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Abstract

Prior experience plays a critical role in decision making. It enables explicit representation of

potential outcomes and provides training to valuation mechanisms. However, we can also make

choices in the absence of prior experience, by merely imagining the consequences of a new

experience. Here, using fMRI repetition suppression in humans, we show how neuronal

representations of novel rewards can be constructed and evaluated. A likely novel experience is

constructed by invoking multiple independent memories within hippocampus and medial

prefrontal cortex. This construction persists for only a short time period, during which new

associations are observed between the memories for component items. Together these findings

suggest that in the absence of direct experience, co-activation of multiple relevant memories can

provide a training signal to the valuation system which allows the consequences of new

experiences to be imagined and acted upon.

Humans display remarkable flexibility in their behavior. Like many other animals, we guide

our behavior through direct experience, but we can also infer the likely consequences of

actions never previously taken1,2. Through generalizing principles and applying them to new

situations3,4, we can predict new relationships and statistical structures in our environment

and use these to estimate the value of new events1,5,6. Whilst some progress has been made

in uncovering the brain regions that underlie these complex abilities1,3–7, little or no

progress has been made in understanding how neuronal networks support these complex

computations, partly because it is unclear to what extent such computations exist in species

where we can readily measure single cell activity.

One potential mechanism that allows for upcoming events to be evaluated involves using

past experience to predict consequences of future possible scenarios. In rodents,

hippocampal firing sequences at choice points predict or ‘preplay’ the forthcoming

environment8, and the likely outcomes of their decision can later be decoded in the

orbitofrontal cortex9. By contrast, when choosing between novel options, there is no direct
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experience from which to preplay and evaluate future options. However, it is possible that

the representation of an upcoming novel outcome may be constructed by combining

multiple distinct relevant experiences, preplayed simultaneously.

To test these predictions we required access to the information content of neural populations

underlying the representation of a novel experience. Despite the poor spatial resolution of

fMRI, there are well-validated strategies that can reveal underlying cellular representations.

For example, fMRI adaptation takes advantage of the fact that activated cellular ensembles

within a voxel show a relative suppression in their activity in response to repetition of a

stimulus to which they recently responded. Despite ambiguity in the biophysical mechanism

underlying repetition suppression10, when combined with careful experimental design the

technique allows for inferences to be made about the underlying neuronal

representations12,13.

Here we used fMRI adaptation to probe the neural representation of a novel food reward.

We hypothesized that if the representation of a novel food was constructed by explicit

combination of multiple distinct experiences, we would observe fMRI adaptation when

subjects evaluated a novel reward immediately after evaluating a component ingredient.

Furthermore, if multiple experiences were replayed simultaneously, plasticity may result

between the underlying neuronal assemblies. Hence, experiences used to construct the same

novel good would later adapt to each other. Lastly, we hypothesized that this complex

construction process would not be required after an independent neuronal representation of

the novel good had been established. We should therefore observe a reduction in each

adaptation effect after allowing the subjects either to experience the novel good directly, or

to simulate the novel good repeatedly. This repetition suppression paradigm therefore

allowed us to probe the neural mechanisms that underlie human capacity for flexible, online,

value construction.

Results

Deciding between novel goods

We created thirteen ‘novel goods’ whose values were unknown to the subjects. However,

each good was a novel combination of two different familiar foods (Fig. 1a). Participants

were given the opportunity to observe these novel goods without being allowed to sample

them either by taste or smell.

To first establish that these goods activate known value-related brain regions, we measured

fMRI activity in 19 subjects whilst they evaluated and chose between pairs of these novel

goods (Fig. 1b). After the scan session, subjects performed a Becker-DeGroot-Marschak

(BDM) auction14 that allowed us to measure subjects’ constructed value for each good.

Consistent with reports in simpler valuation contexts, we observed a signal that correlated

with the value of the chosen option in a network of brain regions that included ventral and

dorsal medial prefrontal cortex ((v/d)mPFC), and posterior cingulate cortex, (mPFC: p =

0.001 FWE corrected on cluster level, peak t(17) = 6.30, Fig. 2a). The involvement of both

vmPFC and dmPFC is of particular interest given that the task requires subjects to construct,

and evaluate, a model of a future outcome. This involvement accords with recent evidence
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that vmPFC encodes value preference for executable choices while dmPFC does so for

choices that are modeled abstractly7.

To evaluate these novel goods, subjects could not rely on pre-learnt values. Hence, their

only recourse was to construct, online, an expectation of the compound’s value from

knowledge of the individual components. A key question therefore is whether subjects

constructed a novel representation of the compound by explicitly combining the

representations of each component and, if so, which brain regions support this construction

process? We reasoned that this construction process could be measured using fMRI

adaptation. Activity relating to the construction of the compound value would be suppressed

when preceded by a related component if, and only if, the subject had engaged the neuronal

ensembles of the components when constructing a representation of the compound.

