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Understanding how the human brain gives rise to complex cognitive processes

remains one of the biggest challenges of contemporary neuroscience. While

invasive recording in animal models can provide insight into neural processes

that are conserved across species, our understanding of cognition more

broadly relies upon investigation of the human brain itself. There is therefore

an imperative to establish non-invasive tools that allow human brain activity

to be measured at high spatial and temporal resolution. In recent years, various

attempts have been made to refine the coarse signal available in functional

magnetic resonance imaging (fMRI), providing a means to investigate neural

activity at the meso-scale, i.e. at the level of neural populations. The most

widely used techniques include repetition suppression and multivariate

pattern analysis. Human neuroscience can now use these techniques to inves-

tigate how representations are encoded across neural populations and

transformed by relevant computations. Here, we review the physiological

basis, applications and limitations of fMRI repetition suppression with a brief

comparison to multivariate techniques. By doing so, we show how fMRI

repetition suppression holds promise as a tool to reveal complex neural

mechanisms that underlie human cognitive function.

This article is part of the themed issue ‘Interpreting BOLD: a dialogue

between cognitive and cellular neuroscience’.
1. Introduction
Neural activity is responsible for our perception, thoughts and ideas, and the

behaviours that we execute. However, the means by which the brain uses

neural activity to encode and translate information into complex cognitive pro-

cesses remains one of the most important challenges for contemporary

neuroscience. Over the last few decades, large-scale electrophysiological record-

ings in animal models have allowed for descriptions of neural activity at high

spatio-temporal resolution. This has provided important insight into some of

the underlying principles and mechanisms of neural coding, allowing repre-

sentations to be reasonably well characterized and computations inferred.

For example, large-scale recordings have contributed to our understanding of

the population dynamics underlying motor responses [1], choice [2] and

memory consolidation [3]. In addition, methods of perturbation (such as optoge-

netics) and sophisticated correlational analyses have together been used to further

establish the neural circuit mechanisms that underlie behavioural control [4–6].

However, such invasive recording is largely restricted to investigation in

animal models, except under unusual circumstances such as pre-operative

recording in epilepsy patients [7,8]. This limits its utility as a tool to under-

stand the human brain because we cannot necessarily assume that

information is encoded in the same manner across species, nor ignore the
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contribution of brain regions that exist in humans but may

be absent in other species. These issues are therefore particu-

larly pertinent when investigating complex cognitive

processes and neuropsychiatric pathology, which cannot

be modelled in animals.

Rather, we must develop ways to indirectly measure

neural activity in the human brain using non-invasive tech-

niques. Functional magnetic resonance imaging (fMRI)

constitutes one of the principal tools for recording neural

activity non-invasively in humans. Compared with other

non-invasive recording techniques, such as electroencephalo-

graphy (EEG) or magnetoencephalography (MEG), fMRI

allows for relatively high spatial resolution measurements of

human brain activity. It can therefore be used to localize

neural activity to particular brain regions and map specialized

psychological functions, such as face-, body- and place-related

processing [9–11]. More recently, model-based fMRI studies

have been used to identify signatures of neural activity,

which contribute to particular computations, such as reward

prediction error [12] and value computations [13–15].

While these seminal fMRI studies have provided insight

into the functional specialization of areas within the human

brain, our ability to directly measure the response of individ-

ual neurons is severely compromised by the fact that a typical

3 mm3 voxel contains more than 105 neurons. Together these

neurons contribute to the average activation profile of a voxel,

making it difficult to infer the functions and computations

performed by subpopulations of neurons. Nevertheless,

there are now well-validated strategies that can be used to

refine the coarse resolution of the fMRI signal which provide

a means to investigate neural activity at the meso-scale, the

level of neural representations.

Two fMRI techniques are currently being widely used to

access neural information in humans at a more precise spatial

resolution, namely repetition suppression and multivariate

pattern analysis. fMRI repetition suppression (also termed

fMRI adaptation) relies on the fact that neurons show suppres-

sion in their response to repeated presentation of stimuli

or information to which they are sensitive (see the following

for existing reviews: [16–20]). This phenomenon is robustly

observed across brain regions and species, in wake and sleep,

and using a range of different measurement techniques.

fMRI multivariate pattern analysis (MVPA), on the other

hand, takes advantage of small biases in the distribution

of functionally specific neurons across neighbouring voxels.

Such biases give rise to variation in the activation pattern

across voxels, which can be used to infer underlying neural rep-

resentations (see the following for existing reviews: [21–24]).

Multivariate approaches are powerful when applied to brain

regions such as visual and temporal cortex where neurons

with similar functional selectivity are organized into cortical

columns of several hundred micrometres of width [25–27].

The uneven distribution of functionally selective columns

across neighbouring voxels, or ‘clustering’ [28], provides a

coarse activation pattern, which allows visual features to be

successfully classified.

However, not all brain regions display a columnar organiz-

ation or show an uneven distribution of functionally selective

neurons across neighbouring voxels. Regions such as the pre-

frontal cortex, which lack large columnar organization [29]

and show heterogeneous neural response profiles with non-

linear, mixed-selectivity to various task features [30], may be

less amenable to MVPA. Nevertheless, multivariate techniques
have been used to decode complex brain states [31] and

memory retrieval [32] from frontal brain areas.

There are currently few direct comparisons between fMRI

adaptation and MVPA, however those investigators that have

used both methods in the same experimental paradigm

suggest that the two approaches are highly correlated

[33,34]. When assessing the relative merits of these two tech-

niques, it is worth remembering that they each measure

different aspects of the BOLD signal, and consequently

differ in their sensitivity to particular features of the neural

code [34]. While repetition suppression has a direct neuro-

physiological correlate which can facilitate comparison with

electrophysiological measures of neural activity, MVPA can

provide greater sensitivity when decoding neural represen-

tations, particularly in situations where the response selectivity

of neurons introduces fine-grained microstructure across voxels.

