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Abstract Dorsal anterior cingulate cortex (dACC) mediates updating and maintenance of

cognitive models of the world used to drive adaptive reward-guided behavior. We investigated the

neurochemical underpinnings of this process. We used magnetic resonance spectroscopy in

humans, to measure levels of glutamate and GABA in dACC. We examined their relationship to

neural signals in dACC, measured with fMRI, and cognitive task performance. Both inhibitory and

excitatory neurotransmitters in dACC were predictive of the strength of neural signals in dACC and

behavioral adaptation. Glutamate levels were correlated, first, with stronger neural activity

representing information to be learnt about the tasks’ costs and benefits and, second, greater use

of this information in the guidance of behavior. GABA levels were negatively correlated with the

same neural signals and the same indices of behavioral influence. Our results suggest that

glutamate and GABA in dACC affect the encoding and use of past experiences to guide behavior.

DOI: 10.7554/eLife.20365.001

Introduction
Dorsal anterior cingulate cortex (dACC) has a central role in reward-guided decision-making, behav-

ioral adaptation, learning, and formation of task models (Heilbronner and Hayden, 2016;

Kolling et al., 2016a; Holroyd and Yeung, 2012; Khamassi et al., 2011; Ullsperger et al., 2014).

Recently dACC’s role in health and disease has been underscored by findings that structural variabil-

ity predicts a broad spectrum of mental illnesses (Goodkind et al., 2015). Most of our knowledge of

dACC is based on measurements tied to neuronal firing such as human functional magnetic reso-

nance imaging (fMRI) and animal recording studies or to investigations of loss of function after

lesions and inactivation (Kennerley et al., 2006; Amiez et al., 2006). However, the neurochemical

modulation and orchestration of dACC’s role is largely unknown.

The importance of variation in neurotransmitter levels has recently become apparent in other

frontal brain areas. For example ventromedial prefrontal cortex (vmPFC) has been linked to value-

guided decisions (Boorman et al., 2009; Rushworth et al., 2011). Biophysical neural network mod-

els of decision-making in vmPFC (Hunt et al., 2012) predict that the inhibitory neurotransmitter

gamma-aminobutyric acid (GABA) mediates the dynamics of the value comparison process. The pre-

dictions were born out in a study looking at the neurochemistry of this structure with magnetic reso-

nance spectroscopy (MRS) (Jocham et al., 2012). Relatedly, levels of GABA in motor cortex

(Stagg et al., 2011) and in the frontal eye field (Sumner et al., 2010) have been found to predict

the speed of selection of responses and inhibition of incorrect responses to distractors respectively.

In all three cases, neurotransmitter levels were predictive of the dynamics of the decision or selection

process within different domains.
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Here we use a similar approach to examine the relation between GABA and glutamate in dACC,

fMRI-based indices of neural activity, and behavior. We relate these neurotransmitters to a key func-

tion of dACC that is quite distinct to the selection processes previously examined in MRS studies,

namely the use of a task model to guide behavior based on past experience. More specifically, we

hypothesized that if excitatory and inhibitory neurotransmitters in dACC determine the processing

and use of information to form a model of the world (O’Reilly et al., 2013), or at least the task at

hand, then measures of these neurotransmitters should relate to both behavioral and neural markers

of this process (Figure 1—figure supplement 1).

Results
We used MRS to obtain measures of the total amount of GABA and glutamate in 27 humans at rest

in dACC (Figure 1A and B). Participants then performed a previously established multi-dimensional

learning task (Scholl et al., 2015) during fMRI acquisition. Participants had to repeatedly choose

between the same two options, based on the reward probabilities and the reward and effort magni-

tudes (i.e. requirement of a sustained effort) associated with each option. The reward probabilities

changed randomly from trial to trial and were displayed to participants on each trial on the screen.

By contrast the reward and effort magnitudes associated with each option had to be learnt from

experience across trials (Figure 1C and D). The participants’ goal was thus to choose options that

would lead to the highest reward magnitude with the highest probability of being rewarded, but at

the same time requiring the least effort. Participants performed the task well (Figure 2) after careful

training.

Participants’ performance can be described using a computational reinforcement-learning model

(see Figure 2—figure supplement 1 and 2). This allows parsing a single behavior (choices on each

trial) into different underlying components. Our hypothesis was that neurotransmitter levels in dACC

should relate to how much participants used the learnt information or, in other words, a model of

what choices are associated with high/low reward/effort magnitudes, to guide their choices (rather

than just relying on the displayed probability information). This use of learnt information was cap-

tured by a single parameter in the model (g, Figure 2—figure supplement 1C), which was indepen-

dent from participants’ other behavioral parameters (Figure 2—figure supplement 2B).