Constructing representations of novel goods using memories

For each participant, we selected two of the thirteen novel compounds, here referred to as

‘AB’ and ‘CD’, made up of four ‘familiar’ individual components (‘A’, ‘B’, ‘C’ and ‘D’)

that subjects had tasted immediately prior to the experiment (Fig. 1a). To avoid visual

confounds in a later analysis, we trained subjects to associate each of the 6 component and

compound foods (‘A’, ‘B’, ‘C’, ‘D’, ‘AB’, ‘CD’) with two different abstract shapes (Fig.

1c). Participants trained extensively on these associations between food items and abstract

shapes. In the final block of trials the mean accuracy was 97.8%, with mean reaction time of

845.2ms.

On each trial in the scanner, we presented a distinct shape that served as an instruction cue

for subjects to elicit an explicit mental representation of the associated food (Fig. 1d). The

key comparison of interest here was brain activity elicited by novel goods when preceded by

related components (e.g. ‘A’ or ‘B’ followed by ‘AB’) compared to novel goods when

preceded by unrelated components (e.g. ‘C’ or ‘D’ followed by ‘AB’).

Early in the experiment (block 1 out of 3) we observed fMRI adaptation between the

representation of novel goods and their constituent components in both mPFC (p<0.001

FWE-corrected on cluster level, peak t(18) = 4.45, Fig. 2b) and bilateral hippocampus (t(18)

= 2.55, p = 0.010 using ROI analysis (see Methods), Fig. 2b). These two brain regions are

components of a network commonly activated in studies of value7,15–18, episodic

memory4,19,20 and spatial navigation12. The present result implies that these brain regions

construct a value representation of a novel item from component memories, and do so by

simultaneously engaging neuronal representations of these components.

Plasticity between simultaneously active memories

If this is in fact the case then it follows that during the construction of the compound good

‘AB’, the neuronal ensembles representing components ‘A’ and ‘B’ should be

simultaneously active. We reasoned that this simultaneous activity, which first occurred

during the stimulus-item training phase prior to scanning, would induce experience

dependent plasticity between cellular elements in these two ensembles- a plasticity evident

in the scanning trials as a shadow of this value construction process. For example, after

constructing a representation of ‘tea jelly’, we reasoned that cellular representations of ‘tea’
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would induce activity in jelly-preferring ensembles, and vice versa. This can also be tested

using fMRI adaptation which predicts a differential effect for components that were part of

the same compound compared to components that were not.

Indeed, when we compared early trials of ‘A’ that were preceded by ‘B’, to those that were

preceded by ‘C’, we again found relative suppression in medial prefrontal cortex activity (p

= 0.014 FWE corrected on cluster level, peak t(18) = 4.24, Fig. 2c), but not hippocampus

(t(18) = 0.34, p = 0.367 using ROI analysis, see Methods).

Notably, across all three blocks, the extent to which individual participants showed

adaptation between related components in mPFC, but also in the hippocampus, was

predicted by the average value of the novel items (mPFC: r = 0.47 and p = 0.040;

hippocampus: r = 0.58 and p = 0.010) but not component items (mPFC: r = −0.05, p =

0.833; hippocampus: r = −0.09, p = 0.730). This suggests that the mechanism underlying

this suppression occurred during the earlier construction of the novel good, and not during

the participant’s elicitation of the component item at the time that this signal was measured.

Indeed, in both structures, the correlation with the value of the novel good survived the

removal of any signal attributable to the component values (mPFC: r = 0.51, p = 0.015, Fig.

2d; hippocampus: r = 0.60, p = 0.004, Fig. 2e; see Supplementary Fig. 1 and corresponding

discussion). Together these findings support value dependent plasticity in related

components as a consequence of co-activation during construction of the novel goods.

It is important to note here that these three de facto tests of mPFC function (valuation,

construction and plasticity) do not rely on any of the same data. Despite slight differences in

thresholded peak locations of the two adaptation effects, they each show similar patterns of

activity within mPFC (Fig. 2f). Medial prefrontal cortex can therefore evaluate novel goods

by constructing explicit representations of expected outcomes from familiar components, a

process that engenders plasticity between simultaneously active component representations.

The influence of sensory experience upon construction

We then asked whether consummatory exposure to the novel goods would reduce a need to

construct value online. To test this idea, we repeated the experiment in a second group of 20

subjects with one important difference. This second group (familiar) were given a single

sample of each of the 13 novel compound goods to taste before the experiment. Notably,

both groups underwent the same item-stimulus learning task prior to entering the scanner,

and there was no significant difference between groups in reaction time or accuracy on the

final block of trials during the learning task (see Supplementary Table 1). Any difference

between the two groups in the representation or evaluation of novel goods could therefore be

attributed to the impact of sensory exposure.