In this review, we focus on fMRI repetition suppression as

a tool to infer neural representations in the human brain. We

provide a detailed account of the relationship between single

neuron activity and fMRI repetition suppression, and assess

evidence for the underlying mechanisms that support the

phenomenon. We then discuss the merits and limitations of

using fMRI repetition suppression to infer neural compu-

tations in the human brain before discussing implications

for experimental design.
2. Characterizing repetition suppression
at a single-cell level

Repetition suppression was first reported from single-unit

recordings in the primate inferotemporal (IT) cortex [35]. In

response to repeated presentation of a light stimulus

(figure 1a), neurons in the IT cortex initially showed a large

response (figure 1b), but with repeated exposure to the stimu-

lus the response waned (figure 1c–d). When the stimulus was

presented again, after it had been turned off for 15 min, the

response of the neuron was fully recovered (figure 1e).

Repetition suppression has since been observed in single-

unit activity across a large number of different experimental

conditions and brain regions, including the IT cortex [35,37–39],

V1 [40–44], somatosensory cortex [45], prefrontal cortex (PFC)

[46,47], rhinal cortex [48], entorhinal and perirhinal cortex ([36],

see figure 1f–h for example repetition suppression in the entorh-

inal cortex). Repetition suppression can occur across a range of

repetition time lags, including when multiple interleaving

stimuli are presented in between the repeating stimulus

[36,49] (figure 2). In a small portion of neurons, the repetition

suppression has been observed for a time-lag of up to 24 h [36].

Repetition suppression therefore appears to be a general

property of neurons. Suppression occurs relative to how

recently a stimulus was presented and can therefore be

described as an automatic short-term memory mechanism

[38,46,50]. Typically, release from adaptation occurs following

presentation of a stimulus that does not repeat features or infor-

mation to which a neuron is sensitive. Therefore, repetition

suppression is more likely to reveal stimulus selectivity rather

than novelty detection [49], and may provide a measure of

neural tuning. For example, in the IT cortex, repetition suppres-

sion is maintained even when the location or the size of the

presented stimulus is varied, suggesting that the tuning of IT

neurons is invariant to both stimulus location and size [51].
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Figure 1. Suppression in neural activity in response to repeated stimuli. (a) Experimental timeline of suppression experiment reported in [35]. From 0 to 15 min a
9 ms light stimulus was presented every 2 s. From 15 to 30 min it was switched off, before flashing was resumed at the same frequency from 30 to 34 min. Panels
(b – e) show post-stimulus histograms of a single neuron in the primate IT cortex over the 1 s period following the onset of a light stimulus, at different times
during the experiment: (b) 0 – 4 min; (c) 5 – 9 min; (d ) 10 – 14 min; (e) 30 – 34 min, adapted from [35]. ( f ) Timeline of a trial in the serial recognition task used to
probe recency responses in the macaque entorhinal cortex. Pictures of naturalistic scenes or objects were presented in random order, with a variable number of
pictures between the repetition of any given picture. In every trial, the animal indicated by button press whether a picture was novel or familiar. Correct responses
were rewarded. (g) Responses of neurons in the entorhinal cortex to the first presentation of a novel picture, shown as peristimulus histograms and raster plots for
10 trials. Bin width is equal to 100 ms. (h) Responses of neurons in the entorhinal cortex when a novel picture is repeated. Panels ( f – h) adapted from [36].
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While intrinsic adaptation effects can be used to infer

neural tuning, as with all neural measures, it is not always

possible to isolate intrinsic adaptation from inherited effects.

As discussed in detail in other reviews [17,19], inherited

adaptation from upstream brain regions can contaminate

intrinsic adaptation and compromise the accuracy with

which neural selectivity can be localized. For example, direc-

tion selectivity can emerge in area V4 when adaptation in MT

affects the balance of the received inputs [52]. In the visual

stream, the relative contribution of inherited and intrinsic

adaptation can be determined by exploiting the difference

in the receptive field size of neurons across the processing

hierarchy. Once the contribution of inherited effects have

been accounted for intrinsic adaptation to visual motion

can appear altogether absent in area MT if the time-lag

between the test and adapting stimulus is too large [53].

Critically, however, when the appropriate time interval

between the test and adapting stimulus is employed, intrinsic

adaptation in MT is revealed [54] and the magnitude of sup-

pression effects shows positive correlation with the neurons’

tuning curve [55]. This shows that adaptation can be used to

measure neural selectivity when appropriate experimental

parameters are chosen.
In other brain regions, inherited adaptation effects

appear to have little or no influence. For example, neural

tuning in area IT does not appear to be affected by adap-

tation per se [56,57] and adaptation to face stimuli is

observed selectively in fusiform face area (FFA) despite the

expectation of orientation specific adaptation in upstream

areas [58]. Overall, functional selectivity may be carefully

inferred using neural adaptation, when the possibility of

inherited effects are acknowledged within the context of

the neural circuit.
3. Repetition suppression in fMRI
Taking advantage of this neural phenomenon, repetition

suppression can also be observed using fMRI, thereby provid-

ing a means to access the information content of neurons in

the human brain. To measure repetition suppression using

fMRI, tasks have been designed to detect reduced BOLD

response in situations where a stimulus or information feature

is repeated (e.g. X preceded by X), relative to situations in

which the preceding stimulus or information feature is

different (e.g. X preceded by Y, see figure 3). fMRI repetition



600

* * *
* *

* * * * *
* *

* * * *

* *

0
N 0 2 4 8 16 32 64 24 h N 0 2 4 8 16 32 64 24 h N 0 2 4 8 16 32 64 24 h

%
 c

ha
ng

e 
in

 f
ir

in
g 

ra
te

 f
ro

m
 r

es
t

area TE perirhinal cortex entorhinal cortex

number of intervening trials between first and second stimulus presentation

Figure 2. Effect of interleaving stimuli on repetition suppression. Mean percentage change in neuron response to visual stimulus presentation relative to spon-
taneous activity as a function of the number of interleaved stimuli in (a) area TE, (b) perirhinal cortex, and (c) entorhinal cortex. With an increasing number of
intervening trials between the first and second presentation of the stimulus, a decrease in the repetition suppression effect is observed. Asterisk indicates significant
repetition suppression effect. N: first presentation of a stimulus. Adapted from [36].