If the use of learnt information depends on the excitation/inhibition balance, we should find cor-

relations between g and the neurotransmitters. Indeed, partial correlation analyses revealed that

higher glutamate relative to GABA levels related to increased use of the learnt information (r=0.53,

p=0.011). This effect was specific to the use of learnt information (Figure 3—figure supplement 1).

When considering the effects of the two neurotransmitters separately, we found that both higher

levels of glutamate (r=0.45, p=0.039) and lower levels of GABA (r=�0.43, p=0.05) were indepen-

dently related to increased use of the learnt information (Figure 3A).

One way in which resting state glutamate/GABA levels could be linked to behavioral performance

is through an impact on brain activity. To test this, we first identified brain areas that represented

the information to be learnt (GLM1) at the time of learning. We identified activity in dACC and adja-

cent cortex (Figure 3Bi, x = 6, y = 32, z = 36, z-score = 3.62, cluster p-value=5*10�5) and in other

areas (Table 1A) as coding the information to be learnt as an inverse outcome value signal (relative

reward outcome minus relative effort outcome) or, in other words, a signal related to the relative

value of the alternative not chosen on the current trial. Such a signal has previously been noted in

dACC and has been related to behavioral adaptation: decisions to maintain or change behavior in

diverse contexts (Shima and Tanji, 1998; Kolling et al., 2012; Stoll et al., 2016; Meder et al.,

2016; Kolling et al., 2016b). Other areas with different types of outcome-related activity are listed

in Table 1B. Next, we examined whether variation in this neural signal was related to our behavioral

measure of use of learnt information (g , GLM2). Again, we found this to be the case in a partly over-

lapping dACC area (Figure 3Bii and Table 1C, x=�14, y = 24, z = 58, z-score = 3.44, cluster p-val-

ue=2*10�5): participants with stronger neural representation of the information to be learnt in dACC

were better at using the learnt information to guide their choices.

Finally, we tested whether neurotransmitter levels in dACC were related to the neural representa-

tion of the information to be learnt (GLM3). Indeed, we found that the strength of the representation

of the information to be learnt in dACC correlated with the relative glutamate to GABA levels

(Figure 3Biii, x = 4, y = 22, z = 40, z-score = 3.11, cluster p-value=0.039). This result was specific to

Scholl et al. eLife 2017;6:e20365. DOI: 10.7554/eLife.20365 2 of 15

Short report Neuroscience

http://dx.doi.org/10.7554/eLife.20365


Figure 1. Spectroscopy measurements and task. (A) Spectroscopy voxels were placed in dACC. Cingulate sulcal morphology was used to guide voxel

placement and this resulted in consistent positioning of the voxel in the same location in MNI space (white color indicates overlap in voxel position in

all 27 participants). (B) Example spectroscopy spectrum from one participant. The fitted LCModel (red) is plotted overlaid on the actual data (black).

The difference between the data and the model (residuals) is shown at the top and the baseline at the bottom. (C) Participants performed 240 trials of a

reward- and effort-guided learning task. On each trial, participants were shown two options overlaid with the probability of receiving a reward for each

choice (Ci). Participants chose between the options on the basis of the reward probabilities displayed on the screen and on the basis of reward and

effort magnitudes learnt from experience on previous trials. After participants chose one option, they were shown feedback information for both the

option they had chosen and the unchosen option (Cii). The reward magnitudes were shown as purple bars (top of the screen), the effort magnitude was

indicated through the position of a dial on a circle. Whether the participant actually received a reward or not (because of the reward probability) was

indicated through a tick mark (green) or a cross (red, not shown here). If participants received a reward, the chosen reward magnitude was added to a

status bar at the bottom of the screen, which tracked participants’ earning over the course of the experiment. Finally, participants exerted the effort

associated with the chosen option in a final phase of the trial (Ciii). They had to exert an extended effort by responding to select targets that appeared

on the screen over a period of time before the trial ended; the higher the trial’s effort level, the more targets participants had to eliminate. (D) Example

of reward magnitude and effort magnitude variation associated with the two options across the course of the 120 trials for one of the two sessions

in the experiment.

DOI: 10.7554/eLife.20365.002

The following figure supplement is available for figure 1:

Figure supplement 1. Illustration of the model of integration and use of learnt information and relationship between spectroscopy and brain activity.

DOI: 10.7554/eLife.20365.003
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dACC; analogous analyses in other ROIs identified in the contrasts for learnt information

(Table 1A and B) revealed no significant effects. These findings suggest that neurotransmitters in

dACC are predictive of a behavior dependent on dACC and of fMRI-based measures of neural activ-

ity in dACC related to the same behavior.

