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ABSTRACT

Inhibition mediated by y-aminobutyric acid (GABA) is implicated in motor plasticity and learning, with [GABA] in the
motor cortex decreasing during motor learning. However, the causal relationship between [GABA] and learning has
yet to be determined. Here, we conducted a within-subject, double-blind, placebo-controlled, crossover study to
investigate the effect of increased GABAergic inhibition via GABA-receptor agonist baclofen on motor learning and
Magnetic Resonance Spectroscopic Imaging (MRSI) metrics. Increasing GABA-mediated inhibition with baclofen did
not change response times, but significantly impaired motor sequence learning. In parallel, we demonstrated a blunt-
ing of the expected decrease in [GABA] during motor learning. These results highlight a causal role for GABAergic
inhibition in motor learning and may have clinical implications: baclofen is commonly used to treat post brain-injury
spasticity, but may impair motor learning during rehabilitation.

Keywords: GABA, motor learning, MRSI, baclofen, MR spectroscopy

1. INTRODUCTION like plasticity (Castro-Alamancos et al., 1995), while TMS
studies in humans indicate that administration of GABA
agonists leads to the suppression of LTP-like processes
in M1 (McDonnell et al., 2007). Further, the concentration
of GABA (hereafter denoted [GABA]) in M1 decreases

during motor learning (Kolasinski et al.,, 2019) and

Motor learning is essential in everyday life: from learning
how to reach and grab objects to learning complex
movements, our daily activities rely on previously
acquired motor skills. Increasing evidence indicates that
inhibition mediated by y-aminobutyric acid (GABA), the

most common inhibitory neurotransmitter, plays a key
role in motor plasticity and learning (Bachtiar & Stagg,
2014; Dayan & Cohen, 2011). Early mechanistic studies
in rodents showed that GABA antagonists in the primary
motor cortex (M1) induced long-term potentiation (LTP)-

decreases in M1 [GABA] induced by non-invasive brain
stimulation correlate with better motor learning (Stagg,
Bachtiar, et al., 2011). However, it is not clear whether this
observed decrease in GABA is necessary for motor learn-
ing. Perturbing inhibitory dynamics during motor learning
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may provide new insights into the underlying mecha-
nisms; since motor learning is associated with decreases
in inhibition, pharmacologically increasing GABAergic
inhibition is likely to impair motor learning.

Baclofen is a specific GABA,-receptor agonist com-
monly used in clinical practice as a muscle relaxant
(Simon & Yelnik, 2010). When administered orally, it
crosses the blood-brain barrier and reaches a peak
plasma concentration in approximately 1-2 hours, with a
half-life of 3-6 hours (Ziemann et al., 1996). Its GABA,-
receptor specificity makes it a good pharmacological
intervention for motor learning studies, as GABA, recep-
tors show high expression in areas related to motor con-
trol, such as the frontal cortex, thalamic nuclei, and
cerebellum (Bowery et al., 1987). Indeed, impairments in
visuomotor adaptation after a single dose of 10-20 mg
baclofen have previously been reported (Johnstone,
Grigoras, et al., 2021; Willerslev-Olsen et al., 2011). How-
ever, the neural mechanisms underlying this behavioral
change remain unclear.

Eighteen young healthy participants participated
in a within-subject, double-blind, placebo-controlled
pharmaco-MRI study. Each participant had an MRI brain
scan 45 minutes after administration of a single dose of
20 mg of baclofen or placebo, during which Magnetic
Resonance Spectroscopic Imaging (MRSI) data was
acquired from the primary motor cortex (M1) and premo-
tor cortex (PMC) before and after learning of a serial reac-
tion time task (SRTT). Previous studies investigating
GABA dynamics during motor learning used MRS-
derived measures of GABA (Floyer-Lea et al., 2006;
Kolasinski et al., 2019); here, we used MRSI, an MRS
technique with improved spatial resolution (Steel et al.,
2018), to allow for simultaneous quantification of neuro-
chemicals in M1 and PMC bilaterally, something that had
not previously been possible. We hypothesized that
baclofen would reduce motor learning compared with
placebo, and that behavioral decrement would be
accompanied by a blunting of the expected learning-
related [GABA] decrease in the motor cortices contralat-
eral to the hand performing the task.

2. METHODS

2.1. Participants

We recruited 18 healthy participants who provided their
written informed consent to all experimental procedures,
as approved by the Central University Research Ethics
Committee (Ethics reference: R55534/REQ004). All partici-
pants met the inclusion criteria: aged 18-35 years (mean
age +/- SEM 24.3 +/- 4.1 years, 8 males), right-handed as
per the Edinburgh Inventory (Oldfield, 1971), no self-

reported history of any psychiatric or neurological illness,
not taking any medication, not highly musically trained
(not more than Grade 6 on the Associated Board of the
Royal Schools of Music), and meeting 3T MRI safety
criteria.