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

371:20150355

4

suppression effects were first observed in the human visual

cortex. For example, it has been shown that cortical area MT

(V5) adapts to stimuli moving in a single direction [59], the pri-

mary visual cortex (V1) adapts to the orientation of visual

gratings, with progressively smaller adaptation to increasingly

orthogonal gratings [60], and the extrastriate and IT cortices

adapt to repeated presentation of an object [61].

Among these early studies, fMRI repetition suppression

was also used to investigate neural representations in the

lateral occipital complex (LOC), demonstrating invariance

to object size, position and illumination in this brain

region [62,63]. These results suggest that the LOC represents

perceived shape as opposed to simple image features [63], in

a similar manner to the IT cortex in the macaque [49].

Indeed, the fMRI repetition suppression effects observed

in the human LOC were later found to be comparable to

fMRI repetition suppression observed in the IT cortex in

the macaque [64].
4. The relationship between the BOLD signal,
single-cell firing and repetition suppression

While fMRI repetition suppression effects measured in humans

reflect those measured with single-unit recording in monkeys

[62,65], before considering fMRI repetition suppression a

suitable tool to access the information content of neural popu-

lations it is worth considering the relationship between the

BOLD response and neural firing more closely. Notably, simul-

taneous measurement of BOLD (4.7T), single unit, multiunit

and local field potential (LFP) measurements in the primate

primary visual cortex suggest that both the BOLD signal and

fMRI repetition suppression effects more closely reflect LFPs

as opposed to spiking activity per se [66,67]. The BOLD signal

may therefore be best understood to reflect integrative synaptic

and dendro-somatic processes within the local network [68].

However, when considering this potentially unfortunate

state of affairs, it is important to remember that in the cortex

intra-regional connectivity dominates over inter-regional

connectivity. Indeed, most afferent inputs are received from

neighbouring neurons 1–2 mm in distance away [69,70].

Therefore, even if the BOLD response is best attributed to an

integrative measure of pre- or post-synaptic processes, in

many instances it probably reflects functional effects within
the imaged voxel. This may explain the close correspondence

between recorded BOLD and electrophysiological signals in

both humans and macaques (e.g. [71,72]).

Ambiguity in the spatial localization of the BOLD signal

may therefore, at least in part, be mitigated by high intra-

regional connectivity. However, the indirect relationship

between neural firing and the BOLD signal remains pertinent

when interpreting fMRI adaptation effects. The BOLD signal

depends on the ratio between blood flow and oxygen

metabolism, two components of the neurovascular response

that are differentially modulated by adaptation: while changes

in oxygen metabolism faithfully reflect neural adaptation

effects in V1, blood flow adaptation is observed to a lesser

extent [73]. As a consequence, haemodynamic adaptation may

underestimate adaptation at the neural level.

Despite good reason to believe that the relationship between

neural and fMRI adaptation is complex, recorded data never-

theless show close correspondence between fMRI repetition

suppression effects in humans and those measured with

single-unit recording in monkeys [62,65]. This suggests that

the degree to which haemodynamic adaptation underestimates

neural repetition suppression does not preclude fMRI repetition

suppression as a tool to investigate brain activity at the meso-

scale. Furthermore, recent evidence from the human brain

shows that fMRI repetition suppression in the LOC co-occurs

with a decrease in the concentration of glutamate in the same

brain region [74], supporting the conclusion that the fMRI

adaptation signal faithfully reflects repetition suppression at

the neural circuit level. Broadly, it seems reasonable to consider

fMRI repetition suppression a suitable correlate of neural sup-

pression effects in the voxels to which suppression is localized

if interpretation is executed with caution.
5. Mechanisms of repetition suppression
Having characterized the BOLD signal in terms of peri-

synaptic activity as opposed to action-potential firing rate

per se [75], this raises questions about the underlying mech-

anism responsible for repetition suppression, which is still a

matter of debate.

An early proposal suggested that repetition suppression

reflects ‘facilitation’ in neural signal processing. Mechanistically,

the facilitation model comprises a shift in the peak latency of the

neural response [76], which accounts for a reduction in overall
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BOLD response. This model also provides a neural explanation

for behavioural priming effects [77,78] which can be observed

under similar conditions to repetition suppression and mani-

fests as a change in behavioural performance in response to

repeated stimulus exposure [79,80]. For example, priming can

improve reaction time and accuracy for repeated stimuli [81].

Although priming effects and repetition suppression have

together been observed under the same experimental con-

ditions, establishing a causal relationship between the two

has proven difficult. For example, in non-human primates

when repetition suppression and priming are observed

under the same conditions, the two effects do not correlate

[57]. In humans, although some studies have found a positive

relationship between priming and repetition suppression

[82,83], the literature is littered with inconsistencies. While

one study showed that both fMRI repetition suppression

and behavioural priming are disrupted with application of

trans-magnetic stimulation (TMS) to the left frontal cortex

[84], others have failed to find evidence for a positive relation-

ship [85,86]. One possible explanation for the discrepancies is

that although repetition suppression and behavioural prim-

ing often co-occur, repetition suppression may not

necessarily causally underlie behavioural priming. Indeed,

single-unit recordings in both humans and non-human pri-

mates show that repetition does not lead to faster neural

responses or narrower tuning curves [56,87–90]. This suggests

that the ‘facilitation’ model does not suffice as a mechanistic

explanation for repetition suppression.
Single-unit data have inspired alternative mechanistic

accounts for repetition suppression. For example, the ‘sharpen-

ing’ model proposed that repetition affects the selectivity or

sparseness of the neural response [49,91,92]. Under this

model, stimulus repetition leads to attenuation in neurons

that are less selective and less well tuned, while highly selective

neurons continue to respond. Although a sharpening effect has

been observed when previously novel stimuli become highly

familiar [88,93], this model fails to explain suppression effects

observed following less familiar repetitions. Indeed, in response

to repetition, single-unit measurements show that the greatest

attenuation is observed in the most selective neurons as

opposed to the least selective neurons [49,57,94,95].