Discussion
We looked at the effects of neurotransmitter variation on dACC function. We found that differences

in glutamate and GABA both related, firstly, to the strength of neural signals in dACC encoding the

outcomes of decisions, i.e. the feedback information that should guide behavioral adaptation on

future decisions. Secondly, the neurotransmitters also related to behavior, i.e. how well participants

used this feedback information to guide future choices. Strikingly, we found opposing patterns of

relationships for excitatory and inhibitory neurotransmitters: higher levels of glutamate and lower

levels of GABA were linked to increased use of the learnt information.

Our findings are consistent with an emerging view of dACC in forming, updating and maintaining

a model of the world and of behavioral strategies (O’Reilly et al., 2013; Karlsson et al., 2012;

Kolling et al., 2014; Wittmann et al., 2016). In our paradigm, it was always advantageous to use

Figure 2. Task validation. (A) The choices of participants, between the two options, were guided by the reward and effort differences between the

options (estimated from a Bayesian learning model): participants were more likely to choose options with higher predicted reward magnitudes and

lower predicted effort magnitudes. (B) In a logistic regression analysis, we measured the impact of different factors on choices to either select the same

option again as on the previous trial (‘stay’) or to instead select the alternative option (‘switch’). The factors we included were: the reward probabilities

(‘prob’) displayed to participants, the reward and effort magnitude outcomes on the past four trials (t-1, t-2, t-3, t-4). This regression showed that

participants could use all the relevant information when making their decisions; they used the reward probabilities that were shown on the screen (t

(26) = 10.5, p=8*10�11), the past reward magnitudes (ANOVA across all four past trials, main effect: F(1,25) = 53.5, p=1*10�7), and the past effort

magnitudes (ANOVA across all four past trials, main effect: F(1,25) = 86.9, p=1*10�9). Data in Figure2_SourceData.xlsx

DOI: 10.7554/eLife.20365.004

The following source data and figure supplements are available for figure 2:

Source data 1. This table contains the regression coefficients for individual participants for the analysis shown in Figure 2B.

DOI: 10.7554/eLife.20365.005

Source data 2. This table relates to Figure 2—figure supplement 1.

DOI: 10.7554/eLife.20365.006

Source data 3. This table relates to Figure 2—figure supplement 2.

DOI: 10.7554/eLife.20365.007

Figure supplement 1. Model simulation and validation.

DOI: 10.7554/eLife.20365.008

Figure supplement 2. Model fit and parameter stability.

DOI: 10.7554/eLife.20365.009
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Figure 3. GABA and glutamate predict behavior and neural activity. (A) Participants with higher concentrations of glutamate (r=0.45, p=0.039) and

lower concentrations of GABA (r=�0.43, p=0.05) in dACC were better able to use the learnt information (parameter g from computational model) to

guide their choices (the graphs illustrate partial correlations, i.e. the plotted values have been adjusted for covariates, see Materials and methods). (Bi)

Neural activity in dACC was sensitive to the information to be learnt at the time of the outcome: it showed an inverse outcome value signal, i.e. BOLD

activity increased with relative value of the alternative (unchosen minus chosen option, reward minus effort magnitude;yellow, whole-brain cluster-

corrected, p=5*10�5, GLM1). (Bii) Individual differences in this neural signal were predictive of individual differences in how well participants could use

the learnt information (red, whole-brain cluster-corrected, p=2*10�5, GLM2). (Biii) Individual differences in this neural signal also correlated with relative

glutamate and GABA levels (blue, cluster-corrected in spectroscopy ROI, p=0.039, GLM3). See Figure 3—figure supplement 2 for overlaps of these

activations with the spectroscopy voxel in sagittal cross-sections. Data for A in Figure3_SourceData1; data for B in Figure3_SourceData2.zip

DOI: 10.7554/eLife.20365.010

The following source data and figure supplements are available for figure 3:

Source data 1. This table contains the spectroscopy, brain volume and behavioral parameters used for correlations in Figure 3A.

DOI: 10.7554/eLife.20365.011

Source data 2. This folder contains the MRI contrast maps, both thresholded (i.e. corrected for multiple comparison using cluster correction) and non-

thresholded.

DOI: 10.7554/eLife.20365.012

Source data 3. This folder relates to Figure 3—figure supplement 3.

DOI: 10.7554/eLife.20365.013

Source data 4. This table relates to Figure 3—figure supplement 3.

DOI: 10.7554/eLife.20365.014

Figure supplement 1. Correlations between spectroscopy measurements and other behavioral parameters.

DOI: 10.7554/eLife.20365.015

Figure supplement 2. Overlap between neural signals and spectroscopy voxel placements.

DOI: 10.7554/eLife.20365.016

Figure supplement 3. Different brain volume normalizations for spectroscopy.

DOI: 10.7554/eLife.20365.017

Figure supplement 4. Correlations between regressors in GLM1.