2.2. Experimental design

This was a within-subject, double-blind, placebo-
controlled study. Participants attended two sessions at
least 1 week apart, starting at the same time of day, with
the order of the sessions randomized across the group
(Fig. 1A).

On arrival, participants completed a Bond-Lader
Visual Analogue Scale (BLVAS) mood questionnaire and
were familiarised with the serial reaction time task (SRTT).
Participants were then given the drug (baclofen or pla-
cebo) and had a 45-minute break. Participants then filled
in a second BLVAS questionnaire before having an MRI
scan. We first acquired a T1-weighted structural image
and a resting-state functional MRI (RS fMRI) scan before
the pre-task MRSI (sequence details below), which
started approximately 75 minutes after drug administra-
tion, to allow for baclofen to be absorbed and reach peak
plasma concentration (Agarwal et al., 2015; Ziemann
et al., 1996). Participants then completed the SRTT, with
concurrent functional MRI (fMRI) data acquisition, fol-
lowed by a post-task MRSI acquisition. The scan timings
were chosen so that the MRSI scans and motor learning
tasks fell within the peak plasma concentration time for
baclofen, which is 1-2 hours after drug administration
(Ziemann et al., 1996). After the MRI scan, participants
filled in a third BLVAS questionnaire 2 hours after treat-
ment administration and performed a visuomotor adap-
tation (VMA) task and a battery of Cambridge Cognition
(CANTAB) memory tests. The results from the fMRI data
and the VMA analyses are not included here.

2.3. Serial reaction time task (SRTT)

Participants were instructed to use their right index, mid-
dle, ring, and little fingers to press buttons 1-4 on an MRI-
compatible 4-button box in response to a visual cue, as
quickly and accurately as possible. Participants were
also instructed to not press a button before the visual cue
appeared on the screen. At the beginning of each block,
participants would see a screen with four dashes. One of
the dashes would then be replaced by an asterisk, which
represented the visual stimulus for the participant to
press the corresponding button (Supplementary Fig. 1A).
On each session, the SRTT was composed of two types
of blocks with a fixed order between sessions: 11
sequence blocks flanked by one random block, each
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(A) Timeline of each testing session. (B) a. Map of GABA/tCr in one of the sessions. Voxels that pass quality

checks are shown in red and excluded ones in blue. b. Group level map of the spatial coverage of the MRSI volume on
interest across all sessions (15 participants x 2 session); (C) Representative spectrum

with 60 trials (individual button presses) repeated at a fre-
quency of 1.5 Hz (Supplementary Fig. 1B). During ran-
dom blocks, the visual cues were presented in a random
order 60 times, corresponding to the 60 trials. During
each sequence block, the same 12-button sequence was
repeated five times, leading to the same number of 60
trials per block. The 60 trials in each block would be com-
pleted in 40 seconds, followed by 20 seconds of rest
between blocks. A different sequence was used for each
session (sequence 1: 3-1-2-4-2-3-2-1-4-1-3-4; sequence
2: 3-4-2-1-3-1-2-4-1-4-3-2).

We calculated response times (RTs) for each trial as
the time between stimulus presentation and the button
press. We excluded incorrect button presses, pre-
emptive button presses (RT < 50 ms) and outliers (+ 2.7
SD from the mean of each block). We then calculated the
median RT for each block and normalised it by dividing it
by the median RT of the first random block (R1). To cor-
relate behavior with MRS measures of [GABA], we also
calculated the slope of RT change as a learning measure
for each session by fitting a linear regression model to the
data in sequence blocks 1 to 11. One participant was
excluded from further analysis of the SRTT task because
their learning measure on one session was an outlier on
the Grubbs test. Their data was also excluded for all anal-
yses involving comparisons between pre- and post-task

timepoints and correlations between MRS-derived met-
rics and learning metrics, but not for analyses which only
included the pre-task MRS data.

To investigate how changes in neurochemicals relate
to changes in behaviour on the motor sequence task, we
first calculated the change of a neurochemical during
motor learning as the difference between the pre- and
post-task [GABA] and [Glu] respectively, so higher values
of this metric would represent larger decreases in that
neurochemical during motor learning. To assess changes
in motor learning, we calculated the motor learning met-
ric as the difference in median response times between
the first and last sequence blocks normalized by the
median response time to the first random block [(S1-
S11)/R1], so that higher values of this metric would rep-
resent larger decreases in response time during motor
sequence learning and therefore, better learning.

2.4. MR data acquisition and analysis

Participants had an MRI brain scan in a 3T MAGNETOM
Prisma system (Siemens Healthineers, Elangen, Ger-
many) equipped with a 32-channel receive head coil (Sie-
mens Healthineers). Three participants did not complete
the MRI scan and were not included in the neuroimaging
analysis. Therefore, 15 participants in total were included
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for the neuroimaging analysis of the pre-task MRS-
derived measurements and the correlation analyses
between [GABA] and response times. Due to one partici-
pant being excluded for being an outlier on the SRTT, 14
participants in total were included for the analyses com-
paring pre-task and post-task measurements, as well as
the correlation analyses between MRS-derived metrics
and learning metrics.

