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h i g h l i g h t s

�We investigated the relationship between walking impairment after stroke and integrity of the cortico-
spinal tract (CST).
� We used transcranial magnetic stimulation and diffusion tensor imaging to assess CST integrity.
� We demonstrate that patients with more ipsilateral connectivity between the unlesioned M1 and the
affected leg had more structural damage to their CST.

a b s t r a c t

Objective: Studies on upper limb recovery following stroke have highlighted the importance of the struc-
tural and functional integrity of the corticospinal tract (CST) in determining clinical outcomes. However,
such relationships have not been fully explored for the lower limb. We aimed to test whether variation in
walking impairment was associated with variation in the structural or functional integrity of the CST.
Methods: Transcranial magnetic stimulation was used to stimulate each motor cortex while EMG record-
ings were taken from the vastus lateralis (VL) bilaterally; these EMG measures were used to calculate
both ipsilateral and contralateral recruitment curves for each lower limb. The slope of these recruitment
curves was used to examine the strength of functional connectivity from the motor cortex in each hemi-
sphere to the lower limbs in chronic stroke patients and to calculate a ratio between ipsilateral and
contralateral outputs referred to as the functional connectivity ratio (FCR). The structural integrity of
the CST was assessed using diffusion tensor MRI to measure the asymmetry in fractional anisotropy
(FA) of the internal capsule. Lower limb impairment and walking speed were also measured.
Results: The FCR for the paretic leg correlated with walking impairment, such that greater relative ipsi-
lateral connectivity was associated with slower walking speeds. Asymmetrical FA values, reflecting
reduced structural integrity of the lesioned CST, were associated with greater walking impairment. FCR
and FA asymmetry were strongly positively correlated with each other.
Conclusions: Patients with relatively greater ipsilateral connectivity between the contralesional motor
cortex and the paretic lower limb were more behaviorally impaired and had more structural damage
to their ipsilesional hemisphere CST.
Significance: Measures of structural and functional damage may be useful in the selection of therapeutic
strategies, allowing for more tailored and potentially more beneficial treatments.

� 2012 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd.
Open access under CC BY license.
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1. Introduction

Stroke rehabilitation therapies may be more effective if they are
tailored to an individual patient’s surviving anatomical and physi-
ological substrates. However, development of such strategies first
requires identification of functional and structural measures that
lsevier Ireland Ltd. Open access under CC BY license.
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are associated with clinical status and that could in future be
tested as predictors of outcomes.

Studies of upper-limb hemiparesis suggest that recovery de-
pends in part on the degree of corticospinal tract (CST) damage
(Binkofski et al., 1996; Shelton and Reding, 2001; Stinear et al.,
2007). In addition, recovery is related to cortical excitability in
the contralesional hemisphere, whereby higher levels of excitabil-
ity and greater ipsilateral activity during paretic hand movement
are associated with a poorer outcome (Caramia et al., 2000; Ward
et al., 2003, 2006). While a considerable amount of data is available
regarding upper limb motor recovery, there are fewer studies of
structural and functional correlates of recovery of the lower limb.

Fundamental differences in the neural control of unilateral hand
movements and more automated, bilateral movements of the low-
er limb such as walking, disqualify conclusions from upper limb
studies being directly applied to the lower limb (Luft et al.,
2002). In particular, the relationship between the degree of dam-
age to the corticospinal tract and walking impairment remains
unclear (Ahn et al., 2006; Dawes et al., 2008). There is some evi-
dence of increased activity in the ipsilateral (contralesional) motor
cortex during paretic lower limb movements in more severely
impaired patients (Enzinger et al., 2009, 2008; Jang et al., 2005;
Luft et al., 2005) but the functional and clinical significance of such
activity is unclear.

We used transcranial magnetic stimulation (TMS) to directly as-
sess functional connectivity from the motor cortex of each hemi-
sphere to both lower limbs in chronic stroke patients with
persistent paresis of their lower limb. We used diffusion tensor
imaging (DTI) to assess the structural integrity of the CST in each
hemisphere. We hypothesized that patients with a higher degree
of structural damage to the CST in the lesioned hemisphere would
have greater relative functional connectivity from the contrale-
sional motor cortex to the ipsilateral paretic limb and greater walk-
ing impairment.