These single-unit measurements in fact speak to a third

hypothesis which explains repetition suppression as a fatigue

effect, attributed to either reduced action-potential firing in

neurons that are selective to a given stimulus [96,97], or attenu-

ation in the efficacy of received inputs [39,96,98]. Evidence

from macaque IT suggests that suppression speaks to the

latter of these two possibilities, attenuation in the received

inputs [65]. IT neurons that respond equally to two different

stimuli (e.g. stimuli A and B) suppress to presentation of A fol-

lowed by B, but this repetition suppression effect is not as

substantial as that observed following repeated presentation

of stimulus A. This result implies that repetition suppression

of a single cell cannot be entirely action-potential dependent,

and must also, at least partly, reflect the attenuation of received

inputs. Not all neurons selective to stimuli A and B therefore
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show cross-stimulus adaptation in proportion to neural selec-

tivity [65]. Notably, however this does not necessarily

compromise the ability to use fMRI adaptation to index

neural selectivity within a voxel because much of the received

input comes from other neurons within the voxel. A relevant

question for future investigation concerns whether, with an

unbiased selection of neurons, average suppression is equal

to average selectivity across the population. However, even

with the data provided in [65], it is likely that with the appro-

priate controls, bulk suppression effects can provide

information about population selectivity.

Mechanisms for repetition suppression derived from

single-unit measurements can therefore be used to guide

interpretation of fMRI repetition suppression effects. However,

by imaging the whole brain at once, human brain imaging

provides an opportunity to test alternative explanations for

repetition suppression, most notably the hypothesis that rep-

etition suppression can be accounted for by predictive coding

[20,77,99]. Inspired by models of perceptual inference, predic-

tive coding describes how the brain anticipates upcoming

events and generates an error signal when predictions are vio-

lated [99,100]. ‘Top-down’ predictions are therefore received

from downstream brain regions and iteratively matched

against ‘bottom-up’ evidence processed within the cortical

hierarchy. The mismatch between the prediction and the evi-

dence provides an index for expectation or surprise, and

constitutes a prediction-error signal. Assuming that repeated

stimuli are predictable, the prediction-error signal is eliminated

with repetition, attenuating the cortical response.

Theories relating repetition suppression to predictive

coding motivated Summerfield and co-workers to test whether

fMRI repetition suppression in FFA was modulated by the fre-

quency at which face stimuli are repeated [101]. They observed

greater repetition suppression effects when the probability of

encountering a repeated trial was high (75% of trials) compared

with when it was low (25% of trials). This result suggests that

repetition suppression reflects a reduction in perceptual predic-

tion error, a consequence of repeated stimuli becoming

expected. This result has since been replicated using EEG

[102], and when using a range of other stimuli, including audi-

tory tones [103,104], simple shapes [105], voices [106],

somatosensory stimulation [107] and objects [108]. Expectation

suppression can also be observed using single-unit recording,

where neurons in IT cortex show larger responses when
sequences violate transition rules between visual stimuli that

were learned during training [109]. These results appeal to a

long line of literature showing heightened responses in

scalp-evoked potentials and neuroimaging measurements

when stimuli are unexpected or novel [110–113].

Although these results appear to suggest a common

mechanism for repetition suppression and stimulus expec-

tation, there is increasing evidence to suggest that these two

phenomena are in fact mediated by distinct processes. Firstly,

in macaque IT, expectation suppression can be observed with

single-unit and LFP measurements when learned transition

statistics are violated, but repetition suppression is not modu-

lated by expectation [114]. Similarly, in humans, expectation

does not modulate repetition suppression in LOC when

repetition frequency is more subtly modulated (60%:40%

repetition frequency) [115]. Therefore, expectation suppres-

sion is not necessarily observed in concert with repetition

suppression.

Secondly, when attention is explicitly modulated in an

fMRI study, expectation suppression is only observed when

participants are attending [116], while repetition suppression

is observed even when attention is diverted away.

Thirdly, when auditory stimulus repetition and expectation

are orthogonally manipulated, auditory evoked potentials

measured using MEG show repetition suppression 40–60 ms

after the tone, and expectation suppression 100–200 ms after

the tone (figure 4, [103]). The difference in timing between rep-

etition and expectation suppression effects suggests that these

phenomena may be mediated by two distinct processes.

Within a predictive coding framework, it has been suggested

that these two processes may correspond to prediction-error

signals at different levels of the cortical hierarchy [103].

Human brain imaging has therefore provided insight into

the mechanism underlying repetition suppression, characteriz-

ing the phenomenon within an elegant theoretical framework.

This complements data from invasive animal recording which

explains how repetition suppression may be biologically rea-

lized. Importantly, if concerns over localization are kept in

mind and stimulus expectations and attention appropriately

controlled, fMRI repetition suppression signals can be pre-

dicted irrespective of the precise underlying mechanism.

Therefore, fMRI adaptation can be applied to investigate the

nature of neural representations despite ambiguity in the

underlying biophysical mechanism.
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6. Repetition enhancement—how should we
interpret it?

Repetition of a stimulus feature reliably leads to suppression

in the neural signal, but there have also been reports of rep-

etition enhancement in both single-unit recording [38,95]

and fMRI [117,118]. In single-unit recordings, enhancement

effects are usually observed as a smaller fraction of recorded

neurons [36,38,39,42,49,55]. Similarly, in the imaging litera-

ture enhancement effects are reported less frequently than

suppression effects.