First, we acquired a T1-weighted structural image
(MPRAGE, 1 mm isotropic, TR = 1.9 seconds, TE =
3.96 ms, Tl = 912 ms, TA = 7.3 minutes, field of view
232 x 256 x 192 mm?3, flip angle 8°). Task fMRI was
acquired during SRTT task execution, but these data
would not be included in this paper.

MRSI was acquired pre- and post-task using a semi-
LASER prepared MRSI sequence, with density-weighted
concentric ring trajectories (CRTs) k-space sampling
(Steel et al.,, 2018), TR = 1.4 seconds, TE = 32 ms,
TA = 2 x 4.5 minutes, voxel size =5 x 5 x 15 mm?, field of
view = 85 x 35 mm?, and slice thickness = 15 mm (Sup-
plementary Table 1). The semi-LASER selected volume
(“MRSI slab”) was manually placed to cover both the left-
and right-hand knobs at the posterior margin of the pre-
central gyrus (Kolasinski et al., 2017), excluding tissue
outside the brain to minimize contamination due to
mobile lipids (Steel et al., 2018). The time between the
pre- and post-task MRSI measurements was approxi-
mately 22 minutes, with the post-task MRSI block start-
ing immediately after SRTT execution.

Reconstruction of MRSI data and neurochemical
quantification was performed using in-house scripts and
LCModel, as described in previous studies (Andrushko
et al., 2023; Nettekoven et al., 2022; Provencher, 2001;
Steel et al., 2018). Briefly, after metabolite cycling recon-
struction (Emir et al., 2017) and coil-combination (Walsh
et al., 2000), we corrected for frequency and phase shifts,
removed residual water using HLSVD (Cabanes et al.,
2001), and corrected for eddy currents (Klose, 1990).
Neurochemicals were quantified using LCModel with a
basis set containing 26 metabolites, default LCModel
macromolecules, no soft constraints on metabolites, a
baseline stiffness setting (DKMTMN) of 0.25, and a chem-
ical shift of 0.5 to 4.2 ppm. Metabolite concentrations are
reported as a ratio to total creatine (creatine + phospho-
creatine; tCr). We then excluded voxels with Cramer-Rao
lower bands (CRLB) > 50%, signal-to-noise ratio
(SNR) < 40 or GABA/tCr > 1 (Fig. 1B-a).

To confirm the accurate placement of the MRSI slab in
all participants, metabolite maps were registered to MNI
space using linear and then non-linear registration (FLINT
and FNIRT (Jenkinson et al., 2002; Jenkinson & Smith,
2001)). All MRSI slabs included the left-hand knob
(Fig. 1B-b). A representative spectrum is included in Fig-

ure 1C. To quantify GABA in the brain regions responsible
for motor control, we registered anatomical MNI maps of
left and right M1 and premotor cortex to each partici-
pant’s structural scan using FLIRT and FNIRT (Jenkinson
& Smith, 2001). For each participant, we calculated the
mean [GABA] from the voxels that passed quality control
in each region of interest.

2.5. Working memory tests

To investigate the effect of baclofen on cognitive func-
tions, participants completed four working memory tests
from the Cambridge Neuropsychological Test Automated
Battery (CANTAB) on a tablet (Apple iPad Air 2) at approx-
imately 3 hours after treatment administration (Falconer
et al., 2010). These four tests were: Spatial Working Mem-
ory (SWM), Pattern Recognition Memory (PRM), Spatial
Span (SSP), and Rapid Visual Processing (RVP). Due to
technical difficulties, 3 participants could not complete
the SWM, PRM and RVP tests on one of the sessions.

2.5.1. Spatial working memory

A number of boxes appeared on the screen, and partici-
pants were instructed to tap one box to find out whether
there was a token in it. Only one token appeared in each of
the boxes, so participants had to remember which boxes
they had already found tokens in and which boxes they
still needed to check. Participants committed errors when-
ever they tapped a box in which they had already looked
for a second time. The number of total errors was reported
for increasing task difficulties (4, 6, 8, and 12 blocks). A
strategy metric was also recorded, quantifying how many
times the participants had started searching from the
same block, indicating a strategy for task performance.

2.5.2. Pattern recognition memory

Participants were presented with a set of shapes, which
they were instructed to remember. Pattern recognition
memory was evaluated at two time points: immediately
after the presentation of the set of shapes and at approx-
imately 20 minutes. These timepoints were referred to as
immediate and delayed, respectively. Participants were
asked to recall the shapes they remembered from two
possible options. The percentage of correct choices and
the mean response times for pattern recognition were
recorded for both the immediate and delayed time points.

2.5.3. Rapid visual processing

Digits between 2 and 9 were briefly displayed in the cen-
ter of the screen in a pseudorandom order. Participants
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were instructed to tap a red button on the screen if the
following target sequences appeared: 3-5-7, 2-4-6, and
4-6-8. We recorded the median response times as the
main outcome of this task.

