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Abstract

Animals can adapt their preferences for different types of reward according to physiological

state, such as hunger or thirst. To explain this ability, we employ a simple multi-objective

reinforcement learning model that learns multiple values according to different reward

dimensions such as food or water. We show that by weighting these learned values accord-

ing to the current needs, behaviour may be flexibly adapted to present preferences. This

model predicts that individual dopamine neurons should encode the errors associated with

some reward dimensions more than with others. To provide a preliminary test of this predic-

tion, we reanalysed a small dataset obtained from a single primate in an experiment which

to our knowledge is the only published study where the responses of dopamine neurons to

stimuli predicting distinct types of rewards were recorded. We observed that in addition to

subjective economic value, dopamine neurons encode a gradient of reward dimensions;

some neurons respond most to stimuli predicting food rewards while the others respond

more to stimuli predicting fluids. We also proposed a possible implementation of the model

in the basal ganglia network, and demonstrated how the striatal system can learn values in

multiple dimensions, even when dopamine neurons encode mixtures of prediction error

from different dimensions. Additionally, the model reproduces the instant generalisation to

new physiological states seen in dopamine responses and in behaviour. Our results demon-

strate how a simple neural circuit can flexibly guide behaviour according to animals’ needs.

Author summary

Animals and humans can search for different resources depending on their needs. For

example, when you are thirsty at work, you may go to a common room where hopefully

coffee or water is available, while if you are hungry, you would rather go to a canteen.

Such ability to seek different resources based on a physiological state is so fundamental to

survival, that is present also in simple animals. This paper proposes how this ability could

arise from a simple neural circuit that can be mapped on evolutionary older parts of the
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vertebrate brain, called the basal ganglia. The model suggests that this circuit learns the

availability of different reward types, and then combines them according to the physiolog-

ical state to control behaviour.

1 Introduction

Neuromodulator dopamine plays a key role in reinforcement learning (RL). The dominant

theory of its function is the Temporal Difference (TD) learning model, according to which the

dopamine neurons in the Ventral Tegmental Area (VTA) encode reward prediction errors

which are used to modulate plasticity at cortico-striatal synapses so as to learn expected reward

at different environmental states [1–3]. This theory is supported by large amounts of experi-

mental data showing that dopamine neurons produce patterns of activity consistent with

reward prediction errors [4–7] and modulate cortico-striatal plasticity in the directions pre-

dicted by the theory [8, 9]. However, a key assumption of this model is that the amount of

reward from different outcomes is fixed, while for biological organisms the ‘reward function’

can fluctuate over time depending on physiological state—e.g. food is rewarding when hungry

but not when satiated. Throughout this paper we distinguish between two aspects of animal’s

state: physiological state such as hunger or thirst, and environmental state such as animal’s

location in space or a stimulus presented during an experiment.

There is substantial evidence that animals can flexibly adapt their behaviour in the face of

changes to physiological needs, and they can instantly adapt their preferences without having

to experience the rewards in the new physiological state. A compelling demonstration of this

capability comes from a series of experiments [10] involving rats which learn to associate two

levers with receiving either pleasant sugar juice or extremely unpleasant salt water. When they

were placed in a physiological state which mimics the brain chemistry of salt deprivation,

which they have never experienced before, they immediately approached the lever which was

associated with the salt water. This cannot be explained through standard RL algorithms such

as TD learning which require an experience of reward to update the value function estimate.

TD learning would predict that the salt-deprived animals would still avoid the salty lever until

the salt solution is delivered which would give them an unexpectedly positive reward, and

would slowly induce them to approach that lever more and more often until it becomes the

primary lever to be approached. Beyond this classic demonstration, there is a wide range of

literature arguing that Pavlovian learned associations appear to be dynamically responsive not

just to experienced rewards but to internal physiological states [11–14], and it has been dem-

onstrated that stimulation of particular neurons in hypothalamus reliably produces drinking

behaviour within a few seconds, even in fully water-satiated animals [15].

There have been several explanations proposed for this instant reward revaluation capabil-

ity in the literature. It has been proposed that this ability is due to model-based planning [16,

17]. Following Daw et al. [16], we use the term ‘model-based RL’ to refer to algorithms that

“learned, over experience, the structure of action-induced [environmental] state transitions in

the task” (p.1707) and use it to evaluate consequences of considered actions. Another approach

is to use successor representations [18] which represent a ‘successor matrix’ of discounted

environmental state occupancies allowing value functions to be estimated for any given reward

function. However, these approaches are computationally complex and thought to be imple-

mented in the cortex [19, 20], while controlling behaviour based on physiological state is so

fundamental for survival that it is present in animals without cortex, such as drosophila where

it is mediated by dopamine neurons [21]. In vertebrates dopamine neurons innervate the basal
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ganglia system, which is a core component in reward-based action selection [3, 22–26], and is

linked to brain systems monitoring physiological state such as the hypothalamus [27–30]. The

ability of basal ganglia to control behaviour based on physiological state is consistent with

observations that the dopamine release depends on physiological state [31, 32], as well as that

dorsomedial striatal lesions abolish flexible reward devaluation behaviour [33]. Moreover,

there is evidence that the basal ganglia model-free system may be relied on more than the

model-based system when physiological needs are pressing [34]. There is thus a fundamental

difficulty with the standard theory: the basal ganglia needs to flexibly adapt to changing reward

functions to effectively control behaviour, yet TD learning, the algorithm it supposedly imple-

ments, simply cannot do this.

Recent data suggest that dopamine neurons may support computations beyond the stan-

dard TD learning. It has been observed that, in addition to reward prediction error, dopamine

neurons encode information about diverse variables, such as movement [35, 36] or sensory

features [37]. Moreover, it has been recently demonstrated that distinct mammalian dopamine

neurons preferentially respond to food or water [38]. In insects, the selectivity of dopamine

neurons for different reinforcement types has been analysed systematically, and it was

observed that different dopamine neurons respond to different reinforcements such as sugar

[39], water [40], courtship [41] and aversive stimuli [42].

In this paper, we propose a simple extension to TD learning that allows changes in physio-

logical state to instantly modify the assigned values of environmental states, and hence behav-

iour. Specifically, we demonstrate that if we model the reward function as a linear

combination of reward basis vectors and then learn a separate value function for each reward

basis using standard TD learning, then we can instantly compute the value function of any

reward function in the span of the reward basis vectors. Moreover, this algorithm can be

implemented in neural circuitry in which dopamine neurons encode multiple prediction

errors associated with different reward dimensions. Our model predicts that individual dopa-

mine neurons should be selective for some reward dimensions more than for others, and we

conduct a preliminary investigation of this prediction by reanalysing a small existing dataset

recorded from dopamine neurons of a single primate [43]. Additionally, we demonstrate that

our model can reproduce instant generalisation to new physiological state seen in dopamine

responses [31] and behaviour [10], and achieves similar performance as successor representa-

tions [18] at RL tasks while using much less memory.