By directly comparing repetition suppression with

enhancement, it has been shown that enhancement effects

tend to coexist within the same cortical regions as suppres-

sion, but predominantly occur within different voxels, with

distinct connectivity profiles [119]. Voxels that predominately

display repetition suppression preferentially correlate with

activity in early brain regions and show earlier responses,

while those voxels that display repetition enhancement receive

information from less specific brain regions and respond later.

This suggests that repetition suppression and enhancement

may play distinct functional roles. Within a predictive coding

framework, it has been suggested that these phenomena

may map onto the prediction-error and prediction signals,

respectively [119].

The underlying mechanism for repetition enhancement

does, however, remains elusive, despite attempts to establish

which cognitive variables lead to enhancement effects [120].

One possibility is that repetition enhancement is observed

when inhibitory normalization signals are disinhibited

[121,122]. Such release from inhibition has been observed in

neurons in the visual cortex when a stimulus falls within the

inhibitory surround of a neuron’s receptive field. For example,

in V1 repeated exposure to a large visual grating, covering both

the centre and surround of a cell’s receptive field can give

rise to repetition enhancement in neurons with orientation

preferences similar to the adapting orientation while smaller

gratings give rise to repetition suppression [122]. Repetition

enhancement by disinhibition critically depends on the local

circuit connectivity and the relationship between the adapting

stimulus and a neurons receptive field. While it is possible to

discern these features in the visual system [121,122], attributing

enhancement effects to disinhibition may be more challenging

in higher cognitive areas where neural dynamics may arise

from a more complex interplay between excitatory and

inhibitory activity.

A second possibility is that repetition enhancement is an

intrinsic biophysical feature of the neural response which is

simply less permissive than repetition suppression. In support

of this second suggestion, one recent study has shown that

when the principal whisker of an anaesthetized rat is repeatedly

stimulated, 30% of the adapting neurons in the barrel cortex

show significant enhancement during the first few hundred

milliseconds after adaptation [45]. This post-adaptation

enhancement effect can be accounted for by delayed recovery

of inhibition relative to excitation [45], which is precisely

balanced at rest. This explanation is consistent with observations

mentioned above which show that repetition suppression and

enhancement coexist within the same cortical regions with

enhancement delayed relative to suppression.

Although repetition suppression may reduce sensitivity to

fMRI adaptation effects by cancelling suppression effects that
occur within the same voxel, relative to suppression repetition

enhancement occurs only in a small proportion of neurons

[39,40,43,49,50,63]. While it is therefore important to keep inter-

actions between excitatory and inhibitory parts of a neural

circuitry in mind, repetition enhancement is unlikely to pre-

clude the use of repetition suppression for inferring neural

selectivity.
7. Repetition suppression as a tool for indexing
neural computations in the human brain

While early studies predominantly used repetition suppression

as a tool to study sensory processing in the human brain,

the technique has since been used to measure more abstract

neural representations such as number representations

[123,124]. Furthermore, by combining fMRI repetition suppres-

sion with careful experimental design, investigators have also

begun to use fMRI repetition suppression to provide mechan-

istic insight into neuronal computations that subserve complex

human cognition. Here, we review a subset of these studies to

provide a brief and non-exhaustive overview of the modern use

of fMRI repetition suppression.

Firstly, repetition suppression can be used to infer represen-

tational overlap by assessing the relative suppression between

two different stimuli. For example, neurons that contribute to

the representations of both stimuli X and Z should show

suppression to presentation of stimulus X preceded by Z

(figure 3b). By contrast, suppression should not be observed

when X is preceded by a stimulus Y, if stimulus Y activates a

non-overlapping neural representation (figure 3b). Using rep-

etition suppression to index the relative representational

overlap of different stimuli in this manner can be described

as ‘cross-stimulus adaptation’. This phenomenon is compar-

able with multivariate ‘cross-stimulus decoding’ techniques,

where a classifier is trained on one set of stimuli, and tested

on a different set of stimuli which are associated with or

share a feature with the first set [125–127], or where the relative

representational similarity of two associated stimuli is assessed

using correlational measures [128,129].

At the single neuron level, cross-stimulus adaptation has

been observed in neurons sensitive to two different stimuli in

macaque area IT [63]. As discussed above, this effect does not

occur in proportion to the neuron’s response to each stimulus,

as has been assumed in some models of repetition suppression

[124], but is instead best explained by the similarity between

the adaptor and test stimuli and by the strength of response

to the adaptor stimulus [56,130]. Given that synaptic fatigue

likely accounts for repetition suppression effects, cross-

stimulus adaptation between two stimuli may be considered

a function of the shared input or number of synapses

common to processing the two stimuli [65].

Information regarding representational overlap cannot

easily be inferred from the raw BOLD signal measured in

conventional fMRI paradigms where only the mean response

to a stimulus is assessed (figure 3a). However, by taking

advantage of cross-stimulus adaptation, it becomes possible

to index associative memories in the human brain [131]. As

memory formation increases the strength of cortical connec-

tions between associated cell-assemblies [132], the increase

in representational overlap can be indexed using cross-

stimulus suppression. Therefore, by contrasting the BOLD

response to consecutive presentation of two associated
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Figure 5. Using repetition suppression to measure grid cells in the human entorhinal cortex. (a) Spatial autocorrelogram of a typical grid cell in the rat entorhinal
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stimuli with the BOLD response to two unrelated stimuli, the

representational overlap of neural representations measured

using cross-stimulus adaptation can be used as a putative

index for associative memory [131] (figure 3b). For example,

after two stimuli are repeatedly imagined together, plasticity

between the supporting neural representations can be assessed

[133], and ongoing plasticity between a stimulus and reward

representation can be tracked over time [134].