2.5.4. Spatial span

For each trial, a set of 9 boxes appeared on the screen,
out of which a subset would change color one at a time,
forming a sequence. In the forward version of this task,
participants were asked to tap the boxes in the order they
had lit up previously; in the reverse version, participants
were asked to tap the boxes in the reserve order. The
sequence gradually increased from 2 to 9 boxes, making
the task more difficult to perform. The length of the most
difficult correctly-recalled sequence was recorded, as
well as the number of errors made, for both the forward
and the reverse spatial span.

Since CANTAB tasks may show some practice effects
on certain outcomes in healthy participants (Backx et al.,
2020; Karlsen et al., 2022), we conducted control analy-
ses on all task outcome measures to identify any poten-
tial practice effects between the first and second session.
In our counterbalanced, crossover design, an equal num-
ber of participants had baclofen on their first session and
placebo on the second as the number of participants
who had placebo on their first session and baclofen on
the second. We found no significant practice effects on
any of the task outcome measures.

2.6. Mood questionnaires

Participants completed the Bond-Lader Visual Analogue
scale (BLVAS) three times during each session. The BLVAS
has 16 scales, each 100 mm long with the 2 opposite sides
of the spectrum at each end, for example, alert—-drowsy,
calm-excited (Bond & Lader, 1974). At each time point,
participants were asked to mark how they felt at that spe-
cific moment on each scale. Similar to previous studies,
the 16 scales were grouped into 3 categories: alertness
(alert, strong, clear-headed, well-coordinated, energetic,
quick-witted, attentive, proficient, interested), contented-
ness (contented, tranquil, happy, social, friendly), and
calmness (calm, relaxed) (Bond & Lader, 1974). The mean
value for each category was calculated at each time point,
with lower values indicating stronger feelings on that
respective scale.

2.7. Statistical analyses

All behavioral data were analyzed using MATLAB
(v. R2020b, MathWorks) and Prism (v.9.3.0, GraphPad
Software). MRSI data were analyzed using in-house Bash

scripts, R (RCoreTeam 2013), and Prism. Analysis was
performed using repeated-measures ANOVAs with
Geisser-Greenhouse’s correction or paired t-tests with
significance levels of oo = 0.05 to investigate the within-
subject effects of baclofen compared to placebo.

More specifically, paired t-tests were conducted to
test for significant differences between the baclofen and
placebo session for the following: response times in the
random block of the SRTT, pre-task [GABA] in the pri-
mary and premotor cortex. Paired t-tests were also con-
ducted on the strategy metric from the spatial working
memory task and the median response times on the rapid
visual processing task.

Separate repeated-measures ANOVAs with within-
subject main factors were conducted to test for signifi-
cant differences between the baclofen and placebo
session for the following: response time during sequence
blocks of the SRTT (main effects of drug (baclofen, pla-
cebo) and block (S1 to S11)), MRS-derived metrics of
GABA in left motor regions, right motor regions and glu-
tamate in the left motor region (main effects of drug
(baclofen, placebo), time (pre- and post-task) and region
of interest (M1, PMC)), scores on the three mood compo-
nents (main effects of drug (baclofen, placebo) and time
(baseline, 1 hour and 2 hours after drug administration)).
Separate repeated-measures ANOVA with within-subject
factor of drug (baclofen, placebo) and task were con-
ducted on the following: total errors on the spatial work-
ing memory task (main effects of drug (baclofen, placebo)
and task difficulty (4, 6, 8, and 12 blocks)), percentage of
correct answers and mean response times on the pattern
recognition memory task (each ANOVA with main effects
of drug (baclofen, placebo) and time (immediate,
delayed)), maximum length and number of errors on the
spatial span task (each ANOVA with main effects of drug
(baclofen, placebo) and task type (forward, reverse)).

A summary of all repeated-measures ANOVA con-
ducted here is presented in Table 2 of Supplementary
Material.

Relationships between MRSI and behavioral metrics
were investigated by calculating Pearson’s correlation
coefficients. All graphs show mean + SD or individual
data points unless otherwise indicated.

3. RESULTS

3.1. Baclofen significantly impairs motor sequence
learning, but not motor performance

To quantify motor learning, participants performed a
serial reaction time task (SRTT) with their right hand while
in the MRI. Response times (RTs) in the first block (R1),
where stimuli were presented in a non-predictable order,
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were not significantly different between baclofen and
placebo sessions (paired t-test: t(13) = 0.161, p = 0.875,
Fig. 2A), suggesting that baclofen did not modulate
motor performance per se. We, therefore, normalized
the median RT for each sequence block (S1 to S11) to the
median RT in block R1 to directly compare learning
between the two sessions.