2. Methods

Nine individuals with persistent hemiparesis due to chronic
stroke (P6 months) were recruited (see Table 1). All patients
Table 1
Clinical Details.

Subject Age/sex Time post
stroke
(years)

Stroke
hemisphere

Lesion
location

Mobil
aid

1 60/M 4.5 L Frontal lobe None
2 56/M 4.7 L Intracerebral

hemorrhage
AFO

3 64/M 1.8 R Subcortical
infarct

Stick

4 74/F 1.8 L MCA territory AFO/
tripod

5 77/F 2.8 L MCA territory AFO
6 65/M 1.3 R MCA territory None
7 73/M 2.7 R MCA/PCA

territory
AFO/
stick

8 79/M 2.0 L Caudate None
9 70/M 1.0 R Frontal lobe AFO/

stick
10 66/M 4.6 R Occipital

temporo-
parietal

Cane

11 56/M 11.3 L Putamen None
12 57/F 4.0 R Parietal lobe Tripod
13 72/M 4.9 R Preceneous

cortex
AFO

AFO – Ankle Foot Orthosis.
provided written informed consent in accordance with local ethical
approval and the 2008 Declaration of Helsinki. Patients were
screened for contradictions to MRI and TMS and any other cause
for their reduced motor function. Patients participated in one clin-
ical/neurophysiology data collection session and one Magnetic
Resonance Imaging (MRI) session where DTI and structural imag-
ing was acquired.
2.1. Clinical and neurophysiological testing

Each participant’s overall impairment was assessed using the
lower-limb section of the Fugl-Meyer (FM) scale (Fugl-Meyer
et al., 1975), with higher scores reflecting greater function (maxi-
mum 34). Walking impairment measures were derived using a
10 m timed walk (Supplementary information, methods).

TMS was used to stimulate each motor cortex while EMG record-
ings were taken from the vastus lateralis (VL) bilaterally; these EMG
responses were used to calculate both ipsilateral and contralateral
recruitment curves for each lower limb (Supplementary informa-
tion, methods). TMS motor evoked potentials (MEPs) were elicited
every 5 s. The slope of each curve was obtained by fitting a line to
each subject’s data. All fits had r > 0.85. To quantify the balance be-
tween ipsilateral and contralateral connectivity, a functional con-
nectivity ratio was calculated for each leg separately:

Functional Connectiv ity Ratio ðFCRÞ

¼ Slope of Ipsilateral Recruitment Curve
Slope of Contralateral Recruitment Curve

Because of the close proximity of the two lower limb motor cor-
tices and the low spatial resolution of TMS, it is assumed that all
responses were a mix of ipsilateral and contralateral inputs to mo-
tor neurons but that inputs from the stimulated hemisphere would
predominate each measurement, as we have shown previously
(Madhavan et al., 2010) FCR values of >1.0 were therefore inter-
preted as reflecting predominantly ipsilateral connectivity be-
tween motor cortex and lower limb motor neurons and FCR
values of <1.0 were interpreted as reflecting predominantly contra-
lateral connectivity (Madhavan et al., 2010).
ity FM Walking
speed (m/
min)

FA
asymmetry

Affected
limb FCR

Lesion
volume
(mm3)

Lesion
overlap
(mm3)

34 89.75 0.08 1.11 148,248 320
25 40.95 0.1 1.42 2016 0

26 45.11 0.04 1.21 608 392

15 4.75 0.12 1.96 3752 176

15 9.68 0.24 1.55 2432 112
29 35 0.17 2.05 2392 376
15 5.4 0.43 2.63 355,960 440

34 76.9 0 0.27 727 232
20 42.9 0.13 1.62 6496 0

29 25.6 0.06 1.13 45,736 6220

32 57.1 0.03 0.94 108,630 1308
12 11.3 0.25 2.5 26,162 235
25 49 0.12 0.55 22,204 0
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Fig. 1. Bilateral TMS recruitment curves for two representative patients (A and B) and the group (C). The left hand column shows recruitment curves for the non-paretic VL, the
right hand column from the paretic VL. For the non-paretic VL, the contralateral coil position (grey line) elicits a steeper recruitment curve than the ipsilateral position (black line)
whereas the opposite is true for the paretic VL, resulting in a significant interaction between leg and side of stimulation. Each data point is calculated as the mean of the MEP area
divided by pre-trigger EMG area for each block and is plotted as a function of increasing TMS intensities normalized to motor threshold of the respective leg and coil position.
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2.2. MRI data acquisition

