Drugowitsch et al. showed that under these conditions, the
reward rate is maximized if the decision-maker reduces their
decision boundaries with time. Similarly, Huang and Rao
(2013) used the framework of partially observed Markov
decision processes (POMDP) to show that expected future
reward is maximized if the decision-maker reduces the
decision boundary with time.

In contrast to the dynamic programming models men-
tioned above, Deneve (2012) considered an alternative theo-
retical approach to computing decision boundaries. Instead
of assuming that decision boundaries are fixed (though
time-dependent) on each trial, Deneve (2012) proposed that
the decision boundary is set dynamically on each trial based
on an estimate of the trial’s reliability. This reliability is used
to get an on-line estimate of the signal-to-noise ratio of the
sensory input and update the decision boundary. By sim-
ulating the model, Deneve found that decision boundaries
maximize the reward rate if they decrease during difficult
trials, but increase during easy trials.

The present analysis

The principal aim of this paper is to identify the minimal
conditions needed for time-varying decision boundaries,
under the assumption that the decision-maker is trying to
maximize the reward rate. We will develop a generic pro-
cedure that enables identification of the optimal decision
boundaries for any discrete, sequential decision problem
described at the beginning of this article. In contrast to the
problems considered by Rapoport and Burkheimer (1971)
and Frazier and Yu (2007), we will show that the pressure
of an approaching deadline is not essential for a decrease in
decision boundaries.

In contrast to Drugowitsch et al. (2012), we do not
assume any explicit cost for making observations and
show that optimal boundaries may decrease even when
making observations carries no explicit cost. Furthermore,
unlike the very general setup of Drugowitsch et al. (2012)
and Huang and Rao (2013), we make several simplifying
assumptions in order to identify how the shape of optimal
decision boundaries changes with the constituent difficul-
ties of the task. In particular, in the initial exposition of the
model, we restrict the difficulty of each decision to be one
of two possible levels (though see the Discussion for a sim-
ple extension to more than two difficulties). In doing so, we
reveal three key results: (i) we show that optimal boundaries
must decrease to zero if the mixture of difficulties involves
some trials that are uninformative, (ii) the shape of optimal
boundaries depends on the inter-trial interval for incorrect
decisions but not correct decisions (provided the latter is
smaller) and (iii) we identified conditions under which the
optimal decision boundaries increase (rather than decrease)
with time within a trial. In fact, we show that optimal deci-
sion boundaries decrease only under a very specific set
of conditions. This analysis particularly informs the ongo-
ing debate on whether people and primates decrease their
decision boundaries, which has focused on analyzing data
from existing studies to infer evidence of decreasing bound-
aries (e.g., Hawkins, Forstmann, Wagenmakers, Ratcliff, &
Brown, 2015; Voskuilen, Ratcliff, & Smith, 2016). The evi-
dence on this point is mixed. Our study suggests that such
inconsistent evidence may be due to the way decision dif-
ficulties in the experiment are mixed, as well as how the
reward structure of the experiment is defined.

Next, we extend this analysis to two situations which
are of theoretical and empirical interest: (i) What is the
influence of prior beliefs about the different decision alter-
natives on the shape of the decision boundaries? (ii) What
is the optimal decision-making policy when it is possible
to opt-out of a decision and forego a reward, but be spared
the larger penalty associated with an incorrect choice? In
each case, we link our results to existing empirical research.
When the decision-maker has unequal prior beliefs about
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the outcome of the decision, our computations show that the
optimal decision-maker should dynamically adjust the con-
tribution of prior to each observation during the course of
a trial. This is in line with the dynamic prior model devel-
oped by Hanks, Mazurek, Kiani, Hopp and Shadlen (2011)
but contrasts with the results observed by Summerfield
and Koechlin (2010) and Mulder, Wagenmakers, Ratcliff,
Boekel and Forstmann (2012). Similarly, when it is possible
to opt-out of a decision, the optimal decision-making pol-
icy shows that the decision-maker should choose this option
only when decisions involve more than one difficulty (i.e.,
the decision-maker is uncertain about the difficulty of a
decision) and only when the benefit of choosing this option
is carefully calibrated.

A theoretical model for optimal boundaries

Problem definition

We now describe a Markov decision process to model the
stopping problem described at the beginning of this arti-
cle. We consider the simplest possible case of this problem,
where we: (i) restrict the number of choice alternatives to
two (buy or sell), (ii) assume that observations are made at
discrete (and constant) intervals, (iii) assume that observa-
tions consist of binary outcomes (up or down transitions),
and (iv) restrict the difficulty of each decision to one of two
possible levels (assets could be rising (or falling) at one of
two different rates).

The decision-maker faces repeated decision-making
opportunities (trials). On each trial the world is in one of two
possible states (asset is rising or falling), but the decision-
maker does not know which at the start of the trial. At a
series of times steps t = 1, 2, 3, . . . the decision-maker
can choose to wait and accumulate evidence (observe if
value of asset goes up or down). Once the decision-maker
feels sufficient evidence has been gained, they can choose
to go, and decide either buy or sell. If the decision is correct
(advisor recommends buy and asset is rising or advisor rec-
ommends sell and asset is falling), they receive a reward. If
the decision is incorrect they receive a penalty. Under both
outcomes the decision-maker then faces a delay before start-
ing the next trial. If we assume that the decision-maker will
undertake multiple trials, it is reasonable that they will aim
to maximize their average reward per unit time. A behav-
ioral policy which achieves the optimal reward per unit time
will be found using average reward dynamic programming
(Howard, 1960; Ross, 1983; Puterman, 2005).

We formalize the task as follows. Let t = 1, 2, . . . be
discrete points of time during a trial, and let X denote the
previous evidence accumulated by the decision-maker at
those points in time. The decision-maker’s state in a trial

is given by the pair (t, X). Note that, in contrast to pre-
vious accounts that use dynamic programming to establish
optimal decision boundaries (e.g., Drugowitsch et al., 2012;
Huang & Rao, 2013), we compute optimal policies directly
in terms of evidence and time, rather than (posterior) belief
and time. The reasons for doing so are elaborated in the Dis-
cussion. In any state, (t, X), the decision-maker can take
one of two actions: (i) wait and accumulate more evidence
(observe asset value goes up/down), or (ii) go and choose
the more likely alternative (buy/sell).

If action wait is chosen, the decision-maker observes the
outcome of a binary random variable, δX, where P(δX =
1) = u = 1 − P(δX = −1). The up-probability, u,
depends on the state of the world. We assume throughout
that u ≥ 0.5 if the true state of the world is rising, and
u ≤ 0.5 if the true state is falling. The parameter u also
determines the trial difficulty. When u is equal to 0.5, the
probability of each outcome is the same (equal probabil-
ity of asset value going up/down); consequently, observing
an outcome is like flipping an unbiased coin, providing the
decision-maker absolutely no evidence about which hypoth-
esis is correct. On the other hand, if u is close to 1 or 0
(asset value almost always goes up/down), observing an out-
come provides a large amount of evidence about the correct
hypothesis, making the trial easy. After observing δX the
decision-maker transitions to a new state (t + 1, X + δX),
as a result of the progression of time and the accumula-
tion of the new evidence δX. Since the decision-maker does
not know the state of the world, and consequently does not
know u, the distribution over the possible successor states
(t+1, X±1) is non-trivial and calculated below. In the most
general formulation of the model, an instantaneous cost (or
reward) would be obtained on making an observation, but
throughout this article we assume that rewards and costs
are only obtained when the decision-maker decides to select
a go action. Thus, in contrast to some approaches (e.g.,
Drugowitsch et al., 2012), the cost of making an observation
is 0.

If action go is chosen then the decision-maker transitions
to one of two special states, C or I , depending on whether
the decision made after the go action is correct or incorrect.
As with transitions underwait , the probability that the deci-
sion is correct depends in a non-trivial way on the current
state, and is calculated below. From the states C and I , there
is no action to take, and the decision-maker transitions to
the initial state (t, X) = (0, 0). From state C the decision-
maker receives a reward RC and suffers a delay of DC ; from
state I they receive a reward (penalty) of RI and suffers a
delay of DI .

In much of the theoretical literature on sequential sam-
pling models, it is assumed, perhaps implicitly, that the
decision-maker knows the difficulty level of a trial. This
corresponds to knowledge that the up-probability of an
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observation is u = 0.5 + ε when the true state is rising,
and u = 0.5 − ε when the true state is falling. However, in
ecologically realistic situations, the decision-maker may not
know the difficulty level of the trial in advance. This can
be modeled by assuming that the task on a particular trial
is chosen from several different difficulties. In the example
above, it could be that up / down observations come from
different sources and some sources are noisier than oth-
ers. To illustrate the simplest conditions resulting in varying
decision boundaries, we model the situation where there
are only two sources of observations: an easy source with
u ∈ Ue = { 12 − εe,

1
2 + εe} and a difficult source with

u ∈ Ud = { 12 − εd, 1
2 + εd}, where εe, εd ∈ [0, 1

2 ] are the
drifts of the easy and difficult stimuli, with εd < εe. Thus,
during a difficult trial, u is close to 0.5, while for an easy
trial u is close to 0 or 1. We assume that these two types
of tasks can be mixed in any fraction, with P(U ∈ Ue) the
probability that the randomly selected drift corresponds to
an easy task in the perceptual environment. For now, we
assume that within both of Ue and Ud , u is equally likely to
be above or below 0.5—i.e., there is equal probability of the
assets rising and falling. In the section titled “Extensions of
the model” below, we will show how our results generalize
to the situation of unequal prior beliefs about the state of the
world.

Figure 1a depicts evidence accumulation as a random
walk in two-dimensional space with time along the x-axis
and the evidence accumulated, X1, . . . , Xt , based on the
series of outcomes, +1, +1, −1, +1, along the y-axis. The
figure shows both the current state of the decision-maker
at (t, Xt ) = (4, 2) and their trajectory in this state-space.
In this current state, the decision-maker has two available
actions: wait or go. As long as they choose to wait they
will make a transition to either (5, 3) or (5, 1), depending
on whether the next δX outcome is +1 or −1. Figure 1b
shows the transition diagram for the stochastic decision pro-
cess that corresponds to the random walk in Fig. 1a once
the go action is introduced. Transitions under go take the
decision-maker to one of the states C or I , and subsequently
back to (0, 0) for the next trial.

Our formulation of the decision-making problem has
stochastic state transitions, decisions available at each state,
and transitions from any state (t, X) depending only on
the current state and the selected action. This is there-
fore a Markov decision process (MDP) (Howard, 1960;
Puterman, 2005), with states (t, x) and the two dummy
states C and I corresponding to the correct and incorrect
choice. A policy is a mapping from states (t, x) of this
MDP to wait/go actions. An optimal policy that maxi-
mizes the average reward per unit time in this MDP can be
determined by using the policy iteration algorithm (Howard,
1960; Puterman, 2005). A key component of this algorithm
is to calculate the average expected reward per unit time

for fixed candidate policies. To do so, we must first deter-
mine the state-transition probabilities under either action
(wait /go) from each state for a given set of drifts (Eqs. 6
and 7 below). These state-transition probabilities can then
be used to compare the wait and go actions in any given
state using the expected reward under each action in that
state.