We first assessed value effects during decision trials. Both groups showed similar

consistency in their choices (see Supplementary Fig. 2). As was the case for the unfamiliar

group, the familiar group encoded chosen value activity in a network of value-related brain

regions including mPFC (Fig. 3a). In both groups, the neural activity observed in mPFC was

consistent with a role for this brain region in the evaluation of compound goods (Fig. 3b–c).
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To test whether this single experience was enough to reduce a need for online value

construction, we compared adaptation effects across the two groups. To avoid selection bias,

we used ROIs derived from whole-brain adaptation effects averaged across both adaptation

contrasts in the two groups (Fig. 4a–b, see Methods). A between group comparison within

these ROIs revealed significant differences in the adaptation effects between the familiar

and unfamiliar participants in both mPFC (3-way ANOVA (see methods): group*condition

interaction, p = 0.018, F(1,144) = 5.76), and hippocampus (3-way ANOVA (see methods):

group*adaptation_type*condition interaction, p = 0.035, F(1,144) = 4.52). Using post-hoc

two-sample t-tests to decompose these interactions, we found relative to the unfamiliar

group, the familiar group showed reduced adaptation between the novel goods and their

related components in mPFC (group difference: trend, t(18) = 1.70, p = 0.053, Fig. 4c), and

in the hippocampus (group difference: t(18) = 3.11, p = 0.003, Fig. 4c). Furthermore, the

familiar group did not show plasticity in mPFC between the representation of the constituent

components of a novel good (group difference: t(18) = 1.96, p = 0.033, Fig. 4c). Crucially,

there was no significant difference between groups in their ability to accurately elicit the

correct representations during the imagination task (group comparison of accuracy: p = 0.82,

and reaction time: p = 0.89), nor in the average subjective value assigned to any of the novel

goods used in the adaptation task (see Supplementary Fig. 3). This result therefore suggests

that even a single previous experience of a good is sufficient to reduce a requirement for

online value construction. This is particularly notable given that extensive experience is

required to reduce goal-oriented behavior and establish habitual actions21.

Temporal dynamics of the construction mechanism

If experiential and constructed valuation use distinct neural mechanisms, it is possible that

the value construction mechanism could itself substitute for a direct experience and train

experiential valuation mechanisms. As the experiment progressed, subjects had substantial

experience of constructing the representation of the novel good. We asked whether, after

multiple previous simulations of an experience it was still necessary to construct and

evaluate the representation of novel goods anew on each trial? Alternatively, were values

learnt despite participants never having experienced the novel good? As our experiment

extended over three separate blocks, we were able to study changes in value construction-

related adaptation effects over time.

Previous studies have found goal directed choice mechanisms exhibit marked differences

early and late in choice experiments17. In the present study, we used a three-way ANOVA

(see Methods) to identify attenuation of adaptation effects in mPFC and hippocampus in the

unfamiliar group across the scanning session (block*condition interaction for mPFC, p =

0.004, F(1,144) = 8.44, and block*adaptation-type interaction for hippocampus, p = 0.011,

F(1,144) = 6.56). Post-hoc t-tests comparing block 1 with all remaining blocks revealed a

significant reduction in adaptation over time of a novel-good to its related component

(mPFC: t(18) = 2.12, p = 0.024, and hippocampus: t(18) = 2.13, p = 0.024; Fig. 5a), and in

the plasticity between related components (mPFC: t(18) = 1.85, p = 0.041, but not

hippocampus: t(18) = 0.81, p = 0.785; Fig. 6a).
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To ensure sensitivity to the construction process was maintained across the duration of the

experiment, we also considered temporal dynamics of other adaptation effects, and of value

signals encoded on decision trials. In the unfamiliar group, both adaptation in mPFC to

repetition of any item (but not stimulus) and adaptation in visual areas to repetition of a

stimulus did not show reduction over time (one-tailed paired t-tests: t(18) = 0.46, p = 0.326,

Fig. 5a; and t(18) = 0.50, p = 0.312, Supplementary Fig. 4a respectively). Furthermore, the

chosen value signal encoded by mPFC also did not reduce over time, but instead remained

consistent across sessions (Fig. 3c). In addition, performance on the imagination task

improved across blocks (Fig. 5b–c). Rather than a loss of sensitivity, this suggests that the

diminishing adaptation effects demonstrate that simulated experience is sufficient to

establish an independent representation of the novel good that no longer needs to be

reconstructed anew on each trial.