In order to assess the structural integrity of the corticospinal
tracts, we acquired diffusion-weighted (three acquisitions of 60
directions, bvalue = 1000 s/mm2, voxel dimensions = 2 � 2 � 2 mm,
60 slices, TR = 8.9 s, TE = 93 ms) and T1-weighted data (three acqui-
sitions, voxel dimensions = 1 � 1 � 1 mm, FOV = 256 � 265 mm,
TR = 12 s, TE = 5.65 ms) using a Siemens Avanto 1.5T MRI system.
Due to technical issues of subject/scanner compatibility, two pa-
tients were scanned on a 3T Siemens Trio using identical parameters
and four patients were scanned on a 3T Verio using identical
parameters.

2.3. MRI data analysis

Image analysis was conducted with the Oxford Center for Func-
tional MRI of the Brain (FMRIB)’s Software Library (http://
www.fmrib.ox.ac.uk/fsl) (Smith et al., 2004).

Diffusion weighted imaging (DWI) data were analyzed using
FMRIB’s Diffusion Toolbox (Supplementary information). Esti-
mated parameters included fractional anisotropy (FA), a scalar
ranging from 0 to 1, which quantifies the directional dependence
of the diffusion signal and has been used as a measure of white
matter integrity.

2.3.1. Anatomically-defined ROI analysis
The posterior limb of the internal capsule (PLIC) was manually

delineated bilaterally from the level of the anterior commissure
to the base of the corona radiata in standard space. Mean FA was
computed for both the lesioned and non-lesioned PLICs and used
to calculate the asymmetry of PLIC FA. To ensure that any correla-
tions found were specific to the PLIC and not a reflection of a more
global effect, the FA asymmetry of a control ROI in the anterior
limb of the internal capsule (ALIC) was also calculated for each
patient in an identical manner. Using this calculation method sym-
metrical FA values yield an FA asymmetry value of 0 and greater
inter-hemispheric asymmetry in the PLIC FA values yield a value
closer to 1:

FA Asymmetry ¼ FA unaffected� FA affected
FA unaffectedþ FA affected
2.3.2. Whole brain analysis
Voxel-wise correlations between FA and the Functional Connec-

tivity Ratio (FCR) as assessed by TMS were calculated using Tract
Based Spatial Statistics (TBSS) (Supplementary information).

2.3.3. Lesion volume and overlap with reconstructed corticospinal
tract

In order to investigate whether the degree to which a stroke
interrupts the CST correlates with FCR and whether it could be con-
sidered a marker for the level of impairment, we also calculated
the overlap between stroke lesions and probabilistic maps of the
corticospinal tract derived from DTI (Supplementary information).

2.4. Statistical analysis

SPSS software (SPSS Inc., Chicago, USA), using two-tailed Spear-
man’s Rho non-parametric test, was used to evaluate bivariate
correlations between TMS, MRI and behavioral measures. Simple
and multiple linear regressions were performed to determine the
strongest marker of FCR and of behavioral impairment. A repeated
measures ANOVA including within subject factors of leg (paretic,
non-paretic) and side of stimulation (contralateral, ipsilateral),
along with follow up two-tailed paired samples t-test were used
to test for differences in the slopes of ipsilateral and contralateral
recruitment curves. The adopted level of significance was set at
0.05. All p values have been corrected for multiple comparisons.
Therefore, any p value greater than one has been represented as one.
3. Results

We studied 13 patients with a mean FM score of 23.8 (range
12–34), and a mean walking speed of 39.8 m/min (range 5.4–
89.7) (Table 1).

3.1. Assessing balance between contralateral and ipsilateral functional
connectivity with TMS

We demonstrated a difference in the relative amount of ipsilat-
eral and contralateral conductivity for the paretic versus the non-
paretic leg (Fig. 1). A repeated measures ANOVA of recruitment
curve slopes revealed a significant interaction between leg and side
of stimulation (F(1,12)=7.5, p = 0.026). For the non-paretic VL, the
recruitment curve slope is significantly steeper for stimulation of
the contralateral (contralesional) hemisphere than for stimulation
of the ipsilateral (lesional) hemisphere (t = 2.63, df = 12, corrected
p = 0.03). Motor thresholds for all four stimulation configurations
are reported in Supplementary Table S1.