DOI: 10.7554/eLife.20365.018
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information learnt from the outcome of one decision to guide subsequent decisions. In contrast, in

other situations, it may be beneficial to behave more randomly (for example when exploring new

environments). Here, increased GABA concentrations might enable better performance by ensuring

that one does not rely too much on previous information. In fact, inhibition in ACC of rats has been

shown to disable reward history-guided behaviors, making them more random, which depending on

the task led to better or worse performance, similarly inactivation of dACC in macaques completely

prevented them from using reward history (Kennerley et al., 2006; Amiez et al., 2006;

Karlsson et al., 2012; Tervo et al., 2014). It is possible that transient inhibition (through increased

GABA) might allow for learning a new model of the task, whereas glutamate might mediate the

exploitation of such a model.

DACC has also been implicated in error monitoring. In this context, global changes in another

neurotransmitter, acetylcholine, have been shown to affect dACC-mediated post-error adjustments

(Danielmeier et al., 2015). This suggests that there are additional neurochemical factors, potentially

mediating dACC’s impact on neural activity in other brain areas.

Our results contrast with findings in vmPFC where increased GABA levels are linked to improved

decision accuracy and slower ramping of neural signals (Jocham et al., 2012). Here we found that

both decreased levels of GABA and increased levels of glutamate were related to the degree to

which a learned task model, as opposed to information displayed on each trial, influenced behavior.

This suggests a fundamental difference in function, that dACC represents and regulates the use of a

model of the world based on past experiences, rather than that it mediates the integration and

selection of all arbitrary types of information during decisions (Hunt et al., 2015). It is particularly in

complex environments that monitoring and fine-tuning of how much to use learnt information – as

opposed to immediately perceived information - may be crucial.

These findings are of potential clinical relevance as, dACC has been linked to psychiatric disor-

ders generally (Goodkind et al., 2015) and to mood disorders more specifically (Yüksel and Öngür,

Table 1. (A) Several areas carried a signal for learnt information (relative reward outcome minus relative effort outcome) as an inverse

outcome value signal, in other words a signal related to the value of the alternative choice compared to the value of the action actually

taken. (B) Other areas signaled outcomes to be learnt as the value of the action actually taken relative to the value of the alternative

action. (C) Areas in which individual differences in the strength of the neural signal for the learnt information correlated with

the behavioral use of the learnt information. All results are cluster-corrected at whole-brain level (z > 2.3, p<0.05, with actual p-value

and number of voxels in the cluster indicated in the table). Region labels were obtained using atlases in FSL: 1(Neubert et al., 2015),
2(Mars et al., 2011), 3(Sallet et al., 2013), 4(Mori et al., 2005).

A) Learnt information (inverse value signal)

x y z z-score Voxels p-value

dACC (area 8m, anterior rostro-cingulate zone1) 6 32 36 3.62 821 5*10�5

Parietal (IPL-D, IPL-C2), left �52 �58 42 3.68 855 3*10�5

Parietal (IPL-C, IPL-D2), right 52 �46 42 3.98 753 1*10�4

Dorsolateral prefrontal cortex (area 9/46 V3), right 40 22 38 3.61 840 4*10�5

Cerebellum �10 �80 �26 4.19 454 6*10�3

Lateral frontal pole1, right 32 54 6 3.21 360 0.02

B) Learnt information (outcome value signal)

Temporal cortex, extending to parietal opercular cortex, left �36 �32 16 3.49 1371 1*10�7

Temporal cortex, extending to parietal opercular cortex, right 50 �28 26 3.23 458 5*10�3

C) Brain behavior interaction for learnt information

Midcingulate cortex (posterior rostro-cingulate zone1) 2 �4 54 3.12 719 2*10�4

Pre-SMA extending into dACC and area 8 m1 �14 24 58 3.44 771 2*10�5

Occipital lobe �12 �84 4 3.22 488 0.001

White matter (corticospinal tract4) �18 �14 32 3.4 431 0.003

Precentral gyrus, right 40 �14 52 3.28 311 0.02

DOI: 10.7554/eLife.20365.019
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2010). In the future, it would be important to test whether glutamate and GABA measurements,

and their effects on value-guided learning, are changed in mood disorders.

Materials and methods

Participants
30 healthy volunteers took part in the study after giving informed consent. One participant was

excluded because he/she fell asleep, one participant was excluded because of corrupted spectros-

copy data and one participant was excluded because of noise in the spectroscopy measurements

(i.e. Cramer-Rao lower bound values for GABA were 38%). Of the remaining 27 participants, 13

were assigned to a selective serotonergic re-uptake inhibitor for two weeks, while 14 were assigned

to placebo as part of previously reported studies (Scholl et al., 2015). The drug manipulation had

no effect on neurotransmitter levels (p>0.84). Nevertheless, we included it in all analyses as a con-

found regressor.