Assessing repetition suppression between different stimuli

can also be used to index neural computations that underlie

cognitive processing. For example, fMRI repetition suppres-

sion can be used to infer the mechanism responsible for the

construction of a new neural representation [133]. It can also

be used to measure computations previously observed

in animal models. One particularly striking example is the

investigation of grid cells in the human brain. Grid cells

were first discovered in the rodent entorhinal cortex, and are

characterized by hexagonally arranged firing fields, which

allow spatial knowledge to be organized into a map

(figure 5a, [136]). Remarkably, the orientation of grid cells are

aligned which can be exploited using fMRI repetition suppres-

sion in the human brain. When subjects navigate through a

virtual environment (figure 5b), the entorhinal cortex, medial

PFC, parietal cortex and temporal cortex show suppression

as a function of running direction, modulated by running

speed (here shown for the entorhinal cortex, figure 5c) [135].

Crucially, this adaptation effect is selective to a running direc-

tion of 608 (figure 5d), consistent with the predicted population

response of grid cells and corresponding sixfold rotational

symmetry of the raw BOLD signal (figure 5e,f ) and the

predicted population response of grid cells.

fMRI repetition suppression also brings a new level of

mechanistic experimentation to social neuroscience. In

addition to providing the first evidence for mirror neurons in
the human IT cortex [137,138], fMRI repetition suppression

has been used to index neural computations that allow social

influence to affect the choices we make. For example, it was

used to demonstrate that neural representation of the similar,

but not dissimilar, traits of others overlap with the represen-

tation of our own traits [139]. Furthermore, repetition

suppression can be used to show that the prediction errors

caused by learning about another person’s preferences can

increase the representational overlap of value representations

for self and other, which in turn predicts changes in behaviour-

al preference [140]. Without representational techniques, such

complex social mechanisms are difficult to infer in situations

where single-unit data cannot be collected.

Together these studies illustrate how fMRI repetition

suppression can be used to assess representational overlap

between neural representations, which can provide a measure

for associative memories and complex computations that

underlie cognitive processes in the human brain.
8. Experimental design for fMRI repetition
suppression experiments

When using fMRI repetition suppression to infer neural rep-

resentations and computations in the human brain it is

critical to employ an appropriate experimental design. Typi-

cally, event-related rather than block designs are used, to

allow repetition suppression to be measured flexibly while

controlling for the potential confounding effect of expectation

suppression (figure 4), fluctuations in attention, and changes

in baseline BOLD signal between sessions. The relative expec-

tation of experiencing a given trial may be minimized by

ensuring that each trial type of interest is presented equally

often in a fully randomized manner. It is important to note
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Figure 6. Reptition time-lag and exposure: factors to consider when designing an fMRI repetition suppression experiment. (a) regions of interest in the visual cortex
and orbitofrontal cortex from which repetition suppression was measured, adapted from [145]. (b) An interaction was observed between the brain regions shown in
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that a trial here is defined as a stimulus transition (e.g. trial

type 1: X preceded by X, trial type 2: X preceded by Y;

figure 3b) which are typically modelled separately within a

general linear model (GLM). The magnitude of repetition

suppression may then be quantified by contrasting the

BOLD response measured in adapting trials (e.g. X preceded

by X) against the BOLD response measured in non-adapting

trials (e.g. X preceded by Y).

To optimize the sensitivity of an event-related design for

detection of repetition suppression, a number of additional

factors must be considered. Firstly, of particular importance

is the time-lag between the initial presentation of a stimulus

and its repeat. In single-unit recordings, repetition sensitive

neurons show a reduction in suppression as a function of rep-

etition time-lag, with an upper limit for the majority of

neurons of the order of seconds to minutes (for example,

TE, perirhinal and entorhinal neurons, see figure 2, [36]).

Indeed, only a small proportion of neurons show suppression

effects following repetition at longer time-lags [141], leading

to the suggestion that lag-sensitive repetition suppression

can provide a recency trace, a measure of the relative famili-

arity of a stimulus [142]. Consistent with these single-cell

observations, fMRI measures are also more sensitive to rep-

etition suppression when there is a short time-lag between

initial and adapting stimuli [143], or when there are few

intervening stimuli between each repetition [144]. Notably,

the upper limit for the fMRI repetition time-lag is typically

of the order of seconds [143,144], somewhat lower than that

typically observed in single-unit data [142].

The appropriate choice of fMRI repetition time-lag may

depend on the precise brain region of interest. Indeed, as

the time-lag between an adapting and a test stimulus is

increased, repetition suppression effects appear to be sus-

tained for longer in anterior compared with posterior brain
regions [143,145,146]. This anterior–posterior dissociation

has been illustrated by direct comparison between sup-

pression in visual cortex to repeated visual stimuli and

suppression in lateral orbitofrontal cortex to repeated stimulus-

reward associations [130]. While suppression effects in the

visual cortex were observed at short (400 ms) but not long

(6000 ms) repetition time-lags, suppression effects in the

orbitofrontal cortex were observed at both short and long

time-lags (figure 6a,b). This interaction between repeti-

tion time-lag and brain region is consistent with reports of

robust orientation adaptation in V1 at short time lags, of

the order of a few hundred milliseconds [148,149], but not

long time lags, of the order of seconds [150].

The appropriate time-lag for a given brain region is likely

to be determined by the neural dynamics and recurrent

processing of the region in question. While neurons in primate

and rodent orbitofrontal cortex typically show sustained

responses, holding information in ‘working memory’ [151],

much shorter responses are observed in visual cortex and

other more posterior brain regions [38]. Furthermore, the size

of an fMRI adaptation effect may also depend on the dura-

tion of the adapting stimulus, whereby longer stimulus

presentations result in more pronounced adaptation effects,

particularly in early visual areas [152]. The optimal repetition

time-lag and stimulus duration for obtaining fMRI suppression

effects may therefore be determined by how long neural rep-

resentations are typically sustained within the adapting brain

region in question. It is therefore advisable to choose these par-

ameters carefully by referring to previously published

repetition suppression effects in the brain region of interest.

In addition, when making inferences that concern the regional

specificity of adaptation effects, it is important to be aware that

different brain regions show varying sensitivity to different

repetition time-lags. Null results should therefore not be
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taken as evidence for a lack of sensitivity to a stimulus feature,

and inferences about regional specialization must be drawn

with care.