Consistent with learning, participants significantly
reduced their RTs during the task blocks where visual
stimuli were presented in a learnable sequence
[Repeated-Measures ANOVA with within-subject factors
of Drug (baclofen, placebo) and Block (S1 to S11), Main
Effect of Block (F(3.179, 41.330) = 9.261, p < 0.001)]. As
previously reported, baclofen significantly reduced learn-
ing compared with placebo [Main Effect of Drug
(F(1,13) = 6.070, p = 0.029), Fig. 2B-C), but there was no
significant Block by Drug interaction (Block x Drug Inter-
action (F(4.568, 59.380) = 1.089, p = 0.373)).

3.2. Baclofen blunts learning-related [GABA]
decrease during motor learning

To investigate the neurochemical effects of baclofen, we
quantified mean [GABA] in M1 and PMC before and after
participants performed the SRTT (Fig. 3A-B). First, we
calculated the mean [GABA] between the left M1 and

PMC and compared [GABA] dynamics using a two-way
repeated-measures ANOVA with within-subject main fac-
tors of Drug (baclofen, placebo) and Time (pre-task, post-
task) (Fig. 3C). The predicted [GABA] decrease during
motor learning was significantly different between the
baclofen and placebo sessions, as we found a significant
treatment x time interaction (F(1,13) = 5.908, p = 0.030),
but no significant main effects of drug (F(1,13) = 0.497,
p = 0.493) or time (F(1,13) = 0.923, p = 0.354). In the post-
hoc comparisons with Bonferroni multiple comparisons
correction, we found a significant difference between
pre- and post-task timepoints on the baclofen session
(t(13) = 2.620, adj p = 0.042), but not on the placebo ses-
sion (t(13) = 0.839, adj p = 0.833). To further investigate
these effects in our two regions of interest, we conducted
a three-way repeated-measures ANOVA by adding a
main effect of region-of-interest (ROI; left M1, left PMC)
to the analysis above (Fig. 3D). We found a significant
effect of ROI (F(0.875, 11.34) = 8.128, p = 0.018) and a
significant Drug x Time interaction (as above, F(1,13) =
5.908, p = 0.030), but no other significant main effects or
interactions. We also found no significant effects in the
Bonferroni-corrected post-hoc comparisons (Table 2 of
Supplementary Material).

To determine whether this effect of baclofen on
learning-related [GABA] was driven by differences in
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pre-task [GABA] between baclofen and placebo in left
M1 and premotor cortex, we compared [GABA] prior to
learning. There was no significant difference in [GABA]
between the baclofen and placebo sessions in either
region prior to learning (M1: t(14) = 1.915, p = 0.076;
PMC: t(14) = 0.946, p = 0.360, Fig. 3E-F).

To determine the anatomical specificity of this
baclofen-induced blunting of learning-related [GABA]
decrease, we performed identical analyses first for the
right, ipsilateral, motor regions together (Fig. 4A) and then
for the right M1 and PMC separately (Fig. 4B; Repeated-
measured ANOVA with factors of Drug (baclofen, pla-
cebo), Time (pre-task, post-task), and with/without ROI
(right M1, right PMC)). Unlike the left, contralateral, corti-
cal areas, there was no significant Drug x Time interac-
tion for the homologous right hemisphere regions from
the three-way ANOVA (F(1, 13) = 0.026; p = 0.874).

To determine the neurochemical specificity of our
[GABA] results, we performed identical analyses for glu-
tamate first in the left motor regions (Fig. 4C) and then for
the left M1 and PMC separately (Fig. 4D). Unlike for
[GABA], the three-way ANOVA revealed no significant
Drug x Time interaction for glutamate (F(1,13) = 0.579;
p = 0.461). There was a significant main effect of Time

(F(0.840, 10.920) = 8.174; p = 0.019), suggesting, as
might be expected, that glutamate increased in both
brain regions after learning, but this increase did not dif-
fer between drug conditions.

3.3. MRSI-derived [GABA] measurements were
significantly correlated with behavioural metrics

Finally, we investigated whether [GABA] related to behav-
ioral metrics. Mean RT during the random blocks of the
SRTT was significantly correlated with pre-task [GABA] in
the left PMC in the placebo session, such that greater left
PMC [GABA] correlated with slower RTs (r(13) = 0.539,
p = 0.038; Fig. 5A). This relationship was not demonstrated
in the baclofen session (r(13) = -0.230, p = 0.409; r-to-z
(placebo v baclofen) z = 2.050, p = 0.040). There were no
significant correlations between pre-task M1 [GABA] and
RTs in either session (placebo: r(13) = 0.274, p = 0.324;
baclofen: r(13) = -0.089, p = 0.752, Fig. 5B). This relation-
ship was neurotransmitter-specific: we found no significant
correlations between RTs and glutamate levels in either the