Task description
This task description is adapted from a previously published study based on the same task

(Scholl et al., 2015). We designed a task that allowed measuring how participants learnt about

reward and effort and how well they could use this information to guide decisions. In the task, partic-

ipants made repeated choices between two options with the aim of maximizing their monetary pay-

off and minimizing the effort they needed to exert in an interleaved ‘effort phase’. On each trial,

there were three phases: first participants chose between two options (‘choice phase’), then they

were shown the outcome of their choice (‘outcome phase’), then they had to exert the effort associ-

ated with the option they had chosen (‘effort phase’).

In the decision phase, participants chose between two options using two buttons on a trackball

mouse. Each option had three independent attributes: a reward magnitude (reward points, later

translated into monetary pay-off), an effort magnitude (amount of effort required in the effort

phase), and a probability of receiving a real reward (rather than a hypothetical reward, see below).

The probability of each option was shown on the screen at the time of choice. In contrast, the

reward and effort magnitudes of the options were not explicitly instructed and instead participants

had to learn and track these slowly changing features of the two choices across trials. These magni-

tudes were drawn from normal distributions of which the means fluctuated pseudorandomly, slowly

and independently over the course of the experiment between three levels (low, mid, high). Partici-

pants were instructed to learn and keep track of the changing mean value of each magnitude across

the experiment. Only one of the reward or effort magnitude means was drifting at any one time and

each of the four magnitudes was at each mean level equally often.

After the participants had selected an option, it was highlighted until the ensuing outcome phase.

In the outcome phase, participants were first shown the reward and effort magnitudes of the option

they had chosen, as well as whether they received a reward or not (in other words whether the out-

come was a real secondary reinforcer indicating a specific monetary payment or instead hypotheti-

cal). If they received a reward, the current trial’s chosen reward magnitude was added to their total

reward accumulated so far (which was translated into a monetary reward in the end of the experi-

ment). They were then shown the reward and effort magnitudes for the option they had not chosen.

During the outcome phase, participants could thus use the information displayed to update their

estimates of the reward and effort magnitudes associated with the choices.

Finally, on every trial, participants had to perform the effort phase of the trial. Participants had to

exert a sustained effort by selecting circles that appeared on the screen using the trackball mouse.

The circles were added to random positions on the screen in threes every three seconds (up to a

total equal to the chosen effort magnitude). To make the task more effortful a random jitter (five pix-

els, the total screen size was 1280 � 800 pixels) was added to the mouse movement and circles only

had a 70% probability of disappearing when clicked on. Furthermore, we pre-screened participants

and only invited participants for the fMRI session if they had perceived the effort as aversive and

were willing to trade-off money to reduce the effort that they needed to exert.
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Participants had 25s to complete the clicking phase and otherwise lost money equivalent to the

potential reward magnitude of the chosen option (participants failed to complete the effort phase

on less than 1% of trials).

On most trials (100 out of 120) participants had to chose between the two options with changing

reward and effort magnitudes. The reward magnitudes were set between 0 and 20 pence and the

effort magnitudes were set between 0 and 15 circles that needed to be clicked. On the remaining

trials (‘Special-option-trials’, SOTs), participants had to choose between one of the changing options

and one of two fixed options whose values participants learned in a training session outside the

scanner. The value of both fixed options was 7.5 pence, but one had a fixed effort magnitude of 4

circles and the other had one of 12 circles. The SOTs were included to ensure participants learned

the values of each choice, rather than just their preference for one option over the other (a relative

preference for one option over the other would not enable participants to choose effectively on the

SOTs).

Interspersed with the 120 learning trials, there were 20 trials on which participants just had to

indicate which option had a higher mean effort magnitude. These trials were included to ensure par-

ticipants paid attention to the effort dimension. They were not given feedback about their choice.

These trials were not included in the data analysis.

Participants performed 120 trials of the learning task inside the scanner and an additional 120 tri-

als afterwards on the next day outside the scanner to increase the number of trials for the behavioral

data analysis. Each participant performed the same two schedules in randomized order. Participants

were informed about the features of the task in two training sessions before the scan, including the

fixed number of trials they would perform. This ensured that they did not perceive low effort options

as having a potentially higher monetary value because taking them might allow participants to move

on to the next trial more quickly and to perform more trials with more chances to win money. Fur-

ther details of the training were as follows: In the first training session (45 min), participants per-

formed a version of the task without a learning component, i.e. not only the probability, but also

reward and effort magnitudes were explicitly shown. This training ensured that participants were

familiar with the features of the task, for example, that they understood what the probability infor-

mation meant. We also used this session to exclude participants before the fMRI session that did not

find the effort sufficiently aversive to produce robust effects on behavior. In a second training session

(1 hr), we instructed participants about the learning task that they later performed in the fMRI scan-

ner. At the end of the training, participants were queried about how they made decisions (specifi-

cally, they were asked ‘What are you thinking about when you’re making your decision’). All

participants reported trying to learn the reward and effort magnitudes and using the explicitly cued

probabilities to make decisions. This suggested that participants were well aware of how to do the

task before the beginning of the scan.