Computing state-transition probabilities

Computing the transition probabilities is trivial if one knows
the up-probability, u, of the process generating the out-
comes: the probability of transitioning from (t, x) to (t +
1, x + 1) is u, and to (t + 1, x − 1) is 1− u. However, when
each trial is of an unknown level of difficulty, the observed
outcomes (up/down) during a particular decision provide
information not only about the correct final choice but also
about the difficulty of the current trial. Thus, the current
state provides information about the likely next state under a
wait action, through information about the up-probability,
u. Therefore, the key step in determining the transition prob-
abilities is to infer the up-probability, u, based on the current
state and use this to compute the transition probabilities.

As already specified, we model a task that has trials
drawn from two difficulties (it is straightforward to gener-
alize to more than two difficulties): easy trials with u in the
set Ue = { 12 −εe,

1
2 +εe} and difficult trials with u in the set

Ud = { 12−εd, 1
2+εd} (note that this does not preclude a zero

drift condition, εd = 0). To determine the transition proba-
bilities under the action wait , we must marginalize over the
set of all possible drifts, U = Ue ∪ Ud :

pwait
(t,x)→(t+1,x+1) = P(Xt+1=x+1|Xt =x)

=
∑

u∈U
P(Xt+1=x+1|Xt =x, U =u) · P(U =u|Xt =x)

pwait
(t,x)→(t+1,x−1) = 1 − pwait

(t,x)→(t+1,x+1) (1)

where U is the (unobserved) up-probability of the current
trial. P(Xt+1 = x+1|Xt = x, U = u) is the probability that
δX = 1 conditional on Xt = x and theup-probability being
u; this is simply u (the current evidence levelXt is irrelevant
when we also condition on U = u). All that remains is to
calculate the term P(U = u|Xt = x).

This posterior probability of U = u at the current state
can be inferred using Bayes’ law:

P(U =u|Xt =x) = P(Xt =x|U =u) · P(U =u)∑
ũ∈UP(Xt =x|U = ũ) · P(U = ũ)

(2)

where P(U = u) is the prior probability of the up-
probability being equal to u. The likelihood term, P(Xt =
x|U = u), can be calculated by summing the probabili-
ties of all paths that would result in state (t, x). We use the
standard observation about random walks that each of the
paths that reach (t, x) contains t+x

2 upward transitions and

Psychon Bull Rev (2018) 25:971–996 975



(a) (b)

Fig. 1 a Evidence accumulation as a random walk. Gray lines show current trajectory and black lines show possible trajectories if the decision-
maker chooses to wait. b Evidence accumulation and decision-making as a Markov decision process: transitions associated with the action go are
shown in dashed lines, while transitions associated with wait are shown in solid lines. The rewarded and unrewarded states are shown as C and I,
respectively (for Correct and Incorrect)

t−x
2 downward transitions. Thus, the likelihood is given by

the summation over paths of the probability of seeing this
number of upward and downward moves:

P(Xt =x|U =u)=
∑

paths

u(t+x)/2(1−u)(t−x)/2=npathsu
(t+x)/2(1−u)(t−x)/2.

(3)

Here npaths is the number of paths from state (0, 0) to state
(t, x), which may depend on the current decision-making
policy. Plugging the likelihood into (2) gives

P(U =u|Xt =x) = npathsu
(t+x)/2(1−u)(t−x)/2

P(U =u)∑
ũ∈Unpathsũ(t+x)/2(1−ũ)(t−x)/2P(U = ũ)

.

(4)

Some paths from (0, 0) to (t, x) would have resulted in a
decision to go (based on the decision-making policy), and
therefore could not actually have resulted in the state (t, x).
Note, however, that the number of paths npaths is identical in
both numerator and denominator, so can be cancelled.

P(U =u|Xt =x) = u(t+x)/2(1 − u)(t−x)/2
P(U =u)∑

ũ∈U ũ(t+x)/2(1−ũ)(t−x)/2P(U = ũ)
.

(5)

Using Eq. 1, the transition probabilities under the action
wait can therefore be summarized as:

pwait
(t,x)→(t+1,x+1) =

∑

u∈U
u · P(U =u|Xt =x) = 1 − pwait

(t,x)→(t+1,x−1)

(6)

where the term P(U = u|Xt = x) is given by Eq. 5.
Equation 6 gives the decision-maker the probability of an
increase or decrease in evidence in the next time step if they
choose to wait .

Similarly, we can work out the state-transition probabil-
ities under the action go. Under this action, the decision-
maker makes a transition to either the correct or incorrect
state. The decision-maker will transition to the Correct state
if they choose buy and the true state of the world is rising,
i.e., true u is in U+ = { 12 + εe,

1
2 + εd}, or if they choose

sell and the true state of the world is falling, i.e., true u is in
U− = { 12 −εe,

1
2 −εd} (assuming εd > 0; see the end of this

section for how to handle εd = 0).
The decision-maker will choose the more likely

alternative–they compare the probability of the unobserved
drift U coming from the set U+ versus coming from the set
U−, given the data observed so far. The decision-maker will
respond buy when P(U ∈ U+|Xt = x) > P(U ∈ U−|Xt =
x) and respond sell when P(U ∈ U+|Xt = x) < P(U ∈
U−|Xt = x). The probability of these decisions being cor-
rect is simply the probability of the true states being rising
and falling respectively, given the information observed so
far. Thus when P(U ∈ U+|Xt = x) > P(U ∈ U−|Xt = x)

the probability of a correct decision is P(U ∈ U+|Xt = x),
and when P(U ∈ U+|Xt = x) < P(U ∈ U−|Xt = x) the
probability of a correct answer is P(U ∈ U−|Xt = x); over-
all, the probability of being correct is the larger of P(U ∈
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U+|Xt = x) and P(U ∈ U−|Xt = x), meaning that the
state transition probabilities for the optimal decision-maker
for the action go in state (t, x) are:

p
go

(t,x)→C = max {P(U ∈ U+|Xt =x),P(U ∈ U−|Xt =x)}
p

go

(t,x)→I = 1 − p
go

(t,x)→C. (7)

Assuming that the prior probability for each state of the
world is the same,2 i.e., P(U ∈ U+) = P(U ∈ U−),
the posterior probabilities satisfy P(U ∈ U+|Xt = x) >

P(U ∈ U−|Xt = x) if and only if the likelihoods satisfy
P(Xt = x|U ∈ U+) > P(Xt = x|U ∈ U−). In turn, this
inequality in the likelihoods holds if and only if x > 0.
Thus, in this situation of equal prior probabilities, the opti-
mal decision-maker will select buy if x > 0 and sell if
x < 0 so that the transition probability p

go

(t,x)→C is equal to
P(U ∈ U+|Xt = x) when x > 0 and P(U ∈ U−|Xt = x)

when x < 0.
Note that when εd = 0, a situation which we study below,

the sets U+ and U− intersect, with 1
2 being a member of

both. This corresponds to the difficult trials having an up-
probability of 1

2 for the true state of the world being either
rising and falling. Therefore, in the calculations above, we
need to replace P(U ∈ U+|Xt = x) in the calculation of the
transition probability p

go

(t,x)→C with P(U = 1
2 + εe|Xt =

x) + 1
2P(U = 1

2 |Xt = x) and P(U ∈ U−|Xt = x) with
P(U = 1

2 − εe|Xt = x) + 1
2P(U = 1

2 |Xt = x).

Finding optimal actions

In order to find the optimal policy, a dynamic programming
procedure called policy iteration is used. The remainder of
this section provides a sketch of this standard procedure
as applied to the model we have constructed. For a more
detailed account, the reader is directed towards standard

2We will revise this assumption in the section titled “Extensions of the
model” below.

texts on stochastic dynamic programming such as Howard
(1960), Ross (1983) and Puterman (2005). The technique
searches for the optimal policy amongst the set of all poli-
cies by iteratively computing the expected returns for all
states for a given policy (step 1) and then improving the
policy based on these expected returns (step 2).

Step 1: Compute values of states for given π

To begin, assume that we have a current policy, π , which
maps states to actions, and which may not be the optimal
policy. Observe that fixing the policy reduces the Markov
decision process to a Markov chain. If this Markov chain is
allowed to run for a long period of time, it will return an
average reward ρπ per unit time, independently of the initial
state3 (Howard, 1960; Ross, 1983). However, the short-run
expected earnings of the system will depend on the current
state, so that each state, (t, x), can be associated with a rel-
ative value, vπ

(t,x), that quantifies the relative advantage of
being in state (t, x) under policy π .

Following the standard results of Howard (1960), the
relative value of state vπ

(t,x) is the expected value over suc-
cessor states of the following three components: (i) the
instantaneous reward in making the transition, (ii) the rela-
tive value of the successor state and (iii) a penalty term equal
to the length of delay to make the transition multiplied by
the average reward per unit time. From a state (t, x), under
action wait , the possible successor states are (t + 1, x + 1)
and (t + 1, x − 1) with transition probabilities given by
Eq. 6; under action go, the possible successor states are C

and I with transition probabilities given by Eq. 7; the delay
for all of these transitions is one time step, and no instanta-
neous reward is received. Both C and I transition directly to
(0, 0), with reward RC or RI , and delay DC or DI respec-
tively. The general dynamic programming equations reduce
to the following

3We assume all policies considered will eventually go, so that the sys-
tem is ergodic and the limiting state probabilities are independent of
the starting state.

vπ
(t,x) =

{
pwait

(t,x)→(t+1,x+1)v
π
(t+1,x+1) + pwait

(t,x)→(t+1,x−1)v
π
(t+1,x−1) − ρπ if π(t, x) = wait

p
go

(t,x)→Cvπ
C + p

go

(t,x)→I v
π
I − ρπ if π(t, x) = go

vπ
C = RC + vπ

(0,0) − DCρπ

vπ
I = RI + vπ

(0,0) − DIρ
π (8)

The unknowns of the system are the relative values vπ
(t,x), v

π
C

and vπ
I , and the average reward per unit time ρπ . The sys-

tem is underconstrained, with one more unknown (ρπ ) than
equations. Note also that adding a constant term to all vπ·

terms will produce an alternative solution to the equations.
So we identify the solutions by fixing vπ

(0,0) = 0 and inter-
preting all other vπ· terms as being values relative to state
(0, 0).
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Step 2: Improve π → πnew

So far, we have assumed that the policy, π , is arbitrarily
chosen. In the second step, we use the relative values of
states, determined using Eq. 8, to improve this policy. This
improvement can be performed by applying the principle of
optimality (Bellman, 1957): in any given state on an opti-
mal trajectory, the optimal action can be selected by finding
the action that maximizes the expected return and assuming
that an optimal policy will be followed from there on.