A second factor that modulates repetition suppression

effects is the relative familiarity of the stimuli. A progressive

decrease in both neural firing and the fMRI response signal is

observed as a function of the number of repetitions of a new

stimulus [36,117,141,147,153] (figure 6c) or the length of

exposure to the initial stimulus [154]. To avoid potential

confounds relating to familiarity modulation, it is necessary

to ensure that stimuli implemented in both adapting and

non-adapting control trials are equally familiar. This allows

repetition suppression to be measured regardless of the

number of repetitions.

When designing an event-related fMRI repetition sup-

pression study, a sufficient number of adapting trials (and

equivalent number of control trials) must be included to obtain

a reliable measure. To determine the appropriate number

of trials, it is worth considering factors that affect the signal-to-

noise ratio of the BOLD signal more generally but also the antici-

pated sensitivity to repetition suppression. Sensitivity to

suppression is probably influenced by the degree to which the

adapting feature is represented within a given voxel. Although

this is difficult to estimate, the type of adapting stimuli and the

functional properties of the adapting brain region in question

can provide some guidance. For example, recent studies show

that repetition suppression can be reliably observed in visual

cortex (including V2, V3, V4, LO, MT, FFA) when 72 repetition

trials are measured across two sessions [116], and in orbitofrontal

cortex when 72 trials per adapting condition are measured across

three sessions [145]. When repetition suppression is used to

assess the online strength of orbitofrontal representations, how-

ever, it has been shown that sub-blocks with as few as nine trials

can be sufficient [134].

To summarize, there are a number of different factors to

consider when designing an event-related fMRI repetition

suppression study. Given that suppression effects are modu-

lated by both recency and familiarity, it is necessary to

consider the appropriate repetition time-lag and the relative

familiarity of repeating and control stimuli. Furthermore, rep-

etition suppression is likely affected by the nature of the

particular adapting stimulus or computation and the intrinsic
circuity of the corresponding adapting brain region. To maxi-

mize signal-to-noise in fMRI repetition suppression designs,

the appropriate number of trials is therefore likely to be

task dependent but may be estimated using guidance from

previous studies.
9. Concluding remarks
In this review, we have explored both the merits and limit-

ations of using fMRI repetition suppression as a tool to

circumvent the poor spatial resolution of the BOLD signal

and provide non-invasive measurements of neural represen-

tations in the human brain. Repetition suppression effects

are reliably observed in single-unit recordings and likely

reflect the overlap between the neural representations that

support the repeated stimulus feature. When measured

using fMRI, suppression effects are also observed in the

BOLD signal, despite the non-trivial and complex relation-

ship between neural repetition suppression effects and

BOLD adaptation. Although the potential limitations of this

approach are important to bear in mind, fMRI repetition sup-

pression may nevertheless be used to provide access to neural

representations in humans at the meso-scale. This may allow

associative memories and neural computations to be indexed.

Along with other representational fMRI measures, such as

MVPA, fMRI repetition suppression may therefore be used

as a tool to investigate neural mechanisms that underlie

higher cognitive function, including those that may not be

amenable to direct measurement in animals.
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Goodale MA, Köhler S. 2006 The relationship
between fMRI adaptation and repetition priming.
Neuroimage 32, 1432 – 1440. (doi:10.1016/j.
neuroimage.2006.05.039)

87. Anderson B, Mruczek REB, Kawasaki K, Sheinberg D.
2008 Effects of familiarity on neural activity in
monkey inferior temporal lobe. Cereb. Cortex 18,
2540 – 2552. (doi:10.1093/cercor/bhn015)
88. Freedman DJ, Riesenhuber M, Poggio T, Miller EK.
2006 Experience-dependent sharpening of visual
shape selectivity in inferior temporal cortex. Cereb.
Cortex 16, 1631 – 1644. (doi:10.1093/cercor/bhj100)

89. Kohn A, Movshon JA. 2004 Adaptation changes the
direction tuning of macaque MT neurons. Nat.
Neurosci. 7, 764 – 772. (doi:10.1038/nn1267)

90. Pedreira C, Mormann F, Kraskov A, Cerf M, Fried I,
Koch C, Quiroga RQ. 2010 Responses of human
medial temporal lobe neurons are modulated by
stimulus repetition. J. Neurophysiol. 103, 97 – 107.
(doi:10.1152/jn.91323.2008)

91. Desimone R. 1996 Neural mechanisms for visual
memory and their role in attention. Proc. Natl Acad.
Sci. USA 93, 13 494 – 13 499. (doi:10.1073/pnas.93.
24.13494)

92. Wiggs CL, Martin A. 1998 Properties and
mechanisms of perceptual priming. Curr. Opin.
Neurobiol. 8, 227 – 233. (doi:10.1016/S0959-
4388(98)80144-X)

93. Baker CI, Behrmann M, Olson CR. 2002 Impact of
learning on representation of parts and wholes in
monkey inferotemporal cortex. Nat. Neurosci. 5,
1210 – 1216. (doi:10.1038/nn960)

94. Van Wezel RJA, Britten KH. 2002 Motion adaptation
in area MT. J. Neurophysiol. 88, 3469 – 3476.
(doi:10.1152/jn.00276.2002)

95. Miller EK, Li L, Desimone R. 1993 Activity of neurons
in anterior inferior temporal cortex during a short-
term memory task. J. Neurosci. 13, 1460 – 1478.