left M1 (placebo: r(13) = 0.253, p = 0.363; baclofen:
r(13) = -0.312, p = 0.258) or the left PMC (placebo:
r(13) = 0.019, p = 0.946; baclofen: r(13) = -0.188, p = 0.502).
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We then went on to investigate the relationships between
neurotransmitters and motor learning. There was a signifi-
cant correlation between the learning-related change in
[GABA] in left PMC and the learning-related decrease in RT
in the baclofen session, but not in the placebo session,
such that greater decreases in PMC [GABA] correlated with
greater learning (baclofen: r(12) = 0.576, p = 0.031; pla-
cebo: r(12) = -0.245, p = 0.399; r-to-z (baclofen v placebo)
z=2.140, two-tailed p = 0.032, Fig. 5C). There was no such
relationship between learning and change in left M1 [GABA]
(baclofen: r(12) = -0.348, p = 0.223; placebo: r(12) = 0.288,
p = 0.318, Fig. 5D). There was a significant difference
between the [GABA] change and behavioral change cor-
relations in the left PMC and M1 on the baclofen sessions
(r-to-z z = 2.390, two-tailed p = 0.017).

When looking at glutamate, we found a significant cor-
relation between learning-related change in [Glu] in the
left M1 and the learning-related decrease in RT in the
baclofen session, but not in the placebo session. Specif-
ically, smaller increases in M1 [Glu] correlated with greater
learning (baclofen: r(12) = 0.571, p = 0.033; placebo:
r(12) = -0.076, p = 0.797) (Fig. 6A). There was no such
relationship between learning and change in PMC [Giu]
(baclofen: r(12) =-0.047, p = 0.873; placebo: r(12) = 0.285,
p = 0.323) (Fig. 6B).

3.4. Baclofen increased contentedness, but did not
significantly alter working memory

To ensure that the demonstrated baclofen-induced
decrease in motor learning was not driven by changes in
mood, working memory or attention, participants per-
formed a series of tests. The 16 Bond-Lader Visual Ana-
logue scales (BLVAS) were loaded onto three mood

components: alertness, contentedness, and calmness.
Each mood component was quantified before (baseline),
and 1 hour and 2.5 hours after drug administration. There
was a significant main effect of drug on contentedness,
but not on alertness or calmness (Main Effect of Drug;
Contentedness: F(1, 14) = 5.142, p = 0.038; Alertness:
F(1, 14) = 4.164, p = 0.061; Calmness: F(1, 14) = 0.653,
p = 0.433), such that participants felt more content in the
baclofen than placebo session.

The possible effects of baclofen on cognition were
assessed via the CANTAB battery. There were no signifi-
cant drug-related differences in task performance on any
of the tasks. On the spatial working memory task, there
was no significant effect of drug on either the number of
total errors (F(1, 17) = 0.335, p = 0.570) or on the strategy
metric (t(17) = 1.236, p = 0.233). On the pattern recogni-
tion memory task, there was no significant effect of drug
on either the percentage of correct responses (F(1,
17) =1.294, p = 0.271) or the mean RTs (F(1, 17) = 1.792,
p = 0.198). On the rapid visual processing task, there was
no significant effect of drug on the RTs (t(15) = 1.759,
p = 0.099). Lastly, on the spatial span task, there was no
significant effect of drug on either the maximum length
completed (F(1, 17) = 2.227, p = 0.154) or the number of
errors (F(1, 17) = 0.221, p = 0.644). The complete results
of the ANOVAs conducted here are presented in Table 2
of the Supplementary Material.

4. DISCUSSION

Understanding the physiological changes underpinning
motor learning is essential if we are to develop novel
approaches to enhance plasticity, and hence optimize
behavior. Here, we used the GABA, receptor-specific
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agonist baclofen to address the hypothesis that decreas-
ing GABA is necessary for optimal motor learning. We
found that increasing GABA-mediated inhibition via
baclofen led to significantly impaired learning, in the
absence of changes in response times generally. Baclofen
blunted the expected learning-related decrease in
[GABA], and the decrease in PMC [GABA] during learning
correlated with decreased RTs in the baclofen session,
but not during placebo. There were no drug-induced
changes in working memory that would explain these
drug-related effects.

4.1. Baclofen impairs motor sequence learning

Since [GABA] decreases in M1 are associated with motor
learning (Floyer-Lea et al., 2006; Kolasinski et al., 2019;
Stagg, Bachtiar, et al., 2011) and baclofen is known to
suppress neuroplastic processes in the motor cortex
(McDonnell et al., 2007), we tested whether increasing
GABAergic inhibition using a pharmacological interven-
tion would impair motor learning in healthy volunteers.
Baclofen led to a significant decrease in motor learning,
supporting the hypothesis that decreases in [GABA] are
necessary for motor learning to occur. To the best of our
knowledge, this is the first report of impairments in motor
sequence learning following baclofen administration: our
previous paper (Johnstone, Grigoras, et al., 2021), using
10 mg of baclofen demonstrated a significant baclofen-
induced decrement in visuomotor adaptation, but only a
trend toward impaired sequence learning. Differences in
drug dose and task design might account for this dis-
crepancy; in particular, our previous paper used 10 mg
baclofen rather than the 20 mg used here.