When updating the policy, the decision-maker thus
selects an action for a state which maximizes the expecta-
tion of the immediate reward plus the relative value of the
successor state penalized by the opportunity cost, with suc-
cessor state values and opportunity cost calculated under
the incumbent policy π . In our model, actions need only be
selected in states (t, x), and we compare the two possible
evaluations for vπ

(t,x) in Eq. 8. Therefore the decision-maker
sets πnew(t, x) = wait if

pwait
(t,x)→(t+1,x+1)v

π
(t+1,x+1) + pwait

(t,x)→(t+1,x−1)v
π
(t+1,x−1)

> p
go

(t,x)→Cvπ
C + p

go

(t,x)→I v
π
I (9)

and selects go otherwise. Note also that, by Eq. 8 and the
identification vπ

(0,0) = 0, the relative values of the cor-
rect and incorrect states satisfy vπ

C = RC − DCρπ and
vπ
I = RI − DIρ

π . We therefore see the trade-off between
choosing to wait , receiving no immediate reward and sim-
ply transitioning to a further potentially more profitable
state, and choosing go, in which there is a probability of
receiving a good reward but a delay will be incurred. It will
only be sensible to choose go if p

go

(t,x)→C is sufficiently
high, in comparison to the average reward ρπ calculated
under the current policy π . Intuitively, since ρπ is the aver-
age reward per time step, deciding to go and incur the
delays requires that the expected return from doing so out-
weighs the expected opportunity cost D̄ρπ (where D̄ is a
suitably weighted average of DC and DI ). The new policy
can be shown to have a better average reward ρπnew

than ρπ

(Howard, 1960; Puterman, 2005).
This policy iteration procedure can be initialized with an

arbitrary policy and iterates over steps 1 and 2 to improve
the policy. The procedure stops when the policy πnew is
unchanged from π , which occurs after a finite number of
iterations, and when it does so it has converged on an opti-
mal policy, π∗. This optimal policy determines the action
in each state that maximizes the long-run expected average
reward per unit time.

For computing the optimal policies shown in this article,
we initialized the policy to one that maps all states to the
action go then performed policy iteration until the algorithm
converged. The theory above does not put any constraints
on the size of the MDP—the decision-maker can continue

to wait an arbitrarily large time before taking the action
go. However due to computational limitations, we limit the
largest value of time in a trial to a fixed value tmax by forcing
the decision-maker to make a transition to the incorrect state
at tmax +1; that is, for any x, pwait

(tmax ,x)→I = 1. In the policies
computed below, we set tmax to a value much larger than the
interval of interest (time spent during a trial) and verified
that the value of tmax does not affect the policies in the cho-
sen intervals. The code for computing the optimal policies
as well as the state-transition probabilities is contained in a
Toolbox available on the Open Science Framework (https://
osf.io/gmjck/).

Predicted optimal policies

The theory developed above gives a set of actions (a pol-
icy) that optimizes the reward rate. We now use this the-
ory to generate optimal policies for a range of decision
problems of the form discussed at the beginning of this
article. The transition probabilities and state values com-
puted in Eqs. 6, 7 and 8 are a function of the set of
up-probabilities (U ) and inter-trial delays (DC and DI ).
Hence, the predicted policies will also be a function of the
given set of up-probabilities (i.e., the difficulties) and inter-
trial delays. We show below how changing these variables
leads to a change in the predicted optimal policies and how
these policies correspond to decision boundaries that may
or may not vary with time based on the value of these
variables.

Single difficulty

We began by computing optimal policies for single diffi-
culty tasks. For the example at the beginning of this article,
this means all rising assets go up during an observation
period with the same probability, 12 + ε, and all falling assets
go up with the probability 1

2 − ε. Figure 2 shows opti-
mal policies for three different tasks with drifts ε = 0.45,
ε = 0.20 and ε = 0, respectively. Panel (a) is a task
that consists exclusively of very easy trials, panel (b) con-
sists exclusively of moderately difficult trials and panel (c)
consists exclusively of impossible (zero drift) trials. The
inter-trial delay in each case was DC = DI = 150 (that
is, the inter-trial delay was 150 times as long as the delay
between two consecutive up/down observations). The state
space shown in Fig. 2 is organized according to number of
samples (time) along the horizontal axis and cumulative evi-
dence (Xt ) along the vertical axis. Each square represents a
possible state and the color of the square represents the opti-
mal action for that state, with black squares standing for go

and light grey squares standing for wait . The white squares
are combinations of evidence and time that will never occur

Psychon Bull Rev (2018) 25:971–996978
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Fig. 2 Each panel shows the optimal actions for different points in
the state space after convergence of the policy iteration. Gray squares
indicate that wait is the optimal action in that state while black
squares indicate that go is optimal. The inter-trial delays for all three

computations were DC = DI = 150 and all trials in a task had
the same difficulty. The up-probability for each decision in the task
was drawn, with equal probability from (a) u ∈ {0.05, 0.95}, (b)
u ∈ {0.30, 0.70} and (c) u = 0.50

during a random walk (e.g., (t, x) = (1, 0)) and do not
correspond to a state of the MDP.

We can observe from Fig. 2 that, in each case, the optimal
policy constitutes a clear decision boundary: the optimal
decision is to wait until the cumulative evidence crosses a
specific bound. For all values of evidence greater than this
bound (for the current point of time), it is optimal to guess
the more likely hypothesis. In each panel, the bound is deter-
mined by the cumulative evidence, x, which was defined
above as the difference between number of up and down
observations, |nu − nd |. Note that, in all three cases, the
decision bound stays constant for the majority of time and
collapses only as the time approaches the maximum sim-
ulated time step, tmax . We will discuss the reason for this
boundary effect below, but the fact that decision bounds
remain fixedprior to this boundary effect shows that it is optimal
to have a fixed decision bound if the task difficulty is fixed.

In Fig. 2a and b, the optimal policy dictates that the
decision-maker waits to accumulate a criterion level of
evidence before choosing one of the options. In contrast,
Fig. 2c dictates that the optimal decision-maker should
make a decision immediately (the optimal action is to go

in state (0, 0)), without waiting to see any evidence. This
makes sense because the up-probability for this computa-
tion is u = 1

2 ; that is, the observed outcomes are completely
random without evidence in either direction. So the theory
suggests that the decision-maker should not wait to observe
any outcomes and choose an option immediately, saving
time and thereby increasing the reward rate.

In panels (a) and (b), we can also observe a collapse of
the bounds towards the far right of the figure, where the
boundary converges to |nu−nd | = 0. This is a boundary effect
and arises because we force the model to make a transition
to the incorrect state if a decision is not reached before the
very last time step, tmax (in this case, tmax = 70). Increasing
tmax moved this boundary effect further to the right, so that it

always remained close to themaximumsimulated time. In order
to prevent confusion and exclude this boundary effect from
other effects, all the figures for optimal policies presented
below are cropped at t = 50: simulations were performed
for tmax ≥ 70, but results are displayed until t = 50.

In agreement with previous investigations of optimal
bounds (Bogacz et al., 2006), computations also showed
that the decision boundaries depended non-monotonically
on the task difficulty, with very high drifts leading to nar-
row bounds and intermediate drifts leading to wider bounds.
Note that the height of the decision boundary is |nu −nd | =
5 for εe = 0.20 in Fig. 2b, but decreases on making the
task more easy (as in Fig. 2a) as well as more difficult (as
in Fig. 2c). Again, this makes intuitive sense: the height of
the decision boundary is low when the task consists of very
easy trials because each outcome conveys a lot of informa-
tion about the true state of the world; similarly, decision
boundary is lowwhen the task consists of very difficult trials
because the decision-maker stands to gain more by making
decisions quickly than observing very noisy stimuli.

Mixed difficulties

Next, we computed the optimal policies when a task con-
tained mixture of two types of decisions with different
difficulties. For the example at the beginning of this article,
this means some rising assets go up during an observation
period with the probability 1

2 + εe while others go up with
the probability 1

2 + εd . Similarly, some falling assets go up
with the probability 1

2 −εe while others go up with probabil-
ity 1

2 − εd . Figure 3 shows the optimal policy for two single
difficulty tasks, as well as a mixed difficulty task (Fig. 3c),
in which trials can be either easy or difficult with equal
probability (P(U ∈ Ue) = 1

2 ). The drift of the easy task is
εe = 0.20 and the difficult task is εd = 0.
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Fig. 3 Optimal actions for single and mixed difficulty tasks. The inter-
trial intervals used for computing all three policies are DC = DI =
150. a Single difficulty task with up-probability for each decision

drawn from u ∈ {0.30, 0.70}; b Single difficulty task with u = 1
2 ; c

Mixed difficulty task with u ∈ {0.30, 0.50, 0.70}, with both easy and
difficult trials equally likely, i.e., P(U ∈ Ue) = 1

2

The optimal policies for the single difficulty tasks
(Fig. 3a and b) are akin to the optimal policies in Fig. 2.
The most interesting aspect of the results is the optimal pol-
icy for mixed difficulty condition (Fig. 3c). In contrast to
single difficulty conditions, we see that the decision bound-
ary under this condition is time-dependent. Bounds are wide
at the start of the trial (|nu − nd | = 4) and narrow down
as time goes on (reaching |nu − nd | = 0 at t = 44). In
other words, the theory suggests that the optimal decision-
maker should start the trial by accumulating information
and trying to be accurate. But as time goes on, they should
decrease their accuracy and guess. In fact, one can ana-
lytically show that the decision boundaries will eventually
collapse to |nu − nd | = 0 if there is a non-zero probability
that one of the tasks in the mixture has zero drift (εd = 0)
(see Appendix A).

We also explored cases with a mixture of decision dif-
ficulties, but where the difficult decisions had a positive
drift (εd > 0). Figure 4 shows optimal policies for the
same parameters as Fig. 3c, except the drift of the diffi-
cult decisions has been changed to εd = 0.02, 0.05, and
0.10, respectively. The drift for the easy decisions remained
εe = 0.20. Bounds still decrease with time when εd = 0.02
and 0.05 but the amount of decrease becomes negligible
very rapidly. In fact, when εd = 0.10, the optimal pol-
icy (at least during the first 50 time-steps) is exactly the
same as the single difficulty task, with ε = 0.20 (compare
with Fig. 3a). We explored this result using several differ-
ent values of inter-trial intervals and consistently found that
decision boundaries show an appreciable collapse for only a
small range of decision difficulties and, in particular, when
one type of decision is extremely difficult or impossible.
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Fig. 4 Optimal actions for mixed difficulty tasks with different dif-
ficulty levels. Each panel shows mixed difficulty task with up-pro-
bability for each decision drawn from (a) u ∈ {0.30, 0.48, 0.52, 0.70},

(b) u ∈ {0.30, 0.45, 0.55, 0.70}, and (c) u ∈ {0.30, 0.40, 0.60, 0.70}
with equal probability. All other parameters remain the same as in
computations shown in Fig. 3 above
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Fig. 5 Optimal actions for a mixture of difficulties when the easy
task has narrower bounds than the difficult task. The inter-trial delays
for all three computations are DC = DI = 150. Panels (a) and (b)
show optimal policies for single difficulty tasks with up-probability
of each decision chosen from u ∈ {0.05, 0.95} and u ∈ {0.40, 0.60},

respectively. Panel (c) shows optimal policy in mixed difficulty task
with up-probability chosen from u ∈ {0.05, 0.40, 0.60, 0.95} and
P(U ∈ Ue) = P(U ∈ Ud ) = 1

2 . Panels (d–f) show the change in pos-
terior probabilities P(U ∈ U+|Xt = x) with time at the upper decision
boundary for conditions (a–c), respectively

An intuitive explanation for collapsing bounds in Figs. 3c
and 4a, b could be as follows: the large drift (easier) task
(Fig. 3a) has wider bounds than the small drift task (Fig. 3b);
with the passage of time, there is a gradual increase in the
probability that the current trial pertains to the difficult task
if the boundary has not yet been reached. Hence, it would
make sense to start with wider bounds and gradually nar-
row them to the bounds for the more difficult task as one
becomes more certain that the current trial is difficult. If this
explanation is true, then bounds should decrease for a mix-
ture of difficulties only under the condition that the easier
task has wider bounds than the more difficult task.