96. Carandini M, Ferster D. 1997 A tonic
hyperpolarization underlying contrast adaptation in
cat visual cortex. Science 276, 949 – 952. (doi:10.
1126/science.276.5314.949)

97. Sanchez-Vives MV, McCormick DA. 2000 Cellular and
network mechanisms of rhythmic recurrent activity in
neocortex. Nat. Neurosci. 3, 1027 – 1034. (doi:10.
1038/79848)

98. Abbott LF, Varela JA, Sen K, Nelson SB. 1997
Synaptic depression and cortical gain control.
Science 275, 220 – 224. (doi:10.1126/science.275.
5297.221)

99. Friston K. 2005 A theory of cortical responses. Phil.
Trans. R. Soc. B 360, 815 – 836. (doi:10.1098/rstb.
2005.1622)

100. Rao RPN, Ballard DH. 1999 Predictive coding in the
visual cortex: a functional interpretation of some
extra-classical receptive-field effects. Nat. Neurosci.
2, 79 – 87. (doi:10.1038/4580)

101. Summerfield C, Trittschuh EH, Monti JM, Mesulam
M-M, Egner T. 2008 Neural repetition suppression
reflects fulfilled perceptual expectations. Nat.
Neurosci. 11, 1004 – 1006. (doi:10.1038/nn.2163)

102. Summerfield C, Wyart V, Johnen VM, de Gardelle V.
2011 Human scalp electroencephalography reveals
that repetition suppression varies with expectation.
Front. Hum. Neurosci. 5, 67. (doi:10.3389/fnhum.
2011.00067)

103. Todorovic A, de Lange FP. 2012 Repetition
suppression and expectation suppression are
dissociable in time in early auditory evoked fields.
J. Neurosci. 32, 13 389 – 13 395. (doi:10.1523/
JNEUROSCI.2227-12.2012)

http://dx.doi.org/10.1038/375139a0
http://dx.doi.org/10.1073/pnas.95.3.811
http://dx.doi.org/10.1073/pnas.95.3.811
http://dx.doi.org/10.1016/S0896-6273(00)80456-0
http://dx.doi.org/10.1016/S0896-6273(00)80456-0
http://dx.doi.org/10.1016/S0896-6273(00)80832-6
http://dx.doi.org/10.1126/science.1061133
http://dx.doi.org/10.1523/JNEUROSCI.0377-05.2005
http://dx.doi.org/10.1523/JNEUROSCI.0377-05.2005
http://dx.doi.org/10.1016/j.neuron.2005.11.028
http://dx.doi.org/10.1038/35084005
http://dx.doi.org/10.1038/nn.2173
http://dx.doi.org/10.1038/nn.2173
http://dx.doi.org/10.1016/j.tins.2008.06.004
http://dx.doi.org/10.1002/cne.903340103
http://dx.doi.org/10.1146/annurev.neuro.27.070203.144152
http://dx.doi.org/10.1038/369525a0
http://dx.doi.org/10.1126/science.1110913
http://dx.doi.org/10.1126/science.1110913
http://dx.doi.org/10.1016/j.neuroimage.2013.05.110
http://dx.doi.org/10.1016/j.neuroimage.2015.06.015
http://dx.doi.org/10.1038/nature06976
http://dx.doi.org/10.1002/hbm.20165
http://dx.doi.org/10.1016/S0301-0082(03)00086-8
http://dx.doi.org/10.1016/S0301-0082(03)00086-8
http://dx.doi.org/10.1016/S0960-9822(00)00655-2
http://dx.doi.org/10.1016/S0960-9822(00)00655-2
http://dx.doi.org/10.1016/S0896-6273(00)80448-1
http://dx.doi.org/10.1016/S0896-6273(00)80448-1
http://dx.doi.org/10.1080/02724989208250619
http://dx.doi.org/10.1126/science.2296719
http://dx.doi.org/10.1126/science.2296719
http://dx.doi.org/10.1038/nature02400
http://dx.doi.org/10.1002/hipo.20608
http://dx.doi.org/10.1038/nn1515
http://dx.doi.org/10.1152/jn.00500.2005
http://dx.doi.org/10.1016/j.neuroimage.2006.05.039
http://dx.doi.org/10.1016/j.neuroimage.2006.05.039
http://dx.doi.org/10.1093/cercor/bhn015
http://dx.doi.org/10.1093/cercor/bhj100
http://dx.doi.org/10.1038/nn1267
http://dx.doi.org/10.1152/jn.91323.2008
http://dx.doi.org/10.1073/pnas.93.24.13494
http://dx.doi.org/10.1073/pnas.93.24.13494
http://dx.doi.org/10.1016/S0959-4388(98)80144-X
http://dx.doi.org/10.1016/S0959-4388(98)80144-X
http://dx.doi.org/10.1038/nn960
http://dx.doi.org/10.1152/jn.00276.2002
http://dx.doi.org/10.1126/science.276.5314.949
http://dx.doi.org/10.1126/science.276.5314.949
http://dx.doi.org/10.1038/79848
http://dx.doi.org/10.1038/79848
http://dx.doi.org/10.1126/science.275.5297.221
http://dx.doi.org/10.1126/science.275.5297.221
http://dx.doi.org/10.1098/rstb.2005.1622
http://dx.doi.org/10.1098/rstb.2005.1622
http://dx.doi.org/10.1038/4580
http://dx.doi.org/10.1038/nn.2163
http://dx.doi.org/10.3389/fnhum.2011.00067
http://dx.doi.org/10.3389/fnhum.2011.00067
http://dx.doi.org/10.1523/JNEUROSCI.2227-12.2012
http://dx.doi.org/10.1523/JNEUROSCI.2227-12.2012


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

371:20150355

13
104. Todorovic A, van Ede F, Maris E, de Lange FP. 2011
Prior expectation mediates neural adaptation to
repeated sounds in the auditory cortex: an MEG
study. J. Neurosci. 31, 9118 – 9123. (doi:10.1523/
JNEUROSCI.1425-11.2011)

105. Stefanics G, Kimura M, Czigler I. 2011 Visual
mismatch negativity reveals automatic detection of
sequential regularity violation. Front. Hum. Neurosci.
5, 46. (doi:10.3389/fnhum.2011.00046)

106. Andics A, Gál V, Vicsi K, Rudas G, Vidnyánszky Z.
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