Despite the overall reduction of cross-component suppression over the course of the

experiment, this was not true for components that had been used to construct high value

novel goods. When averaging across the final two blocks, both the mPFC and hippocampus

showed a significant positive correlation with the value of the compound items (mPFC: r =

0.64, p = 0.002, Fig. 6b; hippocampus: r = 0.63, p = 0.003, Fig. 6d; after accounting for

variance explained by the value of the component items in both cases). After accounting for

variance explained by component value, a median split of participants according to the value

assigned to the novel goods verified that there was long lasting plasticity in mPFC and

hippocampus in the final two blocks for those participants who attributed high but not low

values to the novel goods (mPFC: ‘High’ t(8) = 2.84, p = 0.022, and ‘High vs Low’ t(8) =

2.68, p = 0.028, Fig. 6c; Hippocampus: ‘High’ t(8) = 3.52, p = 0.008, and ‘High vs Low’

t(8) = 5.36, p<0.001, Fig. 6e). Suggestive evidence that value-dependent adaptation between

related component items emerged later in hippocampus relative to mPFC (‘High’, Fig. 6c vs

6e), could not be verified statistically (t(8) = 1.30, p = 0.229). Together these results suggest

that the plasticity is long lasting if value is attributed to the original association.

Discussion

The role of memory in prospective evaluation and inference has previously been emphasized

in both animals22 and humans3,4,20. Simulation and preplay can be used to explore an

‘internal model’ of the environment and evaluate anticipated outcomes8,23. However, the

neural mechanisms by which these processes are achieved has remained unclear, particularly

in circumstances where anticipated outcomes have not previously been experienced. Here

we used repetition suppression in fMRI to reveal a neuronal mechanism that supports

prospective representation and evaluation of novel experiences.

Repetition suppression has been used extensively in sensory brain regions to probe the

information content of neural activations, and more recently in more frontal brain regions

including orbitofrontal cortex24. However, a number of different hypotheses have been

proposed to explain the underlying physiological mechanisms behind the phenomenon,

including fatigue, sparse coding and predictive coding10,25–27. Although there is not yet a

consensus on which mechanism provides the most appropriate explanation for the

phenomenon, when used in a carefully controlled experimental design, the consequences of
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this ambiguity is mitigated since all models make the same prediction: if a neural population

is sensitive to a particular feature or dimension, then suppression will occur in response to a

repetition of this feature, but not others.

The repetition suppression paradigm used here was designed to allow interrogation of the

underlying representation of a novel reward. By asking people to imagine and evaluate

novel rewards in the scanner, we found that the neural representation of a novel reward was

dependent upon representations of multiple related and previously experienced rewards. Our

data suggest that neuronal networks can construct a novel experience by simultaneous

activation of multiple previous memories, in order that this constructed experience may be

evaluated. Whilst signals in the anterior hippocampus were found to be related to

construction, those in medial prefrontal cortex were related to both construction and

valuation.

Crucially, unlike other goal directed decision mechanisms that have been reported

previously21,23,28,29, we only found evidence for a construction mechanism when subjects

had no direct experience of an outcome, and even then only fleetingly. It is possible,

therefore, that constructed value can provide a substitute for direct experience, and train the

experiential goal-directed systems that have been studied previously. This training signal

may be considered analogous to off-line training of an habitual system which makes use of

simulations from an internal goal-directed model23,30–32. Whereas the teaching signal

provided to a habitual system replicates, or fine-tunes, previous sensory experience, the

teaching signal provided to a goal-directed system may establish an internal model of the

future world by repeated imagination of a novel experience.

During the construction process, a second repetition suppression effect was observed

between distinct and previously unassociated memories that contributed to the construction.

This effect implies that the neural representation of related, compared to unrelated,

component items became more similar as a consequence of the pre-scan training task, during

which the participants were first exposed to the novel compounds. Notably, since the

suppression was not observed in the familiar group it seems highly unlikely that this

suppression effect reflects inherent similarity between related compared to unrelated

components. Rather, the most plausible explanation for this change is that through repeated

representation of a novel compound, previously unrelated memories were recruited

simultaneously, inducing a form of plasticity between the underlying representations of

necessary components.

Within both brain regions involved in construction, the mPFC and hippocampus, plasticity

between related components was dependent upon the value of the novel compounds, but not

the value of components. This value dependence effect suggests that the representations of

the component memories were simultaneously present during valuation of the novel

compounds. A number of different mechanistic explanations may underlie this dependency.

For example, the occurrence of greater BOLD activity at the time of pairing may induce

more plasticity, or alternatively when representing a higher value compound, the enhanced

availability of neuromodulators, such as dopamine, may serve to facilitate plasticity.
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Given that on average participants showed a reduction over time in the initial plasticity

observed in mPFC, with comparable dynamics to the construction mechanism, it must be

acknowledged that it remains ambiguous whether the adaptation observed between related

components reflects classical Hebbian plasticity, or even occurs in the same regions to those

where the repetition suppression is observed. However, those participants who assigned high

value to the novel goods, showed plasticity in mPFC that outlasted the construction process.

In the hippocampus, where plasticity was not observed early on in the experiment, the same

participants showed plasticity late in the experiment. Therefore, the extent to which neural

representations of related component became more similar to one another, but also the

durability of the effect, was dependent upon value attributed to the novel compounds.

Irrespective of the underlying nature of the plasticity, the influence of compound value upon

component memories thus supports the claim that these representations are paired together

at the time of construction of the novel compounds.