Increasing bounds

The next set of computations investigated what happens to
decision boundaries for mixed difficulty task when the eas-
ier task has narrower bounds than the more difficult task.
Like Fig. 3, Fig. 5 shows optimal policies for two single

difficulty tasks and a mixed difficulty task that combines
these two difficulties. However, in this case, the two single
difficulty tasks are selected so that the bounds for the large
drift (easy) task (Fig. 5a) are narrower than the small drift
(difficult) task (Fig. 5b), reversing the pattern used in the
set of tasks for Fig. 3. Figure 5c shows the optimal actions
in a task where these two difficulty levels are equally likely.
In contrast to Fig. 3c, the optimal bounds for this mixture
are narrower at the beginning, with |nu − nd | = 4 and then
get wider, reaching |nu − nd | = 6 and then stay constant.
Thus, the theory predicts that inter-mixing difficulties does
not necessarily lead to monotonically collapsing bounds.

In order to get an insight into why the optimal boundary
increases with time in this case, we computed the posterior
probability of making the correct decision at the optimal
boundary. An examination of this probability showed that
although the optimal boundary is lower for the easy task
(Fig. 5a) than for the difficult task (Fig. 5b), the posterior
P(U ∈ U+|Xt = x) at which the choice should be made is
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Fig. 6 Optimal actions for single and mixed difficulty tasks when inter-trial intervals are reduced to DC = DI = 50. All other parameters are
the same as Fig. 3

higher for the easy task (Fig. 5d) than for the difficult task
(Fig. 5e). For the mixed difficulty task, although the opti-
mal boundary increases with time (Fig. 5c), the probability
of making a correct choice decreases with time (Fig. 5f).4

This happens because the posterior probability of the current
trial being difficult increases with time. This fits well with
the intuitive explanation of time-varying decision bound-
aries given for collapsing bounds. At the start of the trial,
the decision-maker does not know whether the trial is easy
or difficult and starts with a decision boundary somewhere
between those for easy and difficult single difficulty tasks.
As time progresses and a decision boundary is not reached,
the probability of the trial being difficult increases and the
decision boundaries approach the boundaries for the diffi-
cult task. Since the decision boundaries for the difficult task
(εd = 0.10) are wider than the easy task (εe = 0.45) in
Fig. 5, this means that the decision boundaries increase with
time during the mixed difficulty task.

We computed the optimal policies for a variety of mix-
ing difficulties and found that bounds increase, decrease
or remain constant in a pattern that is consistent with this
intuitive explanation: when the task with smaller drift (the
more difficult task) has narrower bounds than the task with
larger drift (as in Fig. 3), mixing the two tasks leads to
either constant bounds in-between the two bounds, or to
monotonically decreasing bounds that asymptote towards
the narrower of the two bounds. In contrast, when the task
with the smaller drift has wider bounds than the task with
larger drift (as in Fig. 5), mixing the two tasks leads to either
constant bounds in-between the two bounds or bounds that

4The sawtooth (zigzag) pattern in Fig. 5(d–f) is a consequence of the
discretization of time and evidence. For example, moving from left to
right along the boundary in Fig. 5d, the value of evidence oscillates
between |nu − nd | = 6 and |nu − nd | = 7, leading to the oscillation in
the value of the posterior probability P(U ∈ U+|Xt = x).

increase and then asymptote towards the wider of the two
bounds.

Effect of inter-trial intervals

The computations so far have focused on how the diffi-
culty level (drift) affects the optimal policy. Therefore, all
computations shown so far used the same inter-trial inter-
vals (DC = DI = 150) but varied the drift. However, our
conclusions about policies in single and mixed difficulty
conditions are not restricted to a particular choice of inter-
trial delay. Figure 6, for example, shows how optimal policy
changes when this delay is changed. To generate these poli-
cies, the inter-trial delay was decreased to DC = DI =
50. All other parameters were the same as those used for
computing policies in Fig. 3.

A comparison of Figs. 3a and 6a, which have the same
drifts but different inter-trial intervals, shows that the opti-
mal bounds decrease from |nu−nd | = 5 when the inter-trial
delay is 150 to |nu − nd | = 3 inter-trial delay is reduced to
50. Intuitively, this is because decreasing the inter-trial inter-
vals alters the balance between wait ing and going (Eq. 8),
making going more favorable for certain states. When the
inter-trial interval decreases, an error leads to a compara-
tively smaller drop in the reward rate as the decision-maker
quickly moves on to the next reward opportunity. There-
fore, the decision-maker can increase their reward rate by
lowering the height of the boundary to go. A compari-
son of Figs. 3c and 6c shows that a similar result holds
for the mixed difficulty condition: decision boundaries still
decrease with time, but the boundary becomes lower when
inter-trial delay is decreased.

Thus far, we have also assumed that the inter-trial inter-
vals for correct and error responses (DC and DI , respec-
tively) are the same. In the next set of computations, we
investigated the shape of decision boundaries when making
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Fig. 7 Optimal actions remain the same if DC + Dp remain the same. Each panel shows the optimal policy for up-probability drawn from the
same set as Fig. 3, but for an inter-trial delay of DC = 75 for correct guesses and DI = 150 for errors

an error carried an additional time-penalty, Dp, so that the
delay is DC after correct response and DC +Dp after errors.

An unintuitive result from previous research (Bogacz
et al., 2006) is that different combinations of DC and Dp

that have the same sum (DC +Dp), lead to the same bound-
ary. So, for example, the optimal boundaries are the same
when both correct and incorrect decisions lead to an equal
delay of 150 time steps as when the correct decisions lead
to a delay of 75 time steps but the incorrect decisions lead
to an additional 75 time steps.

Results for computations shown in Fig. 7 indicate that
this property generalizes to the case of mixed difficulties.
The optimal policy for single and mixed difficulty tasks in
this figure are obtained for up-probability drawn from the
same set as in Fig. 3, but with delays of DC = 75 and
DI = DC + Dp = 150. Comparing Figs. 3 and 7, one can
see that changing the delays has not affected the decision
boundaries at all. This is because even though Dp = 75 for
Fig. 7, DC +Dp was the same as Fig. 3. Moreover, not only
are the boundaries the same for the single difficulty condi-
tions (as previously shown), they are also the same for the
corresponding mixed difficulty conditions.

Extensions of the model

The theoretical model outlined above considers a simplified
decision-making task, where the decision-maker must choose
from two equally likely options. We now show how the
above theory generalizes to situations where: (a) the world
is more likely to be in one state than the other (e.g., assets
are more likely to be falling than rising), and (b) the decision-
maker can give up on a decision that appears too difficult
(make no buy or sell recommendation on an asset). In each
case, the normative model illuminates how the sequential
sampling models should be adapted for these situations.

Prior beliefs about the world

First, consider the assumption that both states of the world
are equally likely. A key question in perceptual decision-
making is how decision-makers combine this prior belief
with samples (cues) collected during the trial. The effect
of prior information on decision-making can be static,
i.e., remain constant during the course of a decision, or
dynamic, i.e., change as the decision-maker samples more
information. Correspondingly, sequential sampling models
can accommodate the effect of prior in either the starting
point if the effect of prior is static or in the drift or thresh-
old if the effect is dynamic (Ashby, 1983; Ratcliff, 1985;
Diederich, & Busemeyer, 2006; Hanks et al., 2011).

Experiments with humans and animals investigating
whether the effect of prior beliefs is constant or changes
with time, have led to mixed results. A number of recent
experiments have shown that shifting the starting point is
more parsimonious with the accuracy and reaction time
of participants (Summerfield and Koechlin, 2010; Mulder
et al., 2012). However, these experiments only consider a
single task difficulty. In contrast, when Hanks et al. (2011)
considered a task with a mixture of difficulties, they found
that data from the experiment can be better fit by a time-
dependent prior model. Instead of assuming that the effect
of a prior bias is a shift in starting point, this model assumes
that the prior dynamically modifies the decision variable—
i.e., the decision variable at any point is the sum of the drift
and a dynamic bias signal that is a function of the prior and
increases monotonically with time.

We examined this question from a normative
perspective—should the effect of a prior belief be time-
dependent if the decision-maker wanted to maximize
reward rate? Edwards (1965) has shown that when the relia-
bility of the task is known and constant, the optimal strategy
is to shift the starting point. More recently, Huang, Hanks,
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Fig. 8 Change in optimal policy during single difficulty tasks with increasingly biased prior beliefs. a P(U ∈ U+) = 0.50; b P(U ∈ U+) = 0.70;
c P(U ∈ U+) = 0.97. For all three computations, up-probability is drawn from u ∈ {0.30, 0.70} and the inter-trial intervals are DC = DI = 150

Shadlen, Friesen and Rao (2012) argued that instead of
modeling the data in terms of a sequential sampling model
with adjustment to starting point or drift, the decisions in
experiments such as Hanks et al. (2011) can be adequately
described by a POMDP model that assumed priors to be
distributed according to a (piecewise) Normal distribution
and maximized the reward. We will now show that a nor-
mative model that maximizes the reward rate, such as the
model proposed by Huang et al. (2012), is in fact, consis-
tent with sequential sampling models. Whether the effect of
prior in such a model is time-dependent or static depends
on the mixture of difficulties. As observed by Hanks et al.
(2011), in mixed difficulty situations, the passage of time
itself contains information about the reliability of stimuli:
the longer the trial has gone on, the more unreliable the
source of stimuli is likely to be and decision-makers should
increasingly trust their prior beliefs.

For the MDP shown in Fig. 1b, in any state (t, x), the
effect of having biased prior beliefs is to alter the transi-
tion probabilities for wait as well as go actions. We can
see that changing the prior in Eq. 5 will affect the posterior
probability P(U = u|Xt = x), which, in turn, affects the
transition probability pwait

(t,x)→(t+1,x+1) in Eq. 6. Similarly,
a change in the prior probabilities changes the posteriors
P(U ∈ U+|Xt = x) and P(U ∈ U−|Xt = x) in Eq. 7,
in turn changing the transition probability p

go

(t,x)→C . We
argued above that when priors are equal, P(U ∈ U+) =
P(U ∈ U−), the optimal decision-maker should recommend
buy or sell based solely on the likelihoods: i.e., buy when-
ever x > 0 and recommend sell whenever x < 0. This will
no longer be the case when the priors are unequal. In this
case, the transition probabilities under the action go will be
given by the more general formulation in Eq. 7, i.e., buy
whenever the posterior probability for rising is larger than
falling (P(U ∈ U+|Xt = x) > P(U ∈ U−|Xt = x)) and sell
otherwise.