4.2. Baclofen modulates learning-related changes,
but not baseline, [GABA]

Intuitively, we might have expected that resting MRS(l)-
derived metrics of GABA might be modulated by baclofen.
However, previous studies of GABA-modulating drugs
have not shown consistent modulation of MRS-quantified
GABA in cortical areas in humans; most studies report
null results, perhaps highlighting difficulties in detecting
changes following an acute intervention while the brain is
at rest (Dyke et al., 2021; Ferland et al., 2021; Henry et al.,
2010; Li et al., 2018; Licata et al., 2009, 2014; Morley
et al., 2018). This is likely explained by MRS metrics not
directly measuring the synaptic activity of GABA recep-
tors (Dyke et al., 2017; Mooney et al.,, 2017; Stagg,
Bestmann, et al., 2011; Tremblay et al., 2013). Instead,
MRSI provides measurements of the total amount of MR-
visible GABA within each of the 96 MRSI| voxels (375 mm3),
acquired over minutes. This MRSI-derived GABA mea-
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surement has been hypothesized to reflect extrasynaptic,
tonic inhibition (Stagg, Bestmann, et al., 2011), although
this is yet to be confirmed.

Baclofen has non-subtype-specificity for any GABA,
receptor subtype, activating both pre- and post-synaptic
GABA,; receptors (Benarroch, 2012). Presynaptically,
baclofen binds to the GABA, receptor and decreases the
quantity of neurotransmitter released into the synaptic
cleft. Postsynaptically, baclofen binds to the GABA,
receptor and leads to hyperpolarization of the cell, but its
binding to the receptors instead of the endogenous neu-
rotransmitter could mean that the endogenous GABA
remains longer in the synaptic cleft until feedback mecha-
nisms increase its reuptake into glial cells and neurons.
Therefore, depending on the proportion of pre-and post-
synaptic receptors bound by baclofen, total [GABA] might
be expected to either decrease or increase (McDonnell
et al., 2006; Mott et al., 1990; Ohliger-Frerking et al., 2003;
Olpe & Karlsson, 1990). Only one study has so far looked
at the effect of baclofen on MRS-derived metrics and
reported no significant changes in the right parietal lobe
[GABA] between baclofen and placebo (Morley et al.,
2018). However, this study used a between-subject design
in individuals with alcohol-dependence who received a
2-week treatment with baclofen at a high dose (30-75 mg),
which makes it difficult to predict what the effect of a
single-dose of baclofen would be in a healthy population.

4.3. Baclofen-induced changes in PMC [GABA]
significantly correlate with changes in motor
sequence learning

Baclofen blunts the physiological M1 [GABA] decrease
during motor learning, which was associated with impair-
ments in performance on a motor sequence learning
task. We found a significant relationship between
learning-related changes in the premotor cortex [GABA]
and learning-related changes during SRTT during the
baclofen session, but not placebo, such that better learn-
ing was associated with a larger decrease in the premo-
tor cortex [GABA] during motor learning.

Since the premotor cortex is involved in motor plan-
ning and movement preparation, it is not surprising that it
has an important contribution toward motor learning
(Kantak et al., 2012), being linked to associative learning
(sensory cues become associated with appropriate motor
commands) in both healthy individuals and patients
(Halsband & Freund, 1990; Nowak et al., 2009; Steele &
Penhune, 2010), as well as implicit motor sequence
learning and imitation learning (Bischoff-Grethe et al.,
2004; Vogt et al., 2007). Moreover, reorganization of the
premotor cortex was associated with improvements in
motor function after stroke (Fridman et al., 2004).
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Higher task fMRI-derived activation of the dorsal PMC
during motor learning has also been associated with
higher cognitive demands of the task (Cross et al., 2007)
and better behavioral outcomes on a motor learning task
(Tomassini et al., 2011). Therefore, it is possible that
during the baclofen session, when GABAergic inhibition
is higher in M1, the premotor cortex contributes more to
the process of motor learning than in the placebo ses-
sion, but that hypothesis remains to be tested.

In the placebo sessions, there were no significant cor-
relations between learning-related [GABA] changes in
either M1 or PMC [GABA] and learning-related behavioural
changes, which is consistent with previous findings
(Kolasinski et al., 2019). One possible explanation is that
[GABA] dynamics and behavioral improvements do not
follow a linear relationship. Alternatively, by collecting the
MRSI data in the 10 minutes following the motor sequence
learning task, [GABA] levels might be returning to base-
line and thus, our [GABA] metrics might be affected by
homeostatic processes not related to motor learning. We
did not include a non-learnable motor condition, meaning
that we are unable to investigate GABAergic dynamics
during motor learning versus non-learning motor
behaviour. However, previous work from our group sug-
gests that GABA decreases were seen specifically during
motor learning, but not during a control, non-learnable,
motor task (Kolasinski et al., 2019). We did not correct for
multiple comparison testing in our statistical analyses,
since these tests were either hypothesis-driven or used to
control for hemisphere and neurotransmitter specificity.