The medial prefrontal cortex is regularly activated in studies of valuation33,17,34–36,18, and is

particularly notable amongst such reward-related regions for the flexibility of the value

signals that it contains. These computations may, for example, rely on an understanding of

the complex structure of the environment5, the generalisation of concepts learnt in different

situations3, or the integration of several disparate sources of information37. If subjects are

asked to ignore all of their own experiences and preferences, and instead to guess what a

very different individual would choose, mPFC value signals can immediately reflect the

preferences of this new individual7,38. Such online evaluation is a hallmark property of

‘goal-directed’ choices, which are frequently contrasted with ‘habitual’ or overlearnt choices

in studies of animal and human behaviour6,21,23,29,39,40. Previous studies of goal-oriented

behaviour have, however, focused on situations where values are known, but must be

associated with a particular course of action by interfering the structure of the world1,23,29.

Our data suggest that medial prefrontal cortex can combine previous experiences to

construct prospective outcomes de novo on each trial, and can then evaluate these

constructed outcomes.

Hippocampal preplay mechanisms are known to be important substrates for goal-directed

spatial decisions in rodents8,41, and hippocampal value signals can be recorded in situations

where outcomes must be inferred from knowledge of relationships between stimuli in the

world1,42. Notably, hippocampal activity is often recorded in concert with a network

involving mPFC in studies of spatial memory and scene construction12,19,43. Consistent with

the proposed function of memory in prospective inference44,45, the formation of associative

links46,47, and constructive episodic simulation48,49, our data suggest that hippocampal

activity can also play an active role in constructing de novo experiences in non-spatial

contexts.

These findings show that a potential new experience can be prospectively represented and

evaluated by invoking multiple memories simultaneously within hippocampus and medial

prefrontal cortex. By highlighting this neuronal mechanism we provide unique insight into

the neuronal computations underlying flexible behaviors that dominate human decision

making and which are difficult to study in animal models.
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Online Methods

Participants

Thirty-nine healthy volunteers participated in the fMRI experiment, and were assigned to

one of two groups (unfamiliar and familiar) by drawing from Matlab’s pseudo-random

number generator. One participant (from the familiar group) was excluded from all further

analyses due to poor performance (less than 80% accuracy on task performance during any

one session). All remaining participants (19 unfamiliar participants with mean age: 28.0, 13

females, and 19 familiar participants with mean age: 27.3, 10 females) were included in

further analyses with the exception of one participant (from the unfamiliar group) who was

excluded from analysis of the decision task due to parameter estimates being more than 3.5

standard deviations away from the group mean. The final sample size was comparable to

that commonly used in fMRI studies. All participants refrained from eating for two hours

prior to the start of the experiment. The study was approved by a local UCL ethics

committee (ref. number 3486/001) and all participants gave informed written consent.

Experimental task

Behavioral training—Thirteen different novel food combinations, or ‘goods’, were

presented to the participants along with their names: tea-jelly, tomato-jam, popcorn-jelly

beans, beetroot-custard, onion-mints, pea-mousse, olive-strawberry, pesto-nutella, spinach-

pineapple smoothie, raspberry-avocado smoothie, vanilla-salt, yoghurt-pretzels, and coffee-

yoghurt. Each good was formed by combining two familiar component food types which

had not previously been tasted together (Fig. 1a). The experimenter chose two novel goods,

AB and CD, for each participant, under the constraint that the participant liked all four

individual component foods (A and B, C and D) from which the two novel goods were

formed. All participants were given a small sample of the components (A, B, C, D) to eat,

but only participants in the familiar group were allowed to taste, smell and handle the novel

goods.

The experimenter randomly assigned two abstract pink shapes to each novel good (AB and

CD) and to their respective components (Fig. 1c). Participants were then actively trained on

the twelve stimulus-item pairings using a reaction time task. On each trial one of the twelve

abstract shapes was shown for 400ms before all six possible items were presented in

randomized positions across the screen. Participants were instructed to press the button

associated with the correct item as quickly and accurately as possible. Participants were

required to continue with this stimulus-item learning task until their average reaction time

per block approached 800ms with 100% accuracy.

Scanning—Whilst in the scanner, participants performed two different tasks, a decision

making task and an imagination task. The tasks were evenly divided across the three twenty-

minute scan sessions with 26 decision trials, and 240 imagination trials in each session.

During the decision task, participants performed 78 choice trials. On each trial, photographs

of two novel goods were shown on the screen and participants were given four seconds to

evaluate the two options, before being prompted to indicate their preference (Fig. 1b). To
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encourage veridical evaluation, participants agreed to eat the chosen food from one of their

decision trials (chosen at random by the computer) after exiting the scanner.