For each subject and each leg we quantified the relative differ-
ence in slopes for stimulation of the ipsilateral versus contralateral
hemisphere by calculating a functional connectivity ratio (FCR).
The group mean FCR of the non-paretic VL was 0.55 (range 0.2–
0.83) consistent with contralateral motor control. For the paretic
VL, there was greater variability in the relationship between the
ipsilateral and contralateral recruitment curves (e.g., compare
Fig. 1A and B); group mean FCR was 1.7 (range 0.27–2.6), sugges-
tive of predominantly ipsilateral motor control. Across the group,
FCR values for the paretic limb were significantly higher than those
for the non-paretic limb (t = 4.8, df = 12, p < 0.001) reinforcing the
differences in the balance between contralateral and ipsilateral
control of the two limbs (for group data see Fig. 1C).

The FCR of the paretic VL was negatively correlated with walking
speed (r = �0.80, corrected p = 0.005) and lower limb Fugl-Meyer
score (r = �0.74, corrected p = 0.02) (Fig. 2), such that patients with
greater relative ipsilateral connectivity to the paretic leg had a
slower walking speed and a poorer clinical outcome. The FCR of
the non-paretic VL was not related to walking speed (r = �0.06, cor-
rected p = 1) or to Fugl-Meyer score (r < �0.01, corrected p = 1)
(data not shown).

3.2. Assessing relationship between functional and structural measures
of connectivity

3.2.1. Region of interest analyses
There was a significant decrease in FA within the ipsilesional

PLIC (mean = 0.42 ± 0.02) when compared with the contralesional
PLIC (mean = 0.54 ± 0.01) (t = 5.07, df = 12, corrected p < 0.005)
(Table 1; Fig. 3B).

There was a strong positive relationship between the TMS-
derived FCR measure and FA asymmetry within the PLIC
(Fig. 3C). Patients with greater FA asymmetry had a higher FCR
for their paretic lower limb (r = 0.80, corrected p = 0.005), reflecting
greater reliance on ipsilateral connections (from the contralesional
hemisphere) compared to contralateral connections (from the
ipsilesional hemisphere). FA asymmetry did not correlate with
the FCR of the non-paretic limb (r = �0.55, corrected p = 1). There
was no relationship between the FA asymmetry of the anterior
limb of the internal capsule, our control ROI, and FCR (r = 0.09,
corrected p = 1; data not shown).

http://www.fmrib.ox.ac.uk/fsl
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values of ipsilateral connectivity are associated with slower walking speeds. (B) The relationship between FCR of the paretic VL and lower limb Fugl-Meyer score (max 34).
Increasing values of ipsilateral connectivity are associated with lower FM scores and greater disability.
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FA asymmetry was negatively correlated with FM score
(r = �0.78, corrected p = 0.005) and tended to be negatively corre-
lated with walking speed (r = �0.68, corrected p = 0.05) such that
patients with a greater asymmetry showed slower walking and
had greater functional impairment.

When the four patients scanned at 3T were removed from the
analysis, all significant relationships were maintained.

3.2.2. Whole brain analysis
TBSS was used to test across the group for correlations between

FCR and voxel-wise measures of FA. Negative correlations between
FA and FCR were found in multiple white matter pathways of the
lesioned hemisphere, including parts of the CST, suggesting that
greater damage to these regions of the lesioned hemisphere was
associated with greater relative reliance on ipsilateral functional
connectivity from the contralesional hemisphere to the paretic
leg (Supplementary information, results). A positive correlation be-
tween FA and FCR was found within the PLIC of the non-lesioned
hemisphere (Supplementary information, results).

No significant relationships were found between FCR or impair-
ment and lesion volume or lesion overlaps with the CST (Supple-
mentary information, results). A step-wise multiple regression
found that FCR of the paretic leg was the strongest marker of func-
tional impairment (Supplementary information, results).
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4. Discussion

This study investigated the inter-relationship between the
structural integrity and functional connectivity of the CST and the
extent of lower limb motor impairment in chronic stroke patients.
Patients with relatively greater ipsilateral connectivity between
the contralesional motor cortex and the paretic lower limb were
more behaviorally impaired and had more structural damage to
their ipsilesional hemisphere CST.