4.4. Relationship between response times and
[GABA] in left PMC in placebo sessions

We found a significant correlation between RTs and
[GABA] in the left premotor cortex during the placebo
sessions, but not after baclofen administration. The pre-
motor cortex is known to be involved in motor planning
and sensorimotor integration and has strong connections
to the ipsilateral M1 (Churchland et al., 2006; Kantak
et al., 2012; Muakkassa & Strick, 1979; Riehle & Requin,
1989; Shenoy et al., 2013). fMRI studies investigating the
brain areas active during simple response time tasks
show a cortical network linked to the identification of the
visual stimuli and movement execution, which includes
the bilateral premotor cortices (Kansaku et al., 2004).

In non-human primates, micro-stimulation of the pre-
motor cortex, but not motor cortex, during the prepara-
tory activity, led to slower response time in monkeys,
likely because the cortical area needs time to restore pre-
paratory activity (Churchland & Shenoy, 2007). In humans,
delivering single TMS pulses to the premotor cortex at
less than 25 ms after the visual stimulus leads to faster
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RTs, suggesting that preconditioning the premotor cortex
decreases the time needed for motor execution
(Zangrandi et al., 2019). Our results are in line with these
studies, showing that lower inhibition in the premotor
cortex is associated with faster response times; individ-
ual variability in [GABA] may be the neural substrate for
individual variability in response times.

Previously, our group has demonstrated a correlation
between baseline RTs and M1 [GABA] (Stagg, Bestmann,
et al., 2011), which was not demonstrated here. However,
previous studies have used a much larger voxel volume
(i.e., 8 cm® as opposed to the 0.375 cm?® used here).
Therefore, although previous studies used an MRS voxel
focused on M1, that voxel included regions of the premo-
tor cortex, which might have been driving the correlations
previously observed.

4.5. [Glu] in motor areas increases after motor
learning

Finally, we found a significant increase in glutamate after
the motor learning task across the two study sessions,
which likely reflects the increased activity in the motor
areas during motor task performance. The possible
mechanisms underlying this process have been previ-
ously discussed in detail, although definitive evidence
confirming these ideas is still lacking (Mangia et al.,
2009). Generally, intermediate to long echo times
(>20 ms), as used here (TE=32 ms) have been proposed
as more sensitive to compartmental shift (Lea-Carnall
et al., 2023; Mullins, 2018) than shorter echo times, so
the increase in glutamate after the task could potentially
be a result of glutamate moving from the vesicular com-
partment, largely invisible to MRS, to the extracellular
and cytosolic compartment, visible to MRS.

Other studies have also reported increases in gluta-
mate after motor activation (finger tapping, hand clench-
ing) and motor learning, using sequences with TE ranging
from 12 ms to 80 ms (Eisenstein et al., 2023; Schaller
et al., 2014; Volovyk & Tal, 2020) and a meta-analysis
investigating changes in glutamate after motor and visual
task performance is consistent with our findings (Mullins,
2018). Thus, the changes we found here might not be
specific to motor learning, but motor activation in general.

We also found a significant relationship between
learning-related changes in the left M1 glutamate and
learning-related changes in behavioral metrics in the
baclofen session, such that greater increases in gluta-
mate are associated with lower learning. It is possible
that, with increased inhibition via baclofen, the proposed
“excitation:inhibition balance” changes and higher
increases in glutamate become maladaptive. Some pre-
vious studies report no significant correlation between
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glutamate changes and learning improvements
(Eisenstein et al., 2023; Kim et al., 2014), which is consis-
tent with our results in the placebo session. However,
there is also a report of resting [Glu] levels predicting
learning, although there are no reports of correlations
between change in [Glu] and learning improvements (Bell
et al., 2023).

5. CONCLUSION

We conducted a within-subject, double-blind, placebo-
controlled study to investigate how increasing GABAer-
gic inhibition via the pharmacological agent baclofen
affected motor learning and brain chemistry. We found
that baclofen significantly impaired performance on a
motor sequence learning task, but did not impair simple
response times. These behavioral impairments were
associated with significant learning-related changes in
[GABA] in the left M1 and left premotor cortex.

In previous studies in older healthy individuals, motor
learning was not associated with decreases in [GABA],
but learning-related changes in GABA significantly cor-
related with motor learning improvements, age, and
baseline GABA (King et al., 2020). Stroke survivors with a
previous history of receiving GABA agonists had a sig-
nificantly worse motor function on admission to a reha-
bilitation program, though the administration of GABA
agonists had no significant effect on subsequent motor
rehabilitation outcomes (Johnstone, Brander, et al.,
2021). Taken together, these results may inform a poten-
tial change in clinical guidance toward baclofen use: if
baclofen administration impairs motor learning in healthy
people, further studies should investigate whether it also
impairs motor rehabilitation in patients who receive it as
a muscle relaxant.
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