Figure 8 shows how the optimal policy changes when
the prior belief changes from both states of the world being
equally probable (assets are equally likely to rise and fall)
to one state being more probable than the other (assets are
more likely to rise than fall). All policies in Fig. 8 are for sin-
gle difficulty tasks where the difficulty (drift) is fixed and
known ahead of time.

We can observe that a bias in the prior beliefs shifts the
optimal boundaries: when the prior probabilities of the two
states of the world were the same (P(U ∈ U+) = P(U ∈
U−)), the height of the boundary for choosing each alter-
native was |nu − nd | = 5 (Fig. 8a). Increasing the prior
probability of the world being in the first state to P(U ∈
U+) = 0.70 reduces the height of the boundary for choosing
the first alternative to (nu − nd) = 4, while it increases the
height of the boundary for choosing the other alternative to
(nu−nd) = −6 (Fig. 8b). Thus, the optimal decision-maker
will make decisions more quickly for trials where the true
state of the world matches the prior but more slowly when
the true state and the prior mismatch. Furthermore, note that
the increase in boundary in one direction exactly matches
the decrease in boundary in the other direction, so that the
change in boundaries is equivalent to a shift in the starting
point, as proposed by Edwards (1965). Increasing the bias
in prior further (Fig. 8c) increased this shift in boundaries,
with the height of the boundary for choosing the first alter-
native reduced to (nu − nd) = 0 when P(U ∈ U+) = 0.97.
In this case, the decision-maker has such a strong prior (that
asset values are rising) that it is optimal for them to choose
the first alternative (buy an asset) even before making any
observations.

Thus, the optimal policy predicted by the above theory
concurs with shifting the starting point when the task dif-
ficulty is fixed and known ahead of time. Let us now look
at the mixed difficulty condition. Figure 9 shows the opti-
mal policy for a mixed difficulty task with up-probability
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Fig. 9 Optimal policy during mixed difficulty trials with biased prior
beliefs. For all computations, the mixture of drifts involves εe = 0.20,
εd = 0 and P(U ∈ Ue) = 1

2 . Three different priors are used: the left
column uses P(U ∈ U+) = 0.52, the middle column uses P(U ∈
U+) = 0.55, and the right column uses P(U ∈ U+) = 0.70. The first

row shows optimal policies, the second row shows the posterior prob-
ability for the trial being easy given the state and the third row shows
the posterior probability for the trial having up-probability > 0.50
given the state. For all three computations, the inter-trial intervals are
DC = DI = 150

drawn from the set u ∈ {0.30, 0.50, 0.70} and three differ-
ent degrees of prior all biased towards the world being in the
first state to varying degrees.

Like the single difficulty case, a prior bias that the world
is more likely to be in the first state (asset values are more
likely to rise) decreases the boundary for the first alternative
(buy) and increases the boundary for the second alternative
(sell). However, unlike the single difficulty case, this shift
in boundaries is not constant, but changes with time: the
optimal policies in Fig. 9 are not simply shifted along the
evidence axis (compare with Fig. 8); rather, there are two
components of the change in boundary. First, for all val-
ues of time, the distance to the upper boundary (for buy) is
same-or-smaller than the equal-prior case (e.g., in the third
column of Fig. 9, (nu − nd) = 2 even at t = 2), and the dis-
tance to the lower boundary (for sell) is same-or-larger than
the equal prior case. Second, the shift in boundaries is larger

at longer durations (again most evident in the third column
of Fig. 9, where it becomes optimal to choose the first alter-
native with the passage of time, even when the cumulative
evidence is negative).

These optimal policies are in agreement with the dynamic
prior model developed by Hanks et al. (2011), which pro-
poses that the contribution of prior increases with time. To
see this, consider the assets example again. Note that the
prior used for generating the optimal policy in the third col-
umn of Fig. 9 corresponds to assets being more likely to rise
than fall (P(U ∈ U+) = 0.70). As time goes on, the cumu-
lative evidence required to choose buy keeps decreasing
while the cumulative evidence required to choose sell keeps
increasing. In other words, with the passage of time, increas-
ingly larger evidence is required to overcome the prior. This
is consistent with a monotonically increasing dynamic prior
signal proposed by Hanks et al. (2011).
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The third column in Fig. 9 also shows another interest-
ing aspect of optimal policies for unequal prior. In this case,
the bias in prior is sufficiently strong and leads to a ‘time-
varying region of indecision’: instead of the collapsing
bounds observed for the equal-prior condition computations
show optimal bounds that seem parallel but change mono-
tonically with time.5 So, for example, when P(U ∈ U+) =
0.70, it is optimal for the decision-maker to keep waiting
for more evidence even at large values of time, provided the
current cumulative evidence lies in the grey (wait) region
of the state-space.

The intuitive reason for this time-varying region of inde-
cision is that, for states in this region, the decision-maker is
neither able to infer if the trial is easy nor able to infer the
true state of the world. To see this, we have plotted the pos-
terior probability of the trial being easy in the second row
of Fig. 9 and the posterior for the first state (rising) being
the true state of the world in the third row. The posterior
that the trial is easy does not depend on the prior about the
state of the world: all three panels in second row are iden-
tical. However, the posterior on the true state of the world
does depend on the prior beliefs: as the prior in favor of the
world being in the first state (rising) increases, the region of
intermediate posterior probabilities is shifted further down
with the passage of time. The ‘region of indecision’ corre-
sponds to an area of overlap in the second and third rows
where the posterior probability that the trial is easy is close
to 0.5 and the posterior probability that the true state of the
world is rising is also close to 0.5 (both in black). Hence,
the optimal thing to do is to wait and accumulate more
evidence.

Low confidence option

So far, we have considered two possible actions at every
time step: to wait and accumulate more information, or to
go and choose the more likely alternative. Of course this
is not true in many realistic decision-making situations. For
instance, in the example at the beginning of the article,
the decision-maker may choose to examine the next asset
in the portfolio without making a recommendation if they
are unsure about their decision after making a sequence
of up/down observations. We now show how the theory
outlined above can be extended to such a case: the decision-
maker has a third option (in addition to wait and go), which
is to pass and move to the next trial with a reduced inter-
trial delay. In this case, the MDP in Fig. 1(b) is changed to
include a third option—pass—with a delay D

pass
i but no

5This pattern seemed to hold even when we increased tmax to 100.
Further research would be required to investigate if this is analytically
the case when tmax → ∞.

immediate reward or penalty: r
pass
ij = 0. The policy itera-

tion is carried out in the same way as above, except Eqs. 8
and 9 are updated to accommodate this alternative.

Kiani and Shadlen (2009) introduced an option similar
to this pass action (they call it “opt-out”) in an experiment
conducted on rhesus monkeys. The monkeys were trained
to make saccadic eye movements to one of two targets that
indicated the direction of motion of a set of moving dots on
the screen (one of which was rewarded). In addition to being
able to choose one of these targets, on a random half of the
trials, the monkeys were presented a third saccadic target (a
“sure target”) that gave a small but certain reward. This “opt-
out” setting is similar to our extended model with a pass

action with one distinction. Since Kiani and Shadlen (2009)
did not use a fixed-time block paradigm where there was a
trade-off between the speed and accuracy of decisions, they
had to explicitly reward the “opt-out” action with a small
reward. In contrast, we consider a setting where there is
an implicit cost of time. Therefore it is sufficient to reduce
the delay for the pass option without associating it with
an explicit reward. Kiani and Shadlen (2009) found that the
monkeys chose the sure target when their chance of making
the correct decision about motion direction was small; that
is, when the uncertainty of the motion direction was high.

Figure 10 shows the optimal policy predicted by extend-
ing the above theory to include a pass option. For the single
difficulty task (Fig. 10a), it is never optimal to choose the
pass option. This is because choosing to pass has a cost
associated with it (the inter-trial delay on passing) and no
benefit—the next trial is just as difficult, so the same amount
of information would need to be accumulated.

More interestingly, Fig. 10b and c show the optimal pol-
icy for the mixed difficulty task, with up-probability for
each decision chosen from the set u ∈ {0.30, 0.50, 0.70}. In
agreement with the findings of Kiani and Shadlen (2009),
the theory predicts that the pass action is a function of
both evidence and time and is taken only in cases where
the decision-maker has waited a relatively long duration and
accumulated little or no evidence favoring either hypoth-
esis. An inspection of the posterior probabilities, P(U ∈
U+|Xt = x), reveals why it becomes optimal to choose
the pass option with the passage of time. It can be seen in
Fig. 10e and f that for a fixed evidence x, as time increases,
P(U ∈ U+|Xt = x) decreases (this is in contrast for the
single difficulty case, Fig. 10d). Thus, with the increase
in time, the confidence of the decision-maker in the same
amount of cumulative evidence should diminish and the
expected value of choosing the pass action becomes larger
than the expected value of wait or go.

The computations also reveal how the optimal policies
depend on the incentive provided for the pass option. In
Fig. 10b, the inter-trial interval for the pass action is nearly
an eighth of the interval for incorrect decisions while in
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Fig. 10 Optimal actions for all states when actions include the pass

option. Gray = wait ; black = go; red = pass. For all computations,
εe = 0.20, εd = 0, DC = DI = 150. (a) The single difficulty case
with P(U ∈ Ue) = 1. For (b) and (c), P(U ∈ Ue) = 1

2 . For (a) and

(b), the inter-trial interval for pass action is 20 time steps while for
(c) it is 40 time steps. Panels (d–f) show the corresponding posterior
probabilities of a drift > 0.50, P(U ∈ U+|Xt = x), for the conditions
in panels (a–c)

Fig. 10c the inter-trial interval for the pass action is approx-
imately a fourth of the interval for incorrect decision. Since
all paths to the pass action is blocked by go action in
Fig. 10c, the theory predicts that decreasing the incentive
slightly should result in the optimal decision-maker never
choosing the pass option.

Discussion

Key insights

Previous research has shown that when the goal of the
decision-maker is to maximize their reward rate, it may
be optimal for them to change their decision boundary
with time. In this article, we have systematically outlined
a dynamic programming procedure that can be used to
compute how the decision boundary changes with time.
Several important results were obtained by using this proce-
dure to compute optimal policies under different conditions.
Firstly, by removing the assumptions about deadlines of
decisions and the cost of making observations, we found
that neither of these were a pre-requisite for an optimal time-
dependent decision boundary. Instead, what was critical,
was a sequence of decisions with inter-mixed difficulties.

Next, by restricting the levels of difficulties to two, we
were able to explore the effect of different difficulties on the
shape of the decision boundaries. Our computations showed
that optimal decision bounds do not necessarily decrease
in the mixed difficulty condition and may, in fact, increase
or remain constant. Computations using a variety of differ-
ent difficulty levels revealed the following pattern: optimal
bounds decreased when difficult trials (in mixed blocks) had
lower optimal bounds than easy trials; they increased when
the pattern was reversed, i.e., when difficult trials had higher
optimal bounds than easy trials.