2 Results

2.1 Reward Bases model

Following standard RL, we denote the current environmental state of an agent by x. We also

denote the reward received in the current environmental state by r(x). As in standard TD

model, we assume that the goal of the learning process it to estimate the value function of envi-

ronmental states defined as:

VðxÞ ¼ EðrðxÞ þ grðx0Þ þ g2rðx00Þ þ � � �Þ ð1Þ

In the above equation, E denotes an expectation, x0 denotes a environmental state in which

the agent finds itself in the next time step, and γ denotes discount rate expressing how much a

reward in the next time step is worth to the agent relative to the same reward in the current

time step. Thus the value function VðxÞ expresses how much reward is expected in environ-

mental state x immediately and into the future, while considering that reward in the future is

worth less than the reward now.
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The Reward Bases model extends standard RL by introducing three assumptions. First,

based on models of homeostatic regulation [44–46], we assume that the physiological state the

animal seeks to optimise has multiple dimensions. In particular, we assume that the reward

can be decomposed into a linear combination of component rewards, or reward bases:

rðxÞ ¼
X

i

miriðxÞ ð2Þ

where ri(x) denotes an individual reward basis, and mi is a motivational drive parameter for

each reward basis that determines how outcomes are mapped into their utility [47]. For

instance, if ri(x) is a reward basis which represents food, then mi would reflect the degree of

hunger, describing how much food is valued by the agent. We assume that the basal ganglia

system represents those dimensions of reward that are most important for survival (the evi-

dence shown later suggests they include food and water, but the exact range of dimensions will

need to be identified by future studies).

Second, as in models of multi-objective RL [48, 49], we assume that animals learn separate

value functions V iðxÞ associated with individual reward bases. These value functions are learnt

using an analogous rule as in the TD learning, but using the reward basis as the reward instead

of the full reward,

DViðxÞ ¼ adiðxÞ ð3Þ

diðxÞ ¼ riðxÞ þ gV iðx0Þ � V iðxÞ ð4Þ

where α denotes the learning rate, and δi(x) is a prediction error associated with reward basis

i, defined analogously as in standard TD learning (cf. Eqs 10 and 11 in Methods) but for a sin-

gle reward dimension.

Third, the key novel assumption of our model is that the animal computes the total value

function by combining the value functions ViðxÞ weighted by their current motivational drives

VðxÞ ¼
X

i

miV iðxÞ ð5Þ

Eqs 3 and 4 describe learning in the fundamental version of the Reward Bases model, and

later in the paper it will be shown how these rules can be further refined to capture specific

experimental data, but for simplicity we start with analysing this version.

We now describe two key properties of the Reward Bases model. The first property is that if

the motivational drives mi are constant in time, the Reward Bases model computes the same

value as the TD learning model. This can be shown by substituting the definition of reward

bases (Eq 2) into that of the value function (Eq 1),

VðxÞ ¼ E

 
X

i

miriðxÞ þ g
X

i

miriðx
0Þ þ g2

X

i

miriðx
00Þ � � �

!

ð6Þ

¼
X

i

miEðriðxÞ þ griðx
0Þ þ g2riðx

00Þ � � �Þ ð7Þ

¼
X

i

miV iðxÞ ð8Þ

In the last transformation we used V iðxÞ ¼ EðriðxÞ þ griðx0Þ þ g2riðx00Þ . . .Þ as V iðxÞ are

learned analogously to TD learning so converge to such values.
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The second key property of the Reward Bases model seen in Eq 8 is that the value function

decomposes into a weighted sum of component value functions, to which we refer as a value
bases since they are the value functions of specific reward bases. Given a set of value bases, and

a set of coefficients {mi}, we can instantly compute any value function spanned by the reward

bases. Hence, when the animal’s physiological state changes, this enables instant generalisation

of the optimal value function for any reward function expressible as a linear combination of

the reward bases.

To build intuition for how the Reward Bases model functions, in Fig 1 we present a visuali-

sation of the value functions learned by a TD and Reward Bases agents in a simple spatial navi-

gation task. The agents must navigate around a 6 × 6 grid where they can obtain rewards in

three locations (indicated in dark blue in the top row). We assume that these three rewards are

of different types, and activate separate reward bases (Fig 1B top). The TD agent received a

total reward defined as rðxÞ ¼
P3

i¼1
riðxÞ (Fig 1A top). The value function learnt by the TD

and Reward Bases agents are shown in the middle row of Fig 1. Using the set of value bases in

Fig 1B and equal weighting coefficients of mi = 1, the Reward Bases agent can exactly recon-

struct the total value function of the TD agent (cf. Fig 1A middle and Fig 1B middle right).

Importantly, the Reward Bases agent can also instantly generalise to other reward preferences.

For instance, when only the first reward becomes fully valuable, the second only keeps half of

Fig 1. Visualisation of the value functions learned by the models. A: TD model. B: Reward Bases model. The task consisted of a 6 × 6 grid with three

items. The Reward Bases agent used a separate reward basis for each object, giving it +5 for that object, and −0.1 for all other squares. The value

functions displayed are obtained by the agents exploring the environment for 1000 steps with a random action policy, learning rate α = 0.01 and

discount factor γ = 0.99.

https://doi.org/10.1371/journal.pcbi.1012580.g001
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its value, and the third is not valuable, the Reward Bases agent can choose its actions according

to the appropriate value function shown in Fig 1B bottom.

2.2 Neural implementations

Thus far, we have described the Reward Bases model at an algorithmic level, now we will con-

sider different possible implementations of this algorithm in the circuitry of the basal ganglia.

They can be achieved by modifications of the original circuit model [55] illustrated in Fig 2A.

In this implementation of TD learning, dopamine neurons in the VTA receive two inputs—

the incoming reward and the temporal derivative of the value function (that can be provided

by inputs from the striatum [56]). To compute the reward prediction error, the dopamine neu-

rons simply need to add these two inputs. These reward prediction errors can then be sent to

the ventral striatum where they are used to update synaptic weights encoding the value func-

tion. This circuit can be extended to implement the Reward Bases model in two ways, which

we present below, and later compare with experimental data.

A simple mapping of the Reward Bases algorithm on a neural circuit is shown in Fig 2B,

and the only change is that instead of assuming a single homogeneous population of dopamine

neurons responding to a global reward signal, we instead assume that neurons encoding values

and prediction errors are parcellated into groups, each responding to a single reward basis.