During the imagination task, an abstract pink shape was presented for 800ms on each trial

and this served as an instruction cue to vividly imagine the food item associated with the

shape (Fig. 1d). The inter-trial interval was selected from a truncated gamma distribution

with mean 2.5s. The trials were sorted into seven principal categories with thirty-two trials

of each category per scan session, presented in a randomized order. The seven different

categories were as follows: (1) novel good preceded by related component (AB preceded by

A); (2) novel good preceded by unrelated component (AB preceded by C); (3) component

preceded by the related component (A preceded by B); (4) any food item preceded by

another unrelated food item in the same category, such as component preceded by unrelated

component or novel good preceded by the other novel good (A preceded by C, or AB

preceded by CD); (5) any food item (component or novel-good) preceded by the same food

item but predicted by a different abstract stimulus (A preceded by A, or AB preceded by

AB); (6) any food item (component or novel-good) preceded by the same food item and

predicted by the same abstract stimulus (A preceded by A, or AB preceded by AB); (7)

abstract stimulus which had no association with a food outcome preceded by itself. The

remaining sixteen trials were necessary to ensure equal numbers of trials in each of the

seven conditions.

Of particular interest for our analysis were conditions 1:4. We reasoned that neuronal

assemblies which used the components to construct the novel goods would show adaptation

(reduced response) in (1) relative to (2). Furthermore, if imagination of a component caused

activation of the related component, we would expect reduced response in (3) relative to (4).

For each scan session, fourteen yes/no questions were randomly presented during the

imagination task. Each question concerned properties of the food associated with the

abstract shape on the last trial. For example asking ‘Was the outcome salty?’. Participants

received fifty pence for each correct response. The adjectives used were chosen to

encourage participants to elicit multisensory representations of each item, and concerned the

appearance, texture, taste and smell of the food items.

Post-scan behavioral task—At the end of the scanning session, after participants had

not eaten for a total of five hours, they were sold one of the novel-goods using a Becker-

DeGroot-Marschak (BDM) auction procedure14, using a previously reported protocol50. The

BDM is known to elicit a measure of a participant’s willingness to pay for a good35,

therefore providing a measure of subjective value for each novel good.

fMRI data acquisition and pre-processing—T2*-weighted echo-planar images (EPI)

with blood oxygen level-dependent (BOLD) contrast were acquired using a 32-channel head

coil on a 3Tesla Trio MRI scanner (Siemens, Erlangen, Germany). A special sequence was

used to minimize signal drop out in the OFC region and included an echo time (TE) of

70ms, a tilt of 30o relative to the rostro-caudal axis and a local z-shim with a moment of

−0.4 mT/m ms applied to the OFC region. To achieve whole-brain coverage, we used 43

transverse slices of 2mm thickness, with an inter-slice gap of 1mm and in-plane resolution
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of 3×3 mm, and collected slices in an ascending order. This lead to a repetition time (TR) of

3.01 seconds. In each session roughly 430 volumes were collected (~20 minutes) and the

first five volumes were discarded to allow for T1 equilibration effects. A fieldmap with dual

echo-time images (TE1= 10ms, TE2 = 14.76ms, whole brain coverage, voxel size 3×3×3

mm) and a single T1-weighted structural image with 1×1×1mm voxel resolution was

acquired for each participant to correct for geometric distortions and co-register the epi

images respectively.

Preprocessing and statistical analyses were carried out using SPM8 (Wellcome Trust Centre

for Neuroimaging, London, UK, www.fil.ion.ucl.ac.uk/spm). After discarding the first five

volumes, images were corrected for signal bias, realigned to the first volume, corrected for

distortion using fieldmaps, normalized to a standard epi template, and smoothed using an

8mm full-width at half maximum Gaussian kernel.

Data analysis—Images were analyzed in an event related manner using a general linear

model (GLM) involving thirty-two explanatory variables. Twenty-six explanatory variables

corresponded to conditions 1 to 6 which were further divided into the different food types.

Four additional explanatory variables described the ‘no-outcome’ trials, the time of question

presentation, the response to question, and the time of evaluation during the decision trials.

Two parametric regressors were included, corresponding to the participant’s subjective

value of the two novel-goods and time locked to the onset the decision trials. An additional

twenty-three nuisance regressors were included in the GLM to account for motion-related

artifacts and physiological noise.

The primary aim of our analysis was to identify the neural mechanism underlying the

construction of a novel-good. To detect brain regions involved in evaluating the novel goods

we looked for activity modulated by chosen value during the decision task. To detect brain

regions involved in constructing the novel-goods (‘component-to-compound’) we used the

contrast: [(AB preceded by C) -(AB preceded by A)], averaging across all possible

permutations (i.e. explanatory variables (2)-(1) from above). To detect plasticity effects

between the related components (‘component-to-component’) we used the contrast [(A

preceded by C)-(A preceded by B)], again averaging across all possible permutations (i.e.

explanatory variables (4)-(3) from above). To detect brain regions showing adaptation to

repeated item but not stimulus (‘item-to-self’) we used the contrast [(item preceded by

different item)-(item preceded by itself but paired with a different stimulus)], i.e.

explanatory variables (4)-(5) from above. To detect brain regions showing adaptation to

repeated stimulus (‘stimulus adaptation’) we used the contrast [(stimulus preceded by

different stimulus and different item)- (stimulus preceded by itself)], i.e. explanatory

variables (4)-(6) from above. The contrast images of all participants were entered into a

second level random effects analysis.