In addition to computing optimal boundaries, we also
computed posterior probabilities for various inferences dur-
ing the course of a decision. These computations provided
insight into the reason for the shape of boundaries under
different conditions. Optimal boundaries change with time
only in the mixed difficulty condition and not in the sin-
gle difficulty condition because observations made during
the mixed difficulty condition provide the decision-maker
two types of information: in addition to providing evidence
about the true state of the world, observations also help the
decision-maker infer the difficulty level of the current trial.
At the start of the trial, the difficulty level of the current
trial is determined by the decision-maker’s prior beliefs—
e.g., that both easy and difficult trials are equally likely. So
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the optimal decision-maker starts with decision boundaries
that reflect these prior beliefs. As the trial progresses, the
decision-maker uses the cumulative evidence as well as the
time spent to gather this evidence to update the posterior
on the difficulty level of the trial. They use this posterior
to then update the decision boundary dynamically. In cases
where the decision boundary for the difficult trials is lower
(higher) than easy trials, the decision-maker can maximize
their reward rate by decreasing (increasing) the decision
boundary with time.

Similarly, the model also provided insight into the rela-
tionship between the shape of optimal decision boundaries
and priors on the state of the world. When priors are
unequal, observations in mixed difficulty trials provide three
types of information. They can be used to perform the two
inferences mentioned above—about the true state of the
world and the difficulty of the trial—but additionally, they
can also be used to compute the weight of the prior. Com-
putations showed that it is optimal for the decision-maker
to increase the weight of the prior with time, when deci-
sions have inter-mixed difficulties and the decision-maker
has unequal priors. A possible explanation for this counter-
intuitive finding is that the optimal decision-maker should
consider the reliability of signals when calculating how
much weight to give the prior. As the number of observa-
tions increase, the reliability of the evidence decreases and
the optimal decision-maker should give more weight to the
prior. Note that this is the premise on which Hanks et al.
(2011) base their “dynamic bias” model. Our computations
show how the dynamic bias signal should change with time
when the goal of the decision-maker is to maximize the
reward rate.

Implications for empirical research

Using the dynamic programming procedure to predict opti-
mal policies provides a strong set of constraints for observ-
ing different boundary shapes. In particular, we found that
optimal boundaries decreased appreciably under a lim-
ited set of conditions and only if one type of decision is
extremely difficult. This observation is particularly rele-
vant to a number of recent studies that have investigated
the shape of decision boundaries adopted by participants in
decision-making experiments.

Hawkins et al. (2015) performed a meta-analysis of
reaction-time and error-rate data from eight studies using a
variety of different paradigms and found that, overall, these
data favored a fixed bounds model over collapsing bounds
models in humans. Similarly, Voskuilen et al. (2016) car-
ried out a meta-analysis using data from four numerosity
discrimination experiments and two motion-discrimination
experiments and found that data in five out of six experi-
ments favored fixed boundaries over collapsing boundaries.

The majority of experiments included in these meta-
analyses consider mixed difficulty blocks with a larger
number of difficulty levels than we have considered so
far. For example, one of the studies considered by both
Hawkins et al. (2015) and Voskuilen et al. (2016) is
Experiment 1 from Ratcliff and McKoon (2008), who
use a motion-discrimination task with motion coherence
that varies from trial to trial across six different levels
(5%, 10%, 15%, 25%, 35%, 50%). It is unclear what the
shape of optimal bounds should be for this mixture of diffi-
culties, especially because we do not knowwhat participants
were trying to optimize in this study. However, even if par-
ticipants were maximizing reward rate, we do not know
whether they should decrease their decision boundaries
under these conditions.

It is possible to extend the above framework to more
than two difficulties and make predictions about the shape
of optimal boundaries in such settings. However, one prob-
lem is that this framework assumes an exact knowledge of
different drifts, ε, used in the mixture of difficulties. In
the experiments considered by Hawkins et al. (2015) and
Voskuilen et al. (2016), we do not know the exact values
these drifts take since the paradigms used in these stud-
ies (motion coherence, numerosity judgment, etc.) involve
implicit sampling of evidence.

One advantage of the expanded judgment paradigm is
that the experimenter is able to directly observe the drift
of samples shown to the participant and compare the deci-
sion boundary used by participants with the one predicted
by reward-rate maximization. We have recently conducted
a large series of experiments in which we adopted this
approach, adopting a very explicit reward structure and
creating conditions for which the model predicts that bound-
aries should change when different difficulty levels are
mixed (Malhotra, Leslie, Ludwig, & Bogacz, in press).6

We found that participants indeed modulated the slope
of their decision boundaries in the direction predicted by
maximization of reward rate.

In order to understand why our findings contrast with
those of Hawkins et al. (2015) and Voskuilen et al. (2016),
we extended the model to accommodate any number of dif-
ficulty levels. Instead of assuming that the up-probability
comes from the set Ue ∪ Ud , we assumed that u ∈ U ,
where U is a set of up-probabilities with n different drifts,
{ε1, . . . , εn}. We then attempted to model the set of stu-
dies analyzed by Hawkins et al. (2015) and Voskuilen et al.
(2016).

As mentioned above, one problem is that we do not know
what the actual drift of the evidence was in these studies.
Our strategy was to match the observed error rates for a

6The authors’ pre-print accepted for publication is available at https://
osf.io/2rdrw/.
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Table 1 Set of studies and drifts used to generate optimal policies

Study Paradigm Conditions Distribution Drifts ({ε1 . . . εn})

PHS 05 Motion {0%, 3.2%, 6.4%, Uniform {0, 0.03, 0.05,
12.8%, 25.6%, 51.2%} 0.10, 0.20, 0.40}

RTM 01 Distance 32 values Uniform 17 values

Range: [1.7, 2.4] cm Range: [0, 0.50]
R 07 Brightness {Bright : 2%, 35%, 45%, Uniform {0.05, 0.10, 0.20}

Dark:55%, 65%, 98%}
RM 08 Motion {5%, 10%, 15%, Uniform {0.04, 0.07, 0.10

25%, 35%, 50%} 0.15, 0.20, 0.30}
MS 14 Color {35%, 42%, 46%, Uniform {0, 0.05, 0.10, 0.20}

50%, 54%, 58%, 65%}
VRS 16: E1 Numerosity Range: [21, 80] Piecewise {0, 0.02, 0.04, 0.06

Uniform 0.30, 0.32, 0.34, 0.36}
VRS 16: E2 Numerosity Range: [3, 98] Approximately {0, 0.05, . . . , 0.50}

Gaussian

VRS 16: E3 Numerosity Range: [31, 70] Uniform {0, 0.02, . . . , 0.20}
VRS 16: E4 Numerosity Range: [3, 98] Uniform {0, 0.02, . . . , 0.48}

Notes. Each row shows the set of conditions used in the experiment, the distribution of these conditions across trials and the set of drift parameters
used to compute optimal policies in Fig. 11. The value given to a condition refers to the motion coherence for the motion discrimination task, to
the separation of dots for the distance judgment task, to the proportion of black pixels for the brightness discrimination task, to the percentage
of cyan to magenta checkers for the color judgment task and to the number of asterisks for the numerosity judgment task. For the computation
VRS 16: E2, the probability of each drift value ε was equal to 1

Z
N (ε;μ, σ), where N (·) is the probability density of the normal distribution

with μ = 0, and standard deviation σ = 0.21 and Z is a normalization factor ensuring that the probabilities add up to 1. The names of studies are
abbreviated as follows PHS 05: (Palmer, Huk, & Shadlen, 2005), RTM 01: (Ratcliff, Thapar, & McKoon, 2001), R 07: (Ratcliff, Hasegawa,
Hasegawa, Smith, & Segraves, 2007), RM 08: (Ratcliff & McKoon, 2008), MS 14: (Middlebrooks & Schall, 2014), VRS 16: (Voskuilen et al.,
2016) with E1. . .E4 standing for Experiments 1 . . . 4, respectively.

set of difficulties in the original experiment with the error
rates for the optimal bounds predicted by a corresponding
set of drifts (see Appendix B for details). We found that a
range of reasonable mappings between the difficulties used
in an experiment and the set of drifts {ε1, . . . , εn} gave fairly
similar shapes of optimal boundaries.

Another problem is that it is unclear how the inter-trial
interval used in the experiments maps on to the inter-trial
interval used in the dynamic programming procedure. More
precisely, in the dynamic programming procedure the inter-
trial interval is specified as a multiple of the rate at which
the evidence is delivered. However, due to the implicit sam-
pling in the original experiment, we do not know the relation
between the (internal) evidence sampling rate and the inter-
trial intervals. Therefore, we computed the optimal policies
for a wide range of different inter-trial intervals. As we
show below, even though the optimal policy changes with a
change in inter-trial interval, the slope of the resulting opti-
mal decision boundaries remain fairly similar across a wide
range of intervals.

Table 1 summarizes the conditions used in experiments,
the distribution of these conditions across trials and a cor-
responding set of drifts used in the dynamic programming
procedure. We also matched the distribution of difficulty

levels used in these experiments with the distribution of
drifts used for our computations. We chose this set of exper-
iments so that they cover the entire range of mixture of
difficulties considered across experiments considered by
Hawkins et al. (2015) and Voskuilen et al. (2016).

Figure 11 shows the optimal policies obtained by using
the dynamic programming procedure for each mixture of
drifts in Table 1. While the shape of any optimal bound-
ary depends on the inter-trial interval (as discussed above),
we found that the slope of optimal boundaries remained
similar for a range of different inter-trial intervals and the
inset in each figure shows how this slope changes with a
change in inter-trial interval. The insets also compare this
slope (solid, red line) with the flat boundary (dotted, black
line) and the optimal slope for a mixture of two difficul-
ties, ε ∈ {0, 0.20}, which leads to rapidly decreasing bounds
(dashed, blue line). A (red) dot in each inset indicates the
value of inter-trial interval used to plot the policies in the
main plot. All policies have been plotted for the same value
of inter-trial interval used in the computations above, i.e.,
DC = DI = 150, except Fig. 11b, which uses DC = DI =
300 to highlight a property of optimal policies observed
when a task consists of more than two difficulty levels (see
below).
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(b) (c)

Fig. 11 Optimal policies for mixture of difficulties used in experi-
ments considered by Hawkins et al. (2015) and Voskuilen et al. (2016).
Insets show the slope of the optimal boundary (measured as tangent
of a line fitting the boundary) across a range of inter-trial intervals
for the mixture of drifts that maps to the experiment (solid, red line)

and compares it to flat boundaries (dotted, black line) and the mixture
ε ∈ {0.20, 0.50}, which gives a large slope across the range of inter-
trial intervals (dashed, blue line). The dot in the inset along each solid
(red) line indicates the value of inter-trial interval used to generate the
optimal policy shown in the main figure

Extending the framework to more than two difficulties
reveals two important results. First, the optimal bounds are
nearly flat across the range of mixed difficulty tasks used in
these experiments. In order to monitor the long-term trend
for these slopes, we have plotted each of the policies in
Fig. 11 till time step t = 100 (in contrast to t = 50 above).
In spite of this, we observed very little change in optimal

evidence as a function of number of samples observed dur-
ing a trial. Optimal bounds do seem to decrease slightly
for some mixed difficulty tasks when they include a sub-
stantial proportion of “very difficult” trials (e.g., MS_14

and VRS_16: E2, E3). However, even in these cases, the
amount of decrease is small (compare the solid, red line
to the dashed, blue line which corresponds to a mixture
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that gives a large decrease) and it would be very diffi-
cult to distinguish between constant or decreasing bounds
based on the reaction-time distributions obtained from these
bounds. Second, for some mixtures of difficulties, the opti-
mal bounds are a non-monotonic function of time where the
optimal boundary first increases, then remains constant for
some time and finally decreases (see, for example, Fig. 11b).
This non-monotonic pattern occurred only when number of
trial difficulties was greater than two.