This reward basis parcel is simply the same circuit as original model in miniature in that dopa-

mine neurons simply receive both the reward for that basis, and the temporal derivative of the

value function for that basis and compute the reward prediction error for that basis, which is

then sent specifically to the region which requires it. A set of parallel units represents the value

Fig 2. Possible neural implementations of TD learning and the Reward Bases model. A: Standard TD learning model.

Dopamine neurons receive reward input and compute a reward prediction error. This reward prediction error is

projected to the striatum where it modulates plasticity of the cortico-striatal synapses that learn a value function. In the

diagram, the environmental state is assumed to come from the cortex, because in tasks where the environmental state is

determined by the stimulus, on which we focus in this paper [10, 31, 43], the information about the stimulus is mainly

carried by the sensory cortex. However, please note that this is a simplification as the cortex also encodes many other

quantities including value [50], and in more general tasks the environmental state may need to be inferred and

information about the environmental state may be brought by other regions (e.g., the hippocampus). The value is

assumed to be computed in the striatum following the convention typically used in RL models [51, 52], but note that this

assumption is a matter of debate. In particular, a study [53] questioned the validity of the previous analyses of value

coding in the striatum as it demonstrated these analyses did not correctly account for temporal correlations in the data.

Nevertheless, it was later demonstrated that after accounting for these correlations, the value signals can be found [54]. B:

Single selectivity implementation. This requires parallel neural populations computing prediction errors and ‘value

function’ neurons with the same connectivity patterns as the standard model. C: Mixed selectivity implementation.

Reward Bases model can be approximated with dopamine neurons selective for a mixture of prediction errors. The

saturation of colour of orange and blue lines corresponds to the strengths of the connections, and the gradation of colour

of dopamine neurons indicates their degree of selectivity for the two reward bases.

https://doi.org/10.1371/journal.pcbi.1012580.g002
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bases, from which the ultimate value function can be computed through a simple linear combi-

nation with the weighting coefficients. We refer to this architecture as “single selectivity imple-

mentation”, because in this circuit, the dopamine neurons are selective for a single dimension

of reward. This neural implementation is related to previous models that also assumed multi-

ple parcels of striatal neurons connected with corresponding dopamine neurons [57, 58], but

the key difference is that in the single selectivity implementation the different modules are

weighted according to the animal’s physiological state and this fact is exploited to enable

instant generalisation of the value function and ultimately behaviour to different physiological

states.

The Reward Bases model can also be approximated in a circuit shown in Fig 2C, where the

dopamine neurons are selective for different mixtures of prediction errors. We refer to it as

“mixed selectivity implementation”, and the details of the model will be introduced later. We

later demonstrate that such distributed coding of prediction errors by dopamine neurons also

enables learning of the correct value bases.

Both implementations of the Reward Bases model predict that the activity of individual

dopamine neurons may not only depend on the overall value but also on the type of reward.

Additionally, the single selectivity implementation predicts that individual dopamine neurons

should signal reward prediction errors for a specific reward basis, while the mixed selectivity

implementation predicts that while some neurons may encode reward prediction error for a

single dimension, others may encode a combination of prediction errors. Below we conduct a

preliminary comparison of these predictions with experimental data.

2.3 Responses of dopamine neurons to stimuli predicting different reward

types

Testing the above predictions requires a unique experiment in which individual dopamine

neurons are recorded in a task where stimuli are associated with delivery of different types of

reward. To our knowledge there exists only one published study that obtained such data—by

Lak et al. [43]. This study used different juices and reward risks in two monkeys to demon-

strate encoding of subjective economic value by dopamine neurons (77 neurons analysed),

and verified the results in a juice vs food experiment in only one monkey (from which 19 neu-

rons were analysed). The juice vs food experiment better examines and separates representa-

tion of subjective economic value and different reward dimensions, and is therefore suitable

for testing model’s predictions. Keeping in mind that the conclusions drawn from 19 neurons

from a single monkey require further verification, we nevertheless feel it is worth presenting

the analyses of these unique published data to provide a preliminary test of the theory, and

inspire future studies.

In the experiment, a monkey was presented with 5 stimuli associated with different volumes

of juice or different amounts of banana (Fig 3A). In the first part of the experiment, on each

trial, the monkey was making a choice between two stimuli, and obtained corresponding

rewards (which could be juice or banana). Choices on these trials were used to estimate the

subjective utility of rewards associated with each stimulus. In the second part of the experi-

ment, on each trial the monkey was presented with a single stimulus, and then, after 1.5s delay,

received the corresponding reward. During these trials, the activity of dopamine neurons was

recorded. Fig 3B displays the subjective utility of the 5 rewards estimated by Lak et al. [43]

from the first part of the experiment. The monkey exhibited a clear preference between differ-

ent amounts of juice and banana rewards. The utility increased with the amount of reward,

and the two most preferred rewards were the largest volume of juice and the largest quantity of

banana.
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We re-analysed the activity of individual dopamine neurons, and found that, indeed, a frac-

tion of recorded neurons are differentially selective towards the prediction errors associated

with juice or banana. Fig 3C shows an example neuron whose activity is significantly modu-

lated by the volume of juice predicted by the stimulus but little by the amount of banana. In

particular, the firing rates differ substantially between stimuli predicting different volumes of

juice, while they are similar for large and small amounts of banana. Remarkably, the firing rate

of this neuron decreases below baseline after cue predicting 1.5g of banana even though it was

the second most favourite reward (Fig 3B). Such a decrease is predicted by single selectivity

implementation for a dopamine neuron encoding prediction error associated with liquid,

because the banana provides less liquid than the average across the rewards in the experiment.

Nevertheless, the existence of such neurons is also admitted by the mixed selectivity

implementation.