Experiment timings
The options were displayed for 1.4 to 4.5 s before participants could make a choice. After the choice

was made, the chosen option was highlighted for 2.9 to 8.0 s. Next, the outcome was first displayed

for the chosen option (1.9–2.1 s), then for the unchosen option (1.9–6.9 s). Participants then per-

formed the effort exertion task (0–25 s). Finally, the trial ended with an ITI (2.3–7.5 s).

Data sharing
The data are publicly available from the Oxford University Research Archive (https://doi.org/10.

5287/bodleian:PP805bgDz). Analysis scripts are available on request from the corresponding author.

Source data files are provided with the article for all figures presented in the manuscript.

Task validation
We performed a logistic regression to validate that participants performed the task well, i.e. that

they took all relevant task features into account when making their decisions. In the regression, we

predicted whether participants chose again the same option as on the previous trial (‘stay’) or

instead selected the alternative option (‘switch’). As predictors we included the displayed reward

probabilities (from current trial, t) and the reward (‘RM’) and effort magnitudes (‘EM’) from the past

four trials (t-1, t-2, t-3, t-4). These regressors were coded in the frame of reference of the ‘stay’
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choice relative to the ‘switch’ choice [e.g. reward magnitude on the last trial (t-1) for the option that

would be a ‘stay choice’ minus the reward magnitude (at t-1) for the alternative option]. All regres-

sors were z-score normalized.

Y ¼ b0 þb1Reward Probabilityt þb2RMt�1 þb3RMt�2þb4RMt�3þb5RMt�4

þb6EMt�1 þb7EMt�2þb8EMt�3þb9EMt�4

We used ANOVAs to test whether participants could use the learnt information (main effect

across the four reward magnitude (RM) or the four effort magnitude (EM) regression weights. We

controlled for group assignment as a between participant confound.

The same result can be illustrated by binning participants’ choices according to the predicted

reward and effort magnitudes on each trial, as derived from a previously established Bayesian opti-

mal observer model (Scholl et al., 2015), see also Figure 2—figure supplement 2A and the

Materials and methods below for a validation of this model.

Behavioral modeling
We adapted a previously described computational learning model (Scholl et al., 2015) to measure

how much participants used the information they learnt to guide their choices (g). This Rescorla-

Wagner learning model was fit to participants’ choices in the task. In short, the model consisted of

three components: firstly the model had predictions of the mean reward/effort magnitudes underly-

ing both outcomes. These were updated on every trial:

Predictiont ¼ Predictiont�1 þa �PEt�1

with

PEt�1 ¼Outcomet�1�Predictiont�1

where a was the learning rate.

Secondly, the model combined these reward/effort magnitude predictions together with the

reward probabilities (shown to participants on each trial) to calculate how valuable each option was

(i.e. their utility).

UtilityOptionA ¼ 1�gð Þ �ProbabilityReward þg � ðl�MagPredictionReward
� 1�lð Þ �MagPredictionEffortÞ

l describes to what extent participants relied more on reward versus effort magnitudes. In the pres-

ent context, the parameter of interest that describes how much participants used the learnt informa-

tion was g .

Thirdly, the model then compared the utility of the two options to predict choices, using a stan-

dard soft-max decision rule:

P OptionAð Þ ¼
eb�UtilityA

eb�UtilityA þ eb�UtilityB

where b (inverse temperature) reflected participants’ tendency to pick the option with the higher

utility.

We also considered alternative models (M2-M6, see Figure 2—figure supplement 2A). Firstly,

these models differed in their number of learning rates: they either shared the same learning rate for

reward and effort, or they had separate learning rates. Secondly, instead of computing utility as a lin-

ear combination of reward magnitudes and probability, utility could be computed based on a multi-

plicative integration of probability and reward:

UtilityOptionA ¼ 1�lð Þ�ProbabilityReward �MagPredictionReward�l

�MagPredictionEffort

where l was the relative effort (to reward) sensitivity.

Finally, to ensure that the previously described (Scholl et al., 2015) Bayesian optimal observer

model that we used to illustrate the participants’ behavior in Figure 2A and to derive regressors for

the fMRI analysis provided a good fit to the data, we also used a model with no fitted learning rate
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that instead used the predictions for reward and effort derived from the Bayesian model. We also

note here that fMRI regressors derived from the Bayesian optimal observer model correlated very

strongly (r > 0.99) with those obtained from the fitted reinforcement learning model and therefore

using either type of model to obtain regressors does not affect our results.