Clearly these computations and in particular their map-
ping onto the original studies have to be interpreted with
caution, due to the difficulties in translating continuous,
implicit sampling paradigms to the discrete expanded judg-
ment framework. Nevertheless, our wide-ranging explo-
ration of the parameter space (mixtures of difficulties and
inter-trial intervals) suggests that the optimal boundaries in
these experiments may be very close to flat boundaries.
In that case, even if participants maximized reward rate
in these experiments, it may be difficult to identify subtly
decreasing boundaries on the basis of realistic empirical evi-
dence. Of course, we do not know what variable participants
were trying to optimize in these studies. The computations
above highlight just how crucial an explicit reward structure
is in that regard.

Reward-rate maximization

A related point is that many decision-making tasks
(included those considered in the meta-analyses mentioned
above) do not carefully control the reward structure of the
experiment. Many studies instruct the participant simply to
be “as fast and accurate as possible”. The model we consider
in this study is unable to make predictions about the optimal
shape of boundaries in these tasks, because it is not clear
what the participant is optimizing. It could be that when
the goal of the participant is not precisely related to their
performance, they adopt a strategy such as “favor accuracy
over speed” or “minimize the time spent in the experi-
ment and leave as quickly as possible, without committing
a socially unacceptable proportion of errors” (Hawkins,
Brown, Steyvers, & Wagenmakers, 2012). On the other
hand, it could also be that when people are given instruc-
tions that precisely relate their performance to reward, the
cost required to estimate the optimal strategy is too high and
people simply adopt a heuristic – a fixed threshold – that
does a reasonable job during the task.

More generally, one could question whether people
indeed try to maximize reward rate while making sequential
decisions and hence the relevance of policies that maximize
reward rate for empirical research. After all, a number of
studies have found that people tend to overvalue accuracy
and set decision boundaries that are wider than warranted
by maximizing reward rate (Maddox & Bohil, 1998; Bohil

& Maddox, 2003; Myung & Busemeyer, 1989), especially
with an increase in the difficulty of trials (Balci et al., 2011;
Starns and Ratcliff, 2012) and with the increase in speed of
the decision-making task (Simen et al., 2009). To explain
this behavior, a set of studies have investigated alternative
objective functions (Bohil & Maddox, 2003; Bogacz et al.,
2006; Zacksenhouse et al., 2010). For example, Bogacz,
Hu, Holmes and Cohen (2010) found that only about 30%
of participants set the boundaries to the level maximizing
reward rate. In contrast, the bounds set by the majority of
participants could be better explained by maximization of a
modified reward rate which includes an additional penalty
(in a form of negative reward) after each incorrect trial,
although no such penalty was given in the actual experi-
ment (Bogacz et al., 2010). Analogous virtual penalties for
errors imposed by the participants themselves can be eas-
ily incorporated in the proposed framework by making RI

more negative (Eq. 8).
However, understanding the behavior that maximizes

reward rate is important for several reasons. Firstly, recent
evidence indicates that the decision boundaries adopted by
human participants approach reward-rate optimizing bound-
aries, in single difficulty tasks, provided participants get
enough training and feedback (Evans & Brown, 2016). This
suggests that people use reward rate to learn the decision
boundaries over a sequence of trials.

Secondly, the shape of the reward landscape may explain
why people adopt more cautious strategies than warranted
by maximizing reward rate. In a recent set of experiments,
we used an expanded judgment task to directly infer the
decision boundaries adopted by participants and found that
participants may be choosing decision boundaries that trade
off between maximizing reward rate and the cost of errors
in the boundary setting (Malhotra et al., in press). That
is, we considered participants’ decision boundaries on a
“reward landscape” that specifies how reward rate varies as
a function of the height and slope of the decision boundary.
We noted that these landscapes were asymmetrical around
the maximum reward rate, so that an error in the “wrong”
direction would incur a large cost. Participants were gen-
erally biased away from this “cliff edge” in the reward
landscape. Importantly, across a range of experiments, par-
ticipants were sensitive to experimental manipulations that
modified this global reward landscape. That is, participants
shifted their decision boundaries in the direction predicted
by the optimal policies shown in Fig. 3 when the task
switched from single to mixed difficulties. This happened
even when the task was fast-paced and participants were
given only a small amount of training on each task. Thus,
even though people may not be able to maximize reward
rate, they are clearly sensitive to reward-rate manipulations
and respond adaptively to such manipulations by changing
their decision boundaries.
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Lastly, the optimal policies predicted by the dynamic
programming procedure above provides a normative target
for the (learned or evolved) mechanism used by people to
make decisions. Thus, these normative models provide a
framework for understanding empirical behavior; if people
deviate systematically from these optimal decisions, it will
be insightful to understand why, and under what conditions,
they deviate from a policy that maximizes the potential
reward and how these alternative objective functions relate
to reward-rate maximization.

Assumptions and generalizations

We have made a number of assumptions in this study with
the specific aim of establishing the minimal conditions for
time-varying decision boundaries and exploring how prop-
erties of decision (such as difficulty) affects the shape of
decision bounds.

Firstly, note that in contrast to previous accounts that
use dynamic programming to establish optimal decision
boundaries (e.g., Drugowitsch et al., 2012; Huang & Rao,
2013), we compute optimal policies directly in terms of
evidence and time, rather than (posterior) belief and time.
There are two motivations for doing this. Firstly, our key
goal here is to understand the shape of optimal decision
boundaries for sequential sampling models which define
boundaries in terms of evidence. Indeed, most studies
which have aimed to test whether decision boundaries col-
lapse, do so by fitting sequential sampling or accumulator
models to reaction time and error data (Ditterich, 2006;
Drugowitsch et al., 2012; Hawkins et al., 2015; Voskuilen
et al., 2016). Secondly, we do not want to assume that
the decision-making system necessarily computes poste-
rior beliefs. This means that the decision-making process
that aims to maximize reward rate can be implemented by
a physical system integrating sensory input. For an alter-
native approach, see Drugowitsch et al. (2012), who use
dynamic programming to compute the optimal boundaries
in belief space and then map these boundaries to evidence
space.

Next, a key assumption is that policies can be compared
on the basis of reward rate. While reward rate is a sensible
scale for comparing policies, it may not always be the eco-
logically rational measure. In situations where the number
of observations are limited (e.g., Rapoport & Burkheimer,
1971; Lee & Zhang, 2012) or the time available for making
a decision is limited (e.g., Frazier & Yu, 2007), the decision-
maker should maximize the expected future reward rather
than the reward rate. If the number of decisions are fixed and
time is not a commodity, then the decision-maker should
maximize the accuracy. In general, the ecological situation
or the experiment’s design will determine the scale on which
policies can be compared.

Another simplifying assumption is that the decision-maker’s
environment remains stationary over time. In more ecolog-
ically plausible situations, parameters such as the drift rate,
inter-stimulus interval and reward per decision will vary
over time. For example, the environment may switch from
being plentiful (high expectation of reward) to sparse (low
expectation of reward). In these situations, each trial will
inform the decision-maker about the state of the environment
and the normative decision-maker should adapt the boundary
from trial-to-trial based on the inferred state. Such an adaptive
model was first examined by Vickers (1979), who proposed
a confidence-based adjustment of decision-boundary from
trial-to-trial. Similarly, Simen, Cohen and Holmes (2006)
proposed a neural network model that continuously adjusts
the boundary based on an estimate of the current reward
rate.

Recent experiments have shown that participants indeed
respond to environmental change by adapting the gain of
each stimulus (Cheadle et al., 2014) or the total amount
of evidence examined for each decision (Lee, Newell, &
Vandekerckhove, 2014). Lee et al. (2014) found that sequen-
tial sampling models can capture participant behavior in
such environments by incorporating a regulatory mecha-
nism like confidence, i.e. a confidence-based adjustment of
decision boundary. However, they also found large indivi-
dual differences in the best-fitting model and in the parame-
ters chosen for the regulatory mechanism. An approach that
combines mechanistic models such as those examined by
Lee et al. (2014) and normative models such as the one dis-
cussed above could explain why these individual differences
occur and how strategies differ with respect to a common
currency, such as the average reward.
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Appendix A: Eventually it is optimal to go at zero

In this appendix we show that, under a mild condition, it will
be optimal to guess a hypothesis when the evidence level x

is 0 for sufficiently large t . In other words, the bounds do
eventually collapse to 0. The situation we envisage is one in
which some of the trials in the mixed condition have zero
drift, i.e., εd = 0, so that

p0 := P

(
U = 1

2

)
>0, P

(
U = 1

2
+ εe

)
=P

(
U = 1

2
− εe

)
= 1 − p0

2
.

We also assume that the decision-maker gets a unit reward
for making correct decisions and no reward for making
incorrect decisions and there is a fixed inter-trial delay D

between taking a go action and returning to the zero-value
state (0, 0).

We start with some observations. First note that the
decision-maker could use a policy which always guesses at
t = 0. This policy scores on average 1

2 per trial, and tri-
als take D time units (since there is no time spent gathering
evidence). Hence the average reward per unit time of this
guessing policy is 1

2D . The optimal policy π̂ will therefore
have average reward per unit time, ρπ̂ ≥ 1

2D . Similarly, an
oracle policy can guess correctly at time 0, and achieve an
average reward per unit time of 1

D
; since the performance of

any policy is bounded above by this perfect instant guessing
policy, ρπ̂ ≤ 1

D
. We have shown that

1

2D
≤ ρπ̂ ≤ 1

D
. (10)

Along similar lines, and recalling that we have fixed vπ
(0,0) =

0, note that the maximum possible reward resulting from
choosing a hypothesis is equal to 1, and there will be delay
at least D in transitioning from (t, x) to (0, 0), so for any π ,
x and t

vπ
(t,x) ≤ 1 − ρπD. (11)

We now prove that for a sufficiently large T , the opti-
mal action in the state (T , 0) is go. This will be true if the
value of taking the action go, in state (T , 0), is larger than
taking the action wait . If we denote the value of taking
action a in state (t, x) under policy π by Qπ

(t,x)(a), we can
write this condition as Qπ

(T,0)(go) > Qπ
(T ,0)(wait). Note

that Qπ
(T,0)(go) = 1

2 − ρπD, since the selected hypothesis

is correct with probability 1
2 and then there is a delay of D

before returning to the zero-value state (0, 0). Therefore, we
would like to prove that Qπ

(T,0)(wait) < 1
2 − ρπD.

Now, consider a time window of duration � after T . The
value of waiting at (T , 0) will depend on one of two future
outcomes during this time window. Either:

• the decision-maker will choose the action go after
τ < � steps, achieving a value of Qπ

(T +τ,x)(go) and
incurring an additional waiting cost of ρπτ , or

• the decision-maker will still be waiting until time T +
�, achieving value vπ

(t+�,x) but incurring an additional
waiting cost of ρπ�.