Fig 3. Analysis of responses of individual dopamine neurons. A: The experimental paradigm [43]. During recording, a monkey was presented with a

visual stimulus indicating the reward type. We analysed the responses of individual dopamine neurons in the period after the stimulus presentation. B:

The subjective value determined by Lak et al. [43] for each of the 5 conditions which could be presented to the monkey. C, D, E: Average neural firing

rates during a trial for a juice responsive neuron, a banana responsive neuron, and a value responsive neuron. The left displays show the firing rate as a

function of time within a trial (see Methods Section 4.2), where time 0 corresponds to onset of the stimulus indicating which reward type will be

presented. To visualise the variability of the responses to different stimuli across trials, the right displays show histograms of the number of spikes

within a window of 150–500ms after stimulus onset for each condition for the corresponding neuron. F: Responses of individual neurons to stimuli

predicting the largest food or drink rewards. Each dot corresponds to a single neuron, and its coordinates correspond to the average responses to either

0.9ml of juice (x-axis) or 1.5g of banana (y-axis). The response is computed as the firing rate within a window 150–500ms after stimulus onset relative to

the baseline 0–500ms prior to the stimulus onset. The error bars show the standard error of the mean. G: Correlation between responses to 0.9ml of

juice and 1.5g of banana in experimental data (blue), and when repeating the analysis 1000 times with shuffled trials (orange).

https://doi.org/10.1371/journal.pcbi.1012580.g003
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Fig 3D shows the activity of a neuron which is modulated by the amount of food predicted

by the stimulus more than by volume of juice. For this neuron, the responses to stimuli pre-

dicting large and small amounts of food are separated more than responses to different vol-

umes of juice. Nevertheless, this neuron is modulated by both reward types to a certain extent,

so it does not conform to the prediction of the single selectivity implementation, which

assumes prediction errors for different reward types to be encoded by separate dopamine neu-

rons, hence these data are more consistent with the mixed selectivity implementation.

Fig 3E shows an example of a neuron whose activity is modulated just by the subjective

value and does not depend on reward type, i.e. the magnitude of responses to different sti-

muli in Fig 3E follows an order determined by their subjective value in Fig 3B. Such coding

of overall value by dopamine neurons has been pointed out in the original study presenting

these data [43]. Interestingly, this pure value neuron was recorded on the same day as the

juice-modulated neuron in Fig 3C, which suggests that different sensitivity to reward types

cannot be explained by fluctuation of animal’s preferences for different reward types across

days. Activity of all recorded neurons including the three neurons shown in Fig 3C, 3D and

3E is visualised in S1 Fig.

To visually illustrate the diversity of responses of dopamine neurons, Fig 3F shows the

responses to the stimulus predicting the largest amount of banana, against the stimulus pre-

dicting the largest volume of juice. If dopamine neurons encoded single reward prediction

error signal from the standard TD model, then their responses to these two stimuli would be

similar and positive, because these two rewards are preferred by the animal more than other

outcomes, hence would produce positive prediction errors. By contrast, dopamine neurons

produced diverse responses, and two neurons even substantially decreased their firing rates

after the stimulus predicting 1.5g of banana. Furthermore, if dopamine neurons encoded uni-

fied reward prediction error as expected in the conventional theory, the responses to these

stimuli would be positively correlated. By contrast, the correlation is close to 0 and even

slightly negative, as shown in Fig 3G.

We then compared this result with the correlation expected from a null hypothesis that the

responses of dopamine neurons are the same after the stimuli predicting the largest amount of

banana and juice. To obtain a null distribution, we recalculated the correlation 1000 times: In

each iteration we randomly separated trials with stimuli predicting the largest amount of

banana and juice into two groups, calculated the averaged response magnitude of each trial

group for each neuron, and then calculated a correlation between responses on the two trial

groups across neurons. The distribution of such correlations is shown in Fig 3G, and in all

1000 repetitions the correlation obtained from the shuffled data was larger than from the

experiment, suggesting that the experimental correlation is significantly lower than expected

from the above null hypothesis (p<0.001).

To provide another illustration for the diversity in selectivity of dopamine neurons, for

each dopamine neuron we fitted a regression model that predicted firing rate after the stim-

ulus onset based on prediction error for the two reward bases. The obtained regression

coefficient are plotted in Fig 4A. If dopamine neurons encoded a single reward prediction

error signal as predicted by the standard TD model, then the regression coefficients for the

two prediction errors should be equal, and the points in the plot should be concentrated

along the diagonal identity line. By contrast, several points are distant from the diagonal.

Fig 4A also demonstrates it is possible to distinguish between the predictions of single

selectivity and mixed selectivity implementations. The single selectivity implementation

predicts that each of dopamine neurons encodes single dimension, thus should have the

regression coefficient for the other dimension close to 0, and so the points on this graph

should be accumulated along either the vertical or horizontal axis. Although there are some
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neurons with coefficients for one dimension close to 0, overall the points are spread out

suggesting that the majority of dopamine neurons encode different mixtures of prediction

errors.

To quantify the extent to which the activity of each dopamine neuron is dependent on sub-

jective value and identity of reward, for each neuron, we fitted a set of regression models that

predicted each neuron’s firing rate after stimulus onset based on subjective value and identity

regressor (equal to 1 for juice and to −1 for banana). The models are listed in Fig 4B and

include a basic regression just using value, as well as models using both value and identity, as

well as their interactions. The model from Fig 4A assuming that dopamine neurons encode a

combination of prediction errors associated with different reward bases is equivalent to the

model employing subjective value and its interaction with identity, as explained in the Meth-

ods Section 4.2. This model provided the most parsimonious description of dopamine firing

(lowest Akaike Information Criterion) (the same conclusion was obtained using Bayesian

Information Criterion, S2 Fig). The interaction of identity and value is evident in Fig 3D show-

ing that this dopamine neuron was not generally more active for banana, but rather its activity

was more modulated by value for stimuli predicting banana than juice.

Fig 4. Regression analysis of activity of dopamine neurons. A: Regression coefficients indicating to what extend

individual dopamine neurons encode prediction errors associated with the two reward bases. Each dot corresponds to

one neuron. Its coordinates are the regression coefficients estimated from biological neurons. The dashed red line

shows the identity line on which the points should lie according to the TD-learning model. B: Comparison of the

Akaike Information Criterion (AIC) of regression models predicting the activity of dopamine neurons. C: The

coefficients for a linear regression predicting the number of spikes in the post-stimulus period as a function of the

subjective value and the interaction of subjective value and reward type. Stars indicate significant coefficients (p< 0.05

uncorrected, t-test for significance of regression coefficient, two-sided). D: Comparison of the number of neurons with

significant coefficient of interaction between identity and value in the data and when repeating the analysis 1000 times

with shuffled assignments of reward identity across trials.

https://doi.org/10.1371/journal.pcbi.1012580.g004
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To exclude a possibility that the diverse responses of dopamine neurons are driven by neu-

rons preferring particular visual stimuli (presented in the experiment) rather than type of

reward, we also compared a regression model employing the stimulus presented. This regres-

sion model contained 5 parameters (corresponding to the mean firing rate of a neuron to the 5

stimuli). Fig 4B shows that this model provides a less parsimonious description of dopamine

activity than the model employing value and its interaction with identity. To verify if the

Akaike Information Criterion can distinguish between these two models based on the amount

of data we had available, we performed a model recovery analysis (S3 Fig). It shows that the

observed difference between the Akaike Information Criterion for these two models is very

unlikely for the surrogate data generated based on the model employing the stimulus. This

suggests that the particular shape of visual stimulus was less responsible for driving dopamine

activity than the value and type of reward predicted by the stimulus.