For our initial analyses, we assessed contrasts using whole-brain family wise error (FWE)

corrected statistical significance. The cluster defining threshold was p<0.01 uncorrected and

the corrected significance level defined as p<0.05. In the unfamiliar group, effects in mPFC

were significant at the FWE corrected cluster level (shown in Figure 2a–c). To statistically

assess hippocampal activity in our contrasts of interest (which did not survive cluster-based
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FWE thresholding), we tested the average signal from within a region of interest (ROI). This

ROI approach was also used to test for a difference in mPFC signal across groups and across

task blocks, and to test for repetition suppression effects in visual regions.

All ROIs were defined from contrasts that were orthogonal to the contrasts of interest, to

allow statistical tests to be performed in an unbiased fashion. To define an ROI in the

hippocampi we used the contrast identifying adaptation of ‘item-to-self’ averaged across all

blocks (see above, thresholded at p<0.01 uncorrected). Firstly, a hippocampal ROI was

defined from the unfamiliar group alone (see Fig. 2b), and secondly from the average of

both groups (shown in Fig. 4b, Fig. 5a, and Fig. 6a, and used thereafter). To assess all

construction related adaptation effects in mPFC, across groups and between blocks, we

defined an ROI from the average of the two construction related contrasts (‘component-to-

compound’ and ‘component-to-component’) from both groups and across all blocks

(thresholded at p<0.001 uncorrected; ROI shown in Fig. 4a, Fig. 5a, Fig. 6a).

To compare the value signals in mPFC encoded by the two groups during the decision task,

an ROI was defined from the average of the contrast for chosen value across the two groups

(thresholded at p<0.01 uncorrected; shown in Fig. 3b). To investigate whether adaptation of

component ‘item-to-self’ in mPFC reduced across the duration of the experiment, an ROI

was defined using the ‘item-to-self’ contrast when including only component trials, and

averaged across all blocks in the unfamiliar group (thresholded at p<0.01 uncorrected;

shown in Fig. 5a). A final ROI was defined in visual regions to test the specificity and

temporal dynamics of adaptation effects, and defined from a contrast identifying a main

effect to any visual event, averaged across all blocks (thresholded at p<0.01 uncorrected;

shown in Supplementary Fig. 4b). Note that differences between blocks or groups are, by

definition, orthogonal to the group and block average effect.

The ROIs were then used to extract parameter estimates (as shown in the bar plots in Fig.

3:6) to test for significance between groups and across time. To assess differences between

groups, we used a 3-way ANOVA to test for a main effect of and an interaction between:

‘group’, unfamiliar/familiar; ‘adaptation type’, component-to-compound/component-to-

component; and ‘condition’, control/adaptation trial specific to the relevant adaptation type.

To assess difference across time, we used a 3-way ANOVA to test for a main effect of and

an interaction between: ‘block’, block 1/block 2 and 3; ‘adaptation type’, component-to-

compound/component-to-component; and ‘condition’, control/adaptation trial specific to the

relevant adaptation type. Post-hoc t-tests were then used to decompose the results of the

ANOVA, using one-tailed t-tests to assess changes in signal within a group, and one-tailed

two sample t-tests to assess differences across groups. The Kolmogorov-Smirnov goodness-

of-fit hypothesis test was used to check that data were approximately normally distributed.

In the unfamiliar group, first a partial correlation was performed between ‘component-to-

component’ suppression effects and the average value participants assigned to the two novel

goods (during the BDM), after removing signal attributable to the component value (see Fig.

2d–e and Fig. 6b,d). The adaptation signal was extracted from mPFC ROI shown in Fig. 4a,

5a, and 6a, and hippocampus ROI shown in Fig. 4b, 5a and 6a, averaged across all blocks

(Fig. 2d–e) and then repeated using the adaptation signal from the final two blocks of trials
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(Fig. 6b,d). The former correlations were compared with one between adaptation effect size

and average component value, using a similar partial correlation with average component

value after removing effects attributable to compound value (see Supplementary Fig. 1).