Therefore the value of wait ing at (T , 0) is a convex combi-
nation of the time-penalized value of these future outcomes,
so

Qπ
(T,0)(wait)≤max

{
max

1≤τ<�,|x|≤τ
{Qπ

(T +τ,x)(go)−ρπτ }, vπ
(t+�,x)−ρπ�

}
.

(12)

Note that by Eq. 11, vπ
(t+�,x) ≤ 1 − ρπD. Also note that

Qπ
(T +τ,x)(go) is the expected instantaneous reward from

the action, plus a time penalty of ρπD. We will show
below that, for any η > 0, we can choose T sufficiently
large that this expected instantaneous reward is less than or
equal to 1

2 + η. Therefore Qπ
(T +τ,x)(go) ≤ 1

2 + η − ρπD.
Hence

Qπ
(T,0)(wait)≤max

{
max

1≤τ<�
{1
2

+η−ρπ (τ +D)},1−ρπD−ρπ�

}
.

For an interval � = 2D

Qπ
(T,0)(wait) ≤ max

{
1

2
+ η − ρπ, 1 − 2ρπD

}
− ρπD.

Now 1− 2ρπD ≤ 0 by Eq. 10 and if we choose η (which is
an arbitrary constant) to be such that η < 1

2D , then η < ρπ

and it follows that

Qπ
(T,0)(wait) <

1

2
− ρπD = Qπ

(T,0)(go).

The optimal action at (T , 0) is therefore to go.
It remains to show that, if T is sufficiently large, the

expected instantaneous reward is bounded by 1
2 + η. The

expected instantaneous reward in any state is equal to the
size of the reward times the probability of receiving it. Since
we assume that the reward size is one unit and decision-
makers receive a reward only for correct decisions, the
expected instantaneous reward in a state (t, x) is p

go

(t,x)→C .
From Eq. 7, we know that

p
go

(t,x)→C = max {P(U ∈ U+|Xt =x),P(U ∈ U−|Xt =x)} ,

and in the special case where εd = 0, P(U ∈ U+|Xt = x)

can be replaced by P(U = 1
2 + εe|Xt = x) + 1

2P(U =
1
2 |Xt = x). Recall that each of the paths that reach Xt =
x contain nu = t+x

2 upward transitions and nd = t−x
2

downward transitions. From Eq. 5 we have that

P(U = u | Xt = x) = unu(1 − u)ndP(U = u)∑
ũ∈U ũnu(1 − ũ)ndP(U = ũ)

.
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Hence by Eq. 7 the expected instantaneous reward under
the action go when x ≥ 0 (and the hypothesis + is selected)
is therefore

p
go

(t,x)→C = P

(
U = 1

2
+ εe|Xt = x

)
+ 1

2
P

(
U = 1

2
|Xt = x

)

=
(
1
2 + ε

)nu
(
1
2 − ε

)nd 1−p0
2 + 1

2

(
1
2

)nu
(
1
2

)nd

p0
(
1
2 + ε

)nu
(
1
2 − ε

)nd 1−p0
2 +

(
1
2

)nu
(
1
2

)nd

p0 +
(
1
2 − ε

)nu
(
1
2 + ε

)nd 1−p0
2

= (1 − 4ε2)
t−x
2 (1 + 2ε)x(1 − p0) + p0

(1 − 4ε2)
t−x
2 [(1 + 2ε)x + (1 − 2ε)x](1 − p0) + 2p0

.

For fixed x, (1 − 4ε2)
t−x
2 → 0 as t → ∞, so that

the expected reward from going at x converges to 1
2 as t

becomes large. Since the maximization in Eq. 12 is over
|x| ≤ τ < �, we can take T sufficiently large that the
expected instantaneous reward from the action go in any
state (T + τ, x) with 1 ≤ τ < � and |x| ≤ τ is less than
1
2 +η. So for any η we can say the following: for any x, for a
sufficiently large t ≥ T , the instantaneous reward for going
at (t, x) is less than 1

2 +η. An identical calculation holds for
x ≤ 0.

Appendix B: Mapping experimental conditions
to drifts

We now describe how we selected a set of drifts correspond-
ing to each study in Table 1. Since these studies do not use
an expanded judgment paradigm, we do not explicitly know
the values of drift parameter; instead, these studies specify a
measurable property of the stimulus, such as motion coher-
ence, that is assumed to correlate with the drift. However,
we know how the participants performed in this task – i.e.
their accuracy – during each of these coherence conditions.
These accuracy levels constrain the possible range of drift
rates that correspond to the motion coherences and can be
used to infer an appropriate range of drifts.

Specifically, we used the following method to determine
whether any given set of drift rates, {ε1, . . . , εn}, approxi-
mated the conditions for a study: (i) we used the dynamic
programming procedure described in the main text to com-
pute the optimal bounds for a mixed difficulty task with
difficulties drawn from the given set of drifts and for a range
of inter-trial delays, DI ; (ii) we simulated decisions by inte-
grating noisy evidence to these optimal bounds, with the
drift rate of each trial chosen randomly from the given set
of drifts; (iii) we determined the accuracy levels, a1, . . . , an,
of these simulated decisions; (iv) finally, we compared the

accuracy levels in the original study with the accuracy lev-
els for each drift for the simulated decisions. We rejected
any given set of drifts that underestimated or overestimated
the empirically observed range of accuracies for the chosen
range of inter-trial delays. This left us with a set of drifts,
shown in Table 1, that approximately matched the level of
accuracies in the original study.

For example, Fig. 12 shows the accuracies for deci-
sions simulated in the above manner by computing optimal
bounds for two different sets of drifts: {0, 0.03, 0.05, 0.10,
0.20, 0.40} and {0.03, 0.04, 0.06, 0.08, 0.11, 0.15}. Each
mixture contains six different difficulties, just like the orig-
inal study conducted by Palmer et al. (2005). We performed
these simulations for a range of inter-trial delays and Fig. 12
shows three such delays. The (yellow) bar on the left of each
panel shows the empirically observed range of accuracies. It
is clear that the range of difficulties in Fig. 12b considerably
underestimates the empirically observed range of accuracies
and therefore is not an appropriate approximation of the dif-
ficulties used in the original study. On the other hand, the
range of difficulties in Fig. 12a captures the observed range
of accuracies for a variety of inter-trial delays.

Figure 12 also illustrates that the mapping between drift
rates and error rates is complex since the parameter space is
highly multi-dimensional—with accuracy a function of the
inter-trial delay as well as the n values in the set {ε1 . . . εn}.
In order to choose an appropriate mapping, we explored
a considerable range of delays and sets of drifts. While
the complexity of this parameter space makes it difficult
to be absolutely certain that there is no combination of a
set of drifts and delays for which more strongly decreasing
boundaries are seen, our observation was that the optimal
boundaries shown in Fig. 11 were fairly typical of each
study for reasonable choice of parameters. Where more
strongly decreasing boundaries were seen, they were (a) still
much shallower than the optimal boundaries for the mixture
of two difficulties (ε ∈ {0, 0.20}, as conveyed in insets for
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Fig. 12 A comparison of accuracies between decisions simulated
from optimal bounds and decision performed by participants. The two
panels show the accuracy of 10,000 simulated decisions during two
mixed difficulty tasks, each of which use a mixture of six difficulty
levels but differ in the range of difficulties. Panel (a) uses a large range
of drifts [0, 0.40], while panel (b) uses a comparatively smaller range

[0.03, 0.15]. Squares, circles, and triangles show these accuracies for
an inter-trial delay, DI , of 100, 200, and 300 time units, respectively.
The yellow bar on the left of each panel shows the range of accura-
cies observed in Experiment 1 of Palmer et al. (2005) which used six
different motion coherence levels: {0%, 3.2%, 6.4%, 12.8%, 25.6%,
51.2%}

Fig. 11), and (b) the predicted accuracy levels did not match
those that were empirically observed.
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Castañón, S. H., & Summerfield, C. (2014). Adaptive gain control
during human perceptual choice. Neuron, 81(6), 1429–1441.

Deneve, S. (2012). Making decisions with unknown sensory reliability.
Frontiers in Neuroscience, 6.

Diederich, A., & Busemeyer, J. R. (2006). Modeling the effects
of payoff on response bias in a perceptual discrimination task:
Bound-change, drift-rate-change, or two-stage-processing hypoth-
esis. Perception & Psychophysics, 68(2), 194–207.

Ditterich, J. (2006). Stochastic models of decisions about motion
direction: behavior and physiology. Neural Networks, 19(8), 981–
1012.

Drugowitsch, J., Moreno-Bote, R., Churchland, A. K., Shadlen, M. N.,
& Pouget, A. (2012). The cost of accumulating evidence in per-
ceptual decision-making. Journal of Neuroscience, 32, 3612–
3628.

Edwards, W. (1965). Optimal strategies for seeking information:
Models for statistics, choice reaction times, and human informa-
tion processing. Journal of Mathematical Psychology, 2(2), 312–
329.

Evans, N. J., & Brown, S. D. (2016). People adopt optimal policies in
simple decision-making, after practice and guidance. Psychonomic
Bulletin & Review, pp. 1–10. doi:10.3758/s13423-016-1135-1.

Frazier, P., & Yu, A. J. (2007). Sequential hypothesis testing under
stochastic deadlines. In Advances in neural information process-
ing systems (pp. 465–472).

Ghosh, B. K. (1991). A brief history of sequential analysis. Handbook
of Sequential Analysis, 1.

Hanks, T. D., Mazurek, M. E., Kiani, R., Hopp, E., & Shadlen, M. N.
(2011). Elapsed decision time affects the weighting of prior prob-
ability in a perceptual decision task. The Journal of Neuroscience,
31(17), 6339–6352.

Hawkins, G. E., Brown, S. D., Steyvers, M., & Wagenmakers, E.-J.
(2012). An optimal adjustment procedure to minimize experiment
time in decisions with multiple alternatives. Psychonomic Bulletin
& Review, 19(2), 339–348.

Hawkins, G. E., Forstmann, B. U., Wagenmakers, E.-J., Ratcliff, R.,
& Brown, S. D. (2015). Revisiting the evidence for collapsing
boundaries and urgency signals in perceptual decision-making.
The Journal of Neuroscience, 35(6), 2476–2484.

Howard, R. A. (1960). Dynamic programming and Markov processes.
New York: Wiley.

Psychon Bull Rev (2018) 25:971–996 995

http://dx.doi.org/10.3758/s13423-016-1135-1


Huang, Y., Hanks, T., Shadlen, M., Friesen, A. L., & Rao, R. P. (2012).
How prior probability influences decision-making: a unifying
probabilistic model. In Advances in neural information processing
systems (pp. 1268–1276).

Huang, Y., & Rao, R. P. (2013). Reward optimization in the primate
brain: a probabilistic model of decision-making under uncertainty.
PloS one, 8(1), e53344.

Kiani, R., & Shadlen, M. N. (2009). Representation of confidence
associated with a decision by neurons in the parietal cortex.
Science, 324, 759–764.

LaBerge, D. (1962). A recruitment theory of simple behavior. Psy-
chometrika, 27(4), 375–396.

Laming, D. R. J. (1968). Information theory of choice-reaction times.
London: Academic Press.

Laplace, P.-S. (1774). Mémoire sur les suites récurro-récurrentes et sur
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