Fig 4C shows the estimated regression coefficients of the best fitting model for all neurons.

Blue bars show the coefficients for value, which are all positive, implying that the activity of all

neurons is affected by the value. The orange bars show the coefficients of interaction between

identity and value. A positive coefficient indicates that the corresponding neuron is more

modulated by value for juice, while a negative coefficient indicates larger modulation for

banana. We found that 7 neurons out of 19 possessed a statistically significant interaction coef-

ficient implying that their response depended on reward type. To investigate if this number of

significant interaction coefficients could arise by chance, we compared it with the number

expected from a null hypothesis that the responses of dopamine neurons do not depend on the

type of reward predicted by the stimulus. To obtain a null distribution we repeated the follow-

ing analysis 1000 times: In each iterations we shuffled assignments of trials to the reward type

(i.e., we replaced the identity regressor across all trials recorded for a given neuron by its ran-

dom permutation), performed regression predicting dopamine response from value and its

interaction with (shuffled) identity, and counted the number of neurons with significant inter-

action coefficient. Fig 4D shows that in all 1000 repetitions the observed number of neurons

with significant interaction coefficient was smaller than in the experimental data, so the proba-

bility of obtaining 7 significant neurons under the null hypothesis is p< 0.001. In sum, our

analysis suggests that the activity of dopamine neurons is modulated by subjective value, as

reported in the original study [43], and additionally, there is also a gradient for coding reward

type across population, so that some dopamine neurons have responses modulated by different

reward dimensions.

We have also investigated if the selectivity of dopamine neurons for reward type was stable

during the recording session. S4 Fig shows that there is a strong correlation between the iden-

tity-value interaction coefficients estimated from the first half of trials and the second half, sug-

gesting that the dopamine neurons had similar preferences for reward type throughout the

recording session.

In summary, our analysis of the experimental data provides a preliminary support for the

prediction of the implementations of Reward Bases model, that different dopamine neurons

are selectively modulated by different reward dimensions. The data does not support the single

selectivity implementation, where each neuron should encode a single reward basis, but rather

is consistent with the mixed selectivity implementation, because the neurons appear to be

more or less selective for a reward type, but not entirely unselective for the other. Later in the

paper, we will present a network model which implements mixed selectivity, and demonstrate

that the mixed selectivity of dopamine neurons is sufficient for learning value bases, but before

this, we introduce an assumptions on dependence of dopamine activity on physiological state

that will be used in the network model, and other simulations in this paper.
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2.4 State-modulated prediction errors

In the model described at the start of the Results section, the reward prediction errors are still

computed and the value basis is still updated even if that basis is not valued at the current

moment. This is mathematically optimal given no computational or resource constraints since

it enables flexible and instant generalisations to the greatest possible range of reward revalua-

tions. However, there is a growing body of research that suggests that this is not the case in the

brain since animals only appear to learn value functions of tasks when they are important to

the animal and thus have motivational salience. For instance it has been shown that when fish

were first exposed to a stimulus when hungry, they chose it substantially more often over an

equally palatable alternative than when they were exposed to the stimulus when sated [59].

This implies that there is a direct modulation of the values learnt during training based on the

current physiological state which is maintained even after the physiological state has changed.

Similarly, it has been shown that physiological state can modulate dopaminergic prediction

error responses [32]. In that study if the animals were trained to receive food rewards after a

cue in a ‘depleted state’ (i.e. they were hungry), then during testing dopamine neurons respond

to the cue (CS) and not the food reward (US) as in the classic results [3]. However, if the ani-

mals were trained in a sated state, then when tested, the dopamine neurons responded only to

the food reward (US), ‘as if’ they had not learned the task at all.

The version of Reward Bases model described at the start of Results cannot explain these

findings since it decouples dopaminergic activity—and hence value function learning—from

the physiological state such that the physiological state is only used to dynamically modulate

the weighting of the value function bases during action evaluation. However, it has been

shown that such effects can be straightforwardly explained by redefining the dopaminergic

prediction errors such that they are also modulated by the physiological state [60]. In particu-

lar, a state-dependent prediction error associated with reward basis i is defined as

~d i ¼ midi ð9Þ

In the Methods Section 4.3 we describe such a model with state-dependent prediction

error, in which ~d i also drives synaptic plasticity. Effectively, this means that the ‘learning rate’

of the TD update is modulated by the physiological state variable such that animals learn much

more rapidly when they are ‘depleted’ and much less rapidly when they are sated. It has been

demonstrated that such state-modulated prediction error can also be viewed as error in predic-

tion of subjective utility of rewards given specific mathematical assumptions about the form of

the utility function [60]. Note that this modification does not affect predictions tested or simu-

lations earlier in the paper, because in the experiment of Lak et al. [43] the animals were moti-

vated to acquire both food and fluid (so ~d i ¼ di for mi = 1), and in the simulation in Fig 1 the

learning took place while mi = 1.

2.5 Learning with mixed selectivity

This section proposes a possible implementation of the Reward Bases model in a striato-dopa-

minergic circuit in which dopamine neurons encode mixtures of prediction errors in different

dimensions. In this section, we make two contributions. First, we propose a hypothesis on how

the striato-dopaminergic circuit could weight value bases by motivational drives to compute

the value function. Second, we demonstrate that it is feasible to learn value bases even if dopa-

mine neurons encode mixtures of prediction errors and send projections with random con-

nectivity to the striatum. This second contribution is based on work [61] showing how a

model of motor parts of striato-dopaminergic circuit can learn multi-dimensional action
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signals. We demonstrate that a similar network can learn the correct value bases in the task of

Lak et al. [43]. We summarise the model in this section, and provide a detailed description in

Methods Section 4.4.

We consider a mixed selectivity model with the architecture shown in Fig 5A. To simulate

dopamine neurons encoding different mixtures of state-dependent prediction errors, different

dopamine neurons received inputs from neurons encoding reward of distinct types ri scaled

by the corresponding motivational drives mi, through connections with randomly generated

strengths wR! D. We did not wish to assume any structured connectivity between dopamine

and striatal neurons, hence the strengths wD! S of these connections was also randomly gen-

erated. This resulted in striatal neurons learning to encode different mixtures of value bases.