This is the first report, to our knowledge, that utilises TMS to
examine ipsilateral and contralateral cortical functional connectiv-
ity with proximal lower limb muscle motor neurons of the paretic
limb following stroke. The increased ipsilateral conductivity to
the lower limbs found here is consistent with previously reports
of increased ipsilateral control of upper limbs after cerebral damage
(Alagona et al., 2001; Hendricks et al., 1997; Netz et al., 1997;
Trompetto et al., 2000; Turton et al., 1996).

In addition to a correlation between functional CST connectivity
and behavioral outcomes, we also demonstrated a relationship be-
tween functional CST connectivity and structural integrity of the
CST. For the paretic leg, the functional connectivity ratio (FCR),
was strongly correlated with the FA asymmetry of the PLIC
(Fig. 3) and a whole-brain analysis confirmed that increased FCR
for the paretic leg was associated with multiple clusters of reduced
FA in the ipsilesional hemisphere, many of which were located
within the CST (Supplementary information). Interestingly, a single
cluster of positive correlation in the PLIC of the contralesional hemi-
sphere was found (Supplementary information), where greater FCR
for the paretic leg was associated with increased FA. Together, these
results suggest that greater relative ipsilateral functional connec-
tivity to the paretic limb may arise predominantly from loss of
structural integrity of the ipsilesional (contralateral) CST, but also
depends to some degree on the integrity of white matter in the con-
tralesional (ipsilateral) CST. Whether these relationships reflect
pre-existing variation in white matter structure (Johansen-Berg
et al., 2007; Tomassini et al., 2011), or degenerative or compensa-
tory changes secondary to damage (Crofts et al., 2011; Schaechter
et al., 2009) cannot be addressed by the current study.

The physiological and imaging measures tested here have clin-
ical relevance, as shown by correlations with impairment. While
FA showed some associations with walking impairment, FCR was
found to be a stronger marker. This finding complements a previ-
ous report showing FA asymmetry was only related to Fugl-Meyer
score in more behaviorally impaired patients, (Stinear et al., 2007).
However, the potential of these functional and structural measures
to predict future walking recovery remains to be tested.

We found no correlations between lesion volume (or lesion
overlap with CST) and impairment or functional or structural con-
nectivity values (Supplementary information). Therefore, it ap-
pears that simple measures of lesion volume do not indicate the
level of impairment or functional CST connectivity and that FA
asymmetry provides a more relevant measure of the structural
integrity of CST than does lesion overlap with CST.

Our finding of relationships between impairment and FCR or FA
asymmetry raises the possibility that such measures could be used
to tailor individual therapeutic interventions, such as brain stimu-
lation approaches (Hummel et al., 2005; Mansur et al., 2005). For
example, in a patient with little residual integrity of the ipsilesion-
al CST and strong ipsilateral control of the paretic limb, facilitatory
stimulation of the lesioned hemisphere is likely to have little ben-
eficial effect and facilitatory stimulation might be best applied over
the contralesional hemisphere to enhance its effectiveness in con-
trolling lower limb movement.

We recognize certain limitations to our study. We did not study
healthy control subjects and so cannot say whether the relationships
detected are specific to the stroke population. Rather, we focused on
characterizing clinical heterogeneity within a patient group, with
the aim of informing future attempts for individualizing therapies.
Further, we studied a relatively small number of patients with het-
erogenous stroke volumes, locations and etiology. Although similar
group sizes have been used in a number of prior imaging or TMS
studies of stroke (Stinear et al., 2007; Ward et al., 2006) larger stud-
ies should be carried out in future to test these effects across the
wider stroke population and to allow for subgroup comparisons to
determine any influence of patient heterogeneity.

The relationships between functional and structural measures
of the corticospinal tract and behavioral outcome presented here
further our understanding of the factors that may influence walk-
ing recovery post stroke and demonstrate the complimentary
nature of neurophysiological and imaging techniques in character-
izing a patient’s residual anatomical and physiological substrates.
In the future, such measures may inform the selection of therapeu-
tic strategies, moving towards more individualized treatments that
will optimize a patient’s potential for recovery.
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