One participant was excluded from these correlations due to missing data for the value of

items. Finally, participants were divided using a median split according to high and low

value attributed to the novel goods, and two-tailed t-tests and two-tailed paired t-tests used

to assess adaptation in the latter two blocks between related components after variance

attributable to the average component value had been removed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Experimental Design
(a) Thirteen novel ‘goods’ were made, each from the combination of two familiar food types that had not previously been tasted

together. Two examples are shown here: avocado and raspberry smoothie (‘AB’), and tea-jelly ( ‘CD’). (b) Participants made

binary decisions between the novel goods whilst in the scanner. (c) Prior to entering the scanner, two of the novel goods were

chosen for each participant. Participants learnt to associate each of these novel goods and their respective components with two

abstract stimuli. (d) In the scanner, participants vividly imagined the sensory properties of the food items in response to each

abstract stimulus presented.
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Figure 2. Neural correlates of constructing and evaluating a novel good
(a) Whilst participants made binary choices between novel goods, the mPFC (extending into dmPFC) encoded chosen value. (b)

The mPFC and hippocampus showed repetition suppression to a novel good when preceded by a related component (e.g. tea-

jelly preceded by tea), compared to when preceded by an unrelated component (e.g. tea-jelly preceded by avocado). (c) The

mPFC showed repetition suppression to a component food item when preceded by the related component (e.g. tea preceded by

jelly), compared to when preceded by an unrelated component (e.g. tea preceded by avocado). (d)(e) In mPFC and hippocampus

respectively, a significant positive correlation was revealed between the amount of suppression between related components

(across all blocks) and the average value participants assigned to the novel goods (after removing effects attributable to the value

of the components, for mPFC: r = 0.51, p = 0.015, and hippocampus: r = 0.60, p = 0.004). (f) Both adaptation effects showed

comparable effect size across the ventral-to-dorsal gradient of mPFC (mean ± s.e. across participants). Location of the ROIs is

shown, and the effect size for both adaptation measures was scaled such that the peak value was equal to one. There was no

significant difference between the two adaptation effects at any point on this gradient.
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Figure 3. Sensory exposure to a novel good: comparison between the ‘unfamiliar’ and ‘familiar’ groups during the decision making
task

(a) In the familiar group, the mPFC correlated with chosen value during the decision making task (thresholded at p<0.01,

uncorrected for visualisation). (b) ROI used to assess value signals in both groups of participants during the decision task. (c)
During the decision making task the unfamiliar and familiar groups showed comparable chosen value signals in mPFC (left side:

average of all task blocks for each group), and in the unfamiliar group there was no change in the chosen value signal across

time (right side: block 1 versus blocks 2 and 3). Parameter estimates were extracted from ROI shown in b (mean ± s.e. across

participants).
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Figure 4. Sensory exposure to a novel good: comparison between the ‘unfamiliar’ and ‘familiar’ groups during construction of a novel
good

(a) ROI used to compare mPFC adaptation effects. (b) ROI used to compare hippocampus adaptation effects. (c) In mPFC the

familiar group showed less adaptation between the novel-goods and their related components (left: p = 0.053, trend) and

significantly less adaptation between related components (middle: p = 0.033; both extracted from ROI shown in a). In the

hippocampus, the familiar group showed significantly less adaptation between the novel-goods and their related components

(right: p = 0.008, extracted from ROIs shown in b). The stars (*) indicate p<0.05; bars and vertical lines correspond to mean ±

s.e. across participants.
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Figure 5. In the absence of sensory exposure, there was evidence for the construction mechanism only in early trials: block 1
compared to block 2 and 3 for unfamiliar subjects

(a) There was significantly less adaptation in blocks 2 and 3 between the novel-goods and their related components in mPFC

and hippocampus respectively (left and middle: p = 0.024 and p = 0.024 respectively, ROIs shown). There was no significant

reduction across time in mPFC adaptation of a component item to itself, when predicted by two different stimuli (right: p =

0.326, ROI shown). (b)(c) On the imagination task, the unfamiliar group showed an increase in accuracy (b) and a decrease in

reaction time (c) across blocks. The stars (*) indicate p<0.05; bars and vertical lines correspond to mean ± s.e. across

participants.
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Figure 6. In the absence of sensory exposure, repetition suppression between related components was maintained across the duration
of the experiment only if participants assigned high value to the compound goods

(a) Participants from the unfamiliar group showed significant reduction in adaptation between related components over time in

mPFC, but not hippocampus (p = 0.041 and p = 0.785 respectively, ROIs shown). (b)(d) The correlations shown in Fig.2 were

also significant in mPFC, b, and hippocampus, d, when considering suppression effects between related components in blocks 2

and 3 alone: the amount of suppression across participants correlated positively with the average value of the compound goods

(mPFC: r = 0.64, p = 0.002; hippocampus: r = 0.63, p = 0.003). (c)(e) A median split of participants into those that assigned high

and low values to the compound goods revealed significant suppression between related components in blocks 2 and 3 only in

those participants who assigned high value (c ,mPFC: ‘High’ p = 0.022, and ‘High vs Low’ p = 0.028; e, hippocampus: ‘High’ p

= 0.008, and ‘High vs Low’ p<0.001). The stars (*) indicate p<0.05; bars and vertical lines correspond to mean ± s.e. across

participants.
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