In order for the total output from all striatal neurons to encode the value function, the activ-

ity of striatal neurons encoding particular value bases need to be scaled by the corresponding

motivational drives, hence a question arises of how the information on motivational drives

could be delivered to appropriate striatal neurons. A possible answer to this question is hinted

by a property that a subset of striatal neurons encoding a particular value basis is defined by

dopaminergic input, i.e. striatal neurons that contribute to encoding a particular value basis

are those that receive input from dopamine neurons encoding the corresponding prediction

errors. Therefore, dopamine neurons are ideally positioned to also provide the weighting by

motivational drive to the striatal neurons they project to. They can provide the information on

motivational drives mi, because their activity ~dk is scaled by mi (Eq 9). Consequently, we

assume that the striatal neurons can decode motivational drives from the activity of dopamine

neurons, and we denote by Dk the mixture of motivational drives associated with prediction

errors encoded by dopamine neuron k. One possibility for dopamine neurons to provide

information on motivational drives is to encode Dk in their tonic (slowly changing) activity,

while encode prediction errors ~dk in phasic (burst) activity, as proposed in previous models

Fig 5. Mixed selectivity model. A: Architecture of the simulated network. B: Loss during training. C: Correlation between weights of striato-

dopaminergic connections wS! D and reciprocal projections from dopamine to striatal neurons wD! S. D: Total output from striatal neurons for

different stimuli and motivational drives. In panels B-D, the error bars show standard deviation over n = 10 repeats of the simulation.

https://doi.org/10.1371/journal.pcbi.1012580.g005
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[51, 62]. We assume that the motivational drives encoded by dopamine neurons Dk scale the

gain of striatal neurons they project to (as in previous models [51, 62]), which enables value

bases to be scaled by appropriate motivational drives, so that the total output from the striatum

encodes the value function.

A key condition necessary for encoding of the value function in the total output from the

striatum is the absence of prediction errors carried by dopamine neurons, because the lack of

prediction errors ~dk ¼ 0 implies that the input on obtained rewards is matched by the striatal

inhibition encoding predictions of expected reward (shown analytically in Methods Section

4.4). Therefore, synaptic plasticity in the model aims at minimising the prediction errors. Con-

sequently, we defined the loss function (to be minimised through learning) as the sum of

squared prediction errors of dopamine neurons.

The value bases in the model are encoded in a distributed fashion in the synaptic weights

from the cortical to the striatal neurons wC! S and from the striatal to the dopamine neurons

wS! D, hence the network in Fig 5A could be thought of as a two layer neural network that

transforms cortical input encoding an environmental state to the value of this state. Compar-

ing this circuit to neural networks used in machine learning, the cortex corresponds to an

input layer, the striatum to a hidden layer, the reward corresponds to the target output the

striatum should predict, and dopamine neurons compute the error in the output of the net-

work. The change in weights from striatal to dopamine neurons wS ! D (that could be con-

sidered as the “output-layer weights” in this network) can be found by gradient descent on

the loss, which corresponds to Hebbian plasticity (shown in Methods Section 4.4). Changing

the cortico-striatal weights wC ! S (that could be thought as “hidden-layer weights”) accord-

ing to the gradient of loss would correspond to the backpropagation algorithm [63], so

would require neurons encoding the error in the output layer, i.e. the dopamine neurons, to

send the error back to modulate the plasticity of hidden-layer weights. In agreement with

this requirement, it is known that dopamine neurons modulate the plasticity of cortico-

striatal synapses [8]. However, the backpropagation algorithm would additionally require

the projections from dopamine to striatal neurons wD ! S to be equal to the reciprocal pro-

jections from striatal to dopamine neurons wS ! D (see Methods Section 4.4), while we did

not wish to make such strong assumption and initialised these connections randomly. Nev-

ertheless, it has been demonstrated [61] that the loss can be minimised in a similar network

if the weights from dopamine to striatal neurons wD ! S are random and fixed, due to the

phenomenon known as feedback alignment [64]. Therefore, in our model the plasticity of

cortico-striatal weights wC ! S is modulated by dopamine activity received by the striatal

neurons through fixed weights wD! S.

We simulated the network in a task corresponding to that studied by Lak et al. [43]. On

each trial one of 5 stimuli was randomly chosen, motivational drives were set to random values

mi 2 [0, 1], and the corresponding reward was delivered. Fig 5B shows that the loss decreased

during training. Fig 5C displays the correlation between striato-dopaminergic weights wS! D

and reciprocal weights wD! S over training iterations. Recall that the correlation of 1 would be

required for the training of cortico-striatal weights wC! S with backpropagation algorithms.

Fig 5C illustrates that during learning, the striato-dopaminergic weights wS! D align them-

selves to reciprocal weights wD! S, so striatal neurons start to project more to the dopamine

neurons they receive input from. Nevertheless, the correlation does not reach 1, possibly

because a weaker alignment is sufficient for reducing the loss function. Fig 5D shows the aver-

age output from the striatum in trained networks. The blue bars show striatal output for differ-

ent stimuli when the juice is valued (m1 = 1, m2 = 0), while the orange bars show the striatal

output when the banana is valued (m1 = 0, m2 = 1). In each case, the striatal output is very
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close to the subjective value of the presented stimulus (Fig 3B) if the reward type associated

with the stimulus is valued (and to 0 otherwise). This demonstrates that the mixed selectivity

model is able to learn the correct value bases for this task. Since we do not compare the model

to data from individual neurons in the remainder of the paper, we will not include mixed selec-

tivity in the remaining simulations for simplicity.

2.6 Dopaminergic activity reflects instant revaluation

Selectivity of individual neurons for different reward types analysed earlier in the paper was

connected with one of the assumptions of the Rewards Bases model (learning value bases with

separate prediction errors; Eq 4), but to account for these data it is not necessary to assume

that the value bases are weighted according to physiological state (Eq 5). In this and the next

sections we demonstrate that this additional assumption enables the Reward Bases model to

capture instant revaluation after changes in physiological state seen in dopaminergic activity

and behaviour, which cannot be described by the standard TD learning. Here, we focus on

qualitatively matching the dopaminergic responses in a reward devaluation task in which rats

could press levers associated with either a food or a sucrose reward under varying conditions

of selective satiation [31]. The experimental data we modelled were taken from forced trials in

which only one of the levers delivered rewards. A schematic of the experimental paradigm [31]

can be seen in Fig 6A. At the onset of each forced trial, animals were presented with a cue indi-

cating which of the two levers can be pressed to obtain a reward. Each lever typically delivered

a particular type of reward, but on some trials it could give either four times the amount of

reward (MORE condition), or the other reward type (SWITCH) condition. In the devaluation

condition, the animals were fed to satiation in one of the reward types but deprived of the

other. Fast-scan cyclic voltammetry was used to measure dopamine levels in the nucleus

accumbens core, part of the ventral striatum.