All models were fit using Bayesian parameter estimation (Lee and Wagenmakers, 2014) as

implemented in Stan (Carpenter et al., 2016). We used a hierarchical modeling approach, i.e.

parameter estimates for individual participants were constrained by a group-level distribution of

those parameters. We obtained three chains of 1000 samples after an initial warm-up of 1000 sam-

ples; convergence of chains was checked (Gelman and Rubin, 1992). Based on an initial fitting of

individual participants, parameter ranges and transformations were selected so that parameters

were reasonable, and normally distributed at the group level. Specifically, the learning rates, weight

of learnt information and sensitivity to the effort were sampled from a group normal distribution on

a scale from -¥ to +¥ and then transformed to a scale from 0 to 1; the inverse temperature was sam-

pled from a group normal distribution on a scale from 0 to 1. For the group level distributions, mean

values were given a flat prior in the allowed range and standard deviations were given a prior of

mean zero and standard deviation 10 and constrained to be positive.

We assessed model-fit in two ways. Firstly, we performed a cross validation using a half-split of

the data: we fitted all participants’ data for either the session inside or outside the scanner and then

used the estimated parameters to assess predictive accuracy (summed log likelihoods) for the data

from the other session (Vehtari et al., 2016). Secondly, as an alternative method for model compari-

son, we also computed summed (across participants) BIC values for a non-hierarchical version of the

models, fitted using Matlab’s fminsearch. We also used the parameter estimates derived from the

separate sessions to examine test-retest reliability of the parameter estimates (Figure 2—figure sup-

plement 2C).

In supplementary analyses, we validated the model (M1) further (Figure 2—figure supplement

1). To check that our model was indeed able to capture participants’ behavior, we simulated data

from 10 sets of 27 participants with parameter group mean and standard deviations as derived from

the real data. We analyzed this simulated data using the same regression and model-fitting

approaches as described above. To illustrate our behavioral effect of interest, differences in the use

of learnt information (g ), we simulated another two groups of 270 participants whose mean g was at

the extreme ends of the confidence intervals for those found in real participants.

Spectroscopy
Spectroscopy and fMRI data were acquired using a Siemens Verio 3 Tesla MRI scanner (32-channel

coil). Spectroscopy data were obtained from dACC. Previous studies have shown that spectroscopy

measurements of neurotransmitter levels are region specific (Emir et al., 2012; van der Veen and

Shen, 2013). First, a high-resolution T1-weighted scan was acquired using an MPRAGE sequence.

Based on this scan, the spectroscopy voxel (2 x 2 � 2 cm) was centered on dACC by reference to

the location of the corpus callosum, the cingulate and adjacent sulci. The center of gravity of the

region of maximum voxel overlap across participants lay at x = 0, y = 28, z = 28 in the Montreal Neu-

rological Institute (MNI) space. The relatively large size of the spectroscopy voxel meant that it

extended to include tissue in the paracingulate sulcus in those participants in which it was present.

MRS data (128 samples) were acquired using the SPECIAL sequence (Mekle et al., 2009;

Mlynárik et al., 2006) as described previously (Stagg et al., 2011). The data were preprocessed

using the FID-Appliance (github.com/CIC-methods/FID-A [Simpson et al., 2015]) to correct for fre-

quency and phase-drift. The data were then analyzed using LCModel (Provencher, 2001). Voxels for

which Cramer-Rao lower bound values exceeded 20% were excluded. GABA and glutamate values

were divided by total creatine. To correct for partial volumes within the spectroscopy voxels, all anal-

yses included as confound regressors the relative volumes of grey and white matter (i.e. grey or

white matter divided by total tissue = grey + white + cerebrospinal fluid) and total tissue in the spec-

troscopy voxel. These values were obtained using FAST (FMRIB’s automated segmentation tool,

[Zhang et al., 2001]). The results were independent of the precise manner of controlling for partial

volume (see Figure 3—figure supplement 3).
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Relating behavior to spectroscopy
As in previous reports (Jocham et al., 2012), we found that glutamate and GABA were correlated

(r = 0.47, p=0.013). Therefore, to be able to measure the separate impact of glutamate and GABA

on the use of the learnt information, we performed nonparametric (Spearman) partial correlations,

between the use of learnt information (g) and either glutamate or GABA, controlling for the other

neurotransmitter. In each analysis, we additionally controlled for group assignment, inverse tempera-

ture (b, from the behavioral model), relative gray and white matter and total tissue. To reduce the

number of multiple comparisons in our initial analysis, when testing each model parameter for its

relationship to glutamate and GABA, we combined glutamate and GABA to one value (glutamate

minus GABA). This also reflected our initial hypothesis that it might not be each neurotransmitter in

isolation that influences neural activity and behavior but rather the relationship between glutamate

and GABA that is critical.