To capture the experimental data [31], we employed a model with state-modulated predic-

tion error, because such modulation is necessary to explain the experimental data. For exam-

ple, Fig 6B shows responses to different rewards in MORE conditions in different

physiological states in the task illustrated in Fig 6A. The dopamine level increases after receiv-

ing more food (or drink) than expected, only if the animal was hungry (or thirsty), suggesting

that the dopamine neurons encode prediction errors scaled by the corresponding physiological

need.

We simulated an agent interacting with the paradigm illustrated in Fig 6A. The agent was

trained with two reward bases, one which gave out 1 reward for each food reward and 0 for

sucrose, and a sucrose basis with the opposite reward schedule. To simulate testing in devalua-

tion sessions where the animals were fed to satiety in one reward type but deprived of the

other, the reward basis weights mi of the agent were fitted to the data to determine how the

reward weights changed during devaluation. Since voltammetry measures relative changes in

extrasynaptic dopamine, we use our model to make predictions of total dopamine release,

which we take to be the sum of the dopamine neurons, i.e,
P

i
~di , summing across the contri-

butions of all reward bases.

A key experimental result [31] is shown by blue bars in Fig 6C, visualising the dopamine

response to the lever extension on the first trial after devaluation, before the animals received

any of the devalued reward following a lever extension. The response to a lever associated with

the devalued reward is lower than for the valued option even on the first trial [31]. This finding

cannot be accounted for by standard TD learning, because the prediction errors following a

cue reflect the values of the cues, which in TD learning model are only updated following rein-

forcements, but since devaluation the animals did not receive any rewards. The Reward Bases
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model, however, straightforwardly predicts these results. This is because the weighting coeffi-

cient mi is lower for the devalued reward, thus the prediction error ~d i associated with the

devalued option is also reduced, even before the devalued outcome is delivered.

Fig 6D shows that the Reward Bases model can capture key qualitative patterns seen in

dopaminergic responses to the outcome. When the most common reward type was delivered,

the observed dopaminergic responses slightly decreased, and in the model the sum of predic-

tion errors was slightly negative, because the MORE or SWITCH trial did not occur. In the

MORE condition, the dopamine response is much higher when the large amount of valued

reward is delivered, and the model reproduces this pattern because the positive prediction

error ~d i is scaled by a larger weight for the valued reward. In the SWITCH condition, the dopa-

minergic response is higher when valued rather than devalued reward is given, and the model

reproduces this pattern because the positive prediction error caused by switch to valued

dimension is scaled by a larger weight.

Fig 6. Dependence of dopaminergic responses on physiological state. A: Sequence of events during a trial in the

experimental paradigm [31]. At the onset of forced trials, animals were presented with a single cue indicating which of

the levers trigger reward delivery, while at the onset of choice trials both cues were shown. After a delay of 5s a single

lever extends in the forced trials, or two levers extend in the choice trials (as shown in the figure). Following Reaction

Time (RT, i.e. time to press a lever) and further 2s a reward is delivered. A particular type and size of the reward was

delivered with a probability indicated by labels next to arrows. B: Dopaminergic activity in the MORE condition (re-

plotted from Figure 2c in the original paper [31]). In this condition the reward delivery was extended in time: 4 pieces

of food were delivered every 600ms as indicated by triangles, while sucrose was delivered for 1s as indicated by a blue

bar. Model simulations were compared with dopamine levels 2s after the end of reward delivery (indicated by green

dots), which were averaged across food and sucrose to give “experimental data” in panel D, as illustrated by the blue

shading to panel D. C: Comparison of simulated dopamine level against data after extension of lever indicating which

reward are likely to be available, taken on the first trial just prior to reward delivery. The experimental data

corresponds to dopamine level 2s after lever extension (both mean and error bars showing standard error were read

out from dashed curves in Figure 4a in the original study [31]). The error bars for the Simulation show standard error

across 3 repetitions of the simulation (such small number of repetitions was sufficient as it already resulted in smaller

error bars in simulation than in data). D: Comparison of simulated results against dopaminergic responses to reward

delivery. The experimental data in EXPECTED and SWITCH conditions corresponds to dopamine level 2s after

reward delivery (read out from Figures 2d-e in the original paper [31]). The error bars for the Experiment show the

standard error aggregated over food and sucrose conditions, computed as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE2

food þ SE2
sucrose

p
=2 (where SE2

food and

SE2
sucrose were read out from the corresponding figures in the original paper [31]).

https://doi.org/10.1371/journal.pcbi.1012580.g006
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2.7 Behaviour reflects instant revaluation in novel physiological state

In this section we show that the Reward Bases model can account for instantaneous changes in

behaviour following a novel physiological state, which cannot be described by the TD learning.

As mentioned in the Introduction, a classic experiment demonstrated the ability to instantly

revalue salt when it is depleted [10]. It utilised a Pavlovian association paradigm in which rats

were repeatedly exposed to one of two cues (extension of one of two levers)—associated with

either intra-oral delivery of sucrose (pleasing) or salt (aversive) solution. When rats were

injected with aldosterone and furosemide which mimics severe salt deprivation, immediately

responded positively to the salt cues (Fig 7A). These results imply that the rats clearly possess

the ability to perform instant generalisation to update associations upon physiological change

with no direct experience of the positive rewards associated with the change. This phenome-

non cannot be explained by the TD model, since the animals never experience the salt solution

as rewarding, and have no opportunity to update their value function. These results can, how-

ever, be directly explained by the Reward Bases model.

To simulate the Reward Bases model in this task, we make two assumptions. First, we

assume the animals can sense the amount of salt rsalt(x) received in environmental state x. Sec-

ond, since salt is a physiologically important quantity [65], we assume the animals would

maintain a ‘hardwired’ value basis VsaltðxÞ estimating the total (current and discounted future)

amount of salt received in environmental state x, that animals would learn during the Pavlov-

ian association phase. In simulations we include two environmental states corresponding to

cues predicting sucrose and salt. It is important to emphasise that the model does not explicitly

learn that the salt cue will be directly followed by a environmental state in which salt is deliv-

ered (as in model-based explanations), but instead it just learns the total amount of salt

expected in the future following that cue.

Upon the injection of the aldosterone and furosemide, the Reward Bases model can dynam-

ically modulate its salt value basis with its physiological state to perform instant revaluation of

its associations with the salt lever. This can occur even in the absence of any positive reward

signal obtained by experiencing the salt, since the weighting coefficients mi act directly on the

value bases, and thus the value bases themselves do not have to be updated. We demonstrate

this instant generalisation capability of the Reward Bases model by replicating the behavioural

results obtained in an experiment [10].