FMRI
Data acquisition
For the fMRI, we used a Deichmann echo-planar imaging (EPI) sequence (Deichmann et al., 2003)

[time to repeat (TR): 3s; 3 x 3 � 3 mm voxel size; echo time (TE): 30 ms; flip angle: 87˚; slice angle of

15˚ with local z-shimming] to minimize signal distortions in orbitofrontal brain areas. This entailed ori-

enting the field-of-view at approximately 30˚ with respect to the AC-PC line. We acquired between

1100 and 1300 volumes (depending on the time needed to complete the task) of 45 slices per

participant.

Preprocessing
FMRI data were analyzed using FMRIB’s Software Library (FSL [Smith et al., 2004]; see also

[Scholl et al., 2015]), run on a local computer using HTCondor (Thain et al., 2005) and code from

NeuroDebian (Halchenko and Hanke, 2012). We used the standard settings in FSL (Smith et al.,

2004) for image pre-processing and analysis. Motion was corrected using the FSL tool MCFLIRT

(Jenkinson et al., 2002). This also provided six motion regressors that we included in the FMRI anal-

yses. Functional images were first spatially smoothed (Gaussian kernel with 5 mm full-width half-max-

imum) and temporally high-pass filtered (3 dB cut-off of 100 s). Afterward, the functional data were

manually denoised using probabilistic independent component analysis (Beckmann and Smith,

2004), visually identifying and regressing out obvious noise components (Kelly et al., 2010); we con-

sidered only the first 40 components of each participant which had the greatest impact to interfere

with task data (total up to 550). We used the Brain Extraction Tool (BET) from FSL (Smith, 2002) on

the high-resolution structural MRI images to separate brain matter from non-brain matter. The result-

ing images guided registration of functional images in the Montreal Neurological Institute (MNI)-

space using non-linear registrations as implemented in FNIRT (Jenkinson et al., 2012). The data

were pre-whitened before analysis to account for temporal autocorrelations (Woolrich et al., 2001).

Data analysis
In the first analysis (GLM1), we looked for brain areas that showed activity varying with the reward

and effort information to be learnt. A full list of regressors and correlations between them is shown

in Figure 3—figure supplement 4 (all r<0.33). We used three boxcar regressors, indicating the

onset and duration of the decision phase (from the beginning of the trial until participants made a

choice), the onset and duration of the outcome phase (from the appearance of the chosen outcome

until the chosen and the unchosen outcomes disappeared from the screen) and lastly the effort exer-

tion phase (from the appearance of the first effort target until participants had removed the last tar-

get). In the outcome phase, we included the following parametric regressors: whether a reward was

delivered for the chosen option, the reward probability for the chosen option and the reward and

effort magnitude outcomes for the chosen and the unchosen option. In each case, separate regres-

sors for the chosen and the unchosen option were used.

The main contrast of interest (Figure 3B) was the total information to be learnt, i.e. the contrast

of the relative (chosen minus unchosen) reward minus effort magnitude:
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Learnt InformationContrast ¼
RewardMagnitudeChosen�RewardMagnitudeUnchosenð Þ�
EffortMagnitudeChosen �EffortUnchosenð Þ

We used FSL’s FLAME 1 + 2 (Woolrich et al., 2004) to perform higher-level analyses; outlier de-

weighting was used. We included group assignment as a confound regressor. Results were cluster-

corrected (p<0.05, voxel inclusion threshold: z = 2.3).

Next, we tested whether individual differences in how much participants could use the learnt

information related to differences in neural signals (GLM2). For this, we included at the group level

the behavioral measure g as a covariate. We again included group assignment, as well as inverse

temperature (b) as confound regressors. The results were cluster-corrected (p<0.05, voxel inclusion

threshold: z = 2.3).

Relating fMRI to spectroscopy measures
We tested how measures of GABA and glutamate influenced the neural signal of the information to

be learnt (GLM3). For this, we included at the group level GABA and glutamate measurements as

covariates. As confound regressors we included, as in the behavioral analysis, group assignment,

inverse temperature (b), as well as gray matter (voxel-wise, obtained using FSL’s feat_gm_prepare),

relative white matter and total tissue in the spectroscopy voxel. We combined regressors for the

effect of glutamate and GABA to a single contrast for statistical testing (i.e. glutamate minus GABA

levels). We used the group average spectroscopy voxel as a mask; results were again cluster-cor-

rected (p<0.05, voxel inclusion threshold: z = 2.3).
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