Fig 7. Effects of salt deprivation on behaviour. A: Experimental data showing approaches or appetitive actions

towards the salt and juice lever in the homeostatic (normal) and salt-deprived conditions (data is replotted from

Figure 3C in the study [10]). B: Simulation of TD learning. C: Simulation of Reward Bases model. In panels B and C,

‘Approach behaviour’ is equal to the estimated value of environmental states scaled by a constant chosen to match

these values to the experimental data, as described Methods Section 4.6.

https://doi.org/10.1371/journal.pcbi.1012580.g007
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In simulation, the agents were exposed to interactions with the salt or juice levers (at ran-

dom) and learnt a value function of being near the salt or juice levers. We assumed a linear

proportional relationship between the learnt value function and degree of appetitive behaviour

towards the lever. Fig 7B and 7C show that in the homeostatic (normal) condition, both TD

learning and Reward Bases model are able to reproduce the behaviour of the animal, while in

the sodium depletion condition, the Reward Bases agent can instantly generalise to match the

behaviour of the agent, thanks to the weighting coefficients mi while the TD agent has no

mechanism to vary its value function according to its physiological state, and so simply pre-

dicts that the salt lever will remain aversive to the animal in the sodium depleted condition.

Although this simulated task is very simple, we choose to present it, because we feel that due

its low complexity it best illustrates the difference between the models, and it is striking that

the TD learning cannot account for behaviour in so simple task.

2.8 Relationship to successor representation

In this section we demonstrate that the Reward Bases model is closely related to the successor

representation [18]. Both models achieve the same performance in tasks with changing

rewards for outcomes, but the Reward Bases model has a significantly smaller computational

cost.

The successor representation [18] is an alternative model-free RL method that also enables

instantaneous generalisation across changing reward functions. It learns a ‘successor matrix’

based on discounted environmental state occupancies (see Methods Section 4.7 for mathemat-

ical details) which can then be combined with the reward function to yield the value function.

Given this matrix, it is possible to instantly recompute the value function if the reward func-

tion changes.

In the Methods Section 4.7 we show mathematically that the Reward Bases model is closely

related to the successor representation and, indeed, can be intuitively thought of as a com-

pressed successor representation tuned only to relevant reward dimensions. Therefore, the

Reward Bases and the successor representation have approximately equivalent capabilities. We

demonstrate this in a room navigation task introduced in Fig 1.

Our test environment is a 6 × 6 grid-world room (Fig 1). The goal is, when started in a ran-

dom position in the room, to reach a specific type of object as fast as possible. There were three

objects of different types that were positioned randomly at the start of the simulation. Agent

training was separated into episodes such that whenever the agent reached the valuable object,

the episode would end, and the agent would restart in a randomly chosen square of the room.

At each moment of time only one object was valuable, and after a certain number of trials

objects’ desirability was reversed—making one of the three objects valuable while demoting

the others.

In Fig 8A, we plot the performance of the models in sample simulation. Fig 8A shows that

the successor representation has very similar performance as Reward Bases. Both agents rap-

idly adapt to reversals but still also require some retraining after reversals likely due to the

approximate nature of the learnt value functions or successor matrix given their limited num-

ber interactions with the environment. In this task, the Reward Bases and successor represen-

tation agents both achieve approximately equal performances across a wide range of

parameter settings (Fig 8B and 8C). As expected, both agents perform better than TD learning

which needs to completely re-learn the value function after each reversal.

Despite similar performance, the Reward Bases model stores much less information than

successor representation. The value bases store X × N numbers, where X is a number of envi-

ronmental states and N is the number of reward bases, while the successor matrix stores X × X
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numbers. This difference is already substantial for the small task presented here, where with

three reward bases, the number of values stored by the Reward Bases algorithm was

36 × 3 = 108 while the successor matrix required 36 × 36 = 1296. This advantage will generally

only increase with environmental state-size, because the memory cost of the Reward Bases

model scales linearly with the environmental state-size, while for the successor representation

it scales quadratically.

3 Discussion

In this paper, we have proposed a novel mechanism for instant generalisation to changing

reward functions in RL tasks which relies solely on model-free learning. The Reward Bases

algorithm is straightforward and can be applied to any RL model which estimates values of

environmental states or actions. In this section we discuss the relationship of our model to

experimental data, other models, and outline possible directions of future work.

3.1 Relationship to neural data

We have provided preliminary support for the key experimental prediction arising from our

model and demonstrated that a fraction of dopamine neurons encodes the prediction errors

associated with one reward type to a larger extent than the error associated with the other type.

This observation is consistent with a study showing that separate groups of dopamine neurons

increased their tonic firing after intragastric infusion of either food or water [38]. That study

also found no correlation across dopamine neurons between responses to food and water,

which parallels the lack of correlation in Fig 3F. Our analyses extend the results of this study

[38] by suggesting that different dopamine neurons also produce phasic responses after stimuli

predicting different types of rewards, and these responses scale with the amount of a particular

reward type. Our results are also related with a recent observation that distinct but overlapping

populations of dopamine neurons respond to food and social rewards [66].

Our results add support to a general theory that the striatum is composed of neural popula-

tions predicting different quantities, and the dopamine neurons projecting to a given popula-

tion of the striatum compute the error in prediction made by this group of neurons [67]. In

the case of Reward Bases model, different populations located in ventral striatum compute dif-

ferent value bases, but other striatal regions may compute different quantities, and conse-

quently corresponding dopamine neurons may encode errors in different predictions. For

Fig 8. Comparison of model performance in a room navigation task. A: Comparison of the reward obtained by the Temporal Difference (TD), the

Reward Bases (RB), and the Successor Representation (SR) agents on an example run of the room task. The vertical dashed lines represent the reversals.

B: Performance obtained by RB, TD, and SR agents over a range of learning rates with 50 episodes between each reversal. C: Performance obtained by

RB, TD, and SR agents over a range of trials between reversal. A learning rate of 0.1 was used. All error bars represent standard error over 10 runs.

https://doi.org/10.1371/journal.pcbi.1012580.g008

PLOS COMPUTATIONAL BIOLOGY Reward Bases

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012580 November 19, 2024 19 / 38

https://doi.org/10.1371/journal.pcbi.1012580.g008
https://doi.org/10.1371/journal.pcbi.1012580


example, dopamine neurons in the tail of the striatum were proposed to encode prediction

errors specifically for aversive stimuli [68, 69], or action prediction errors [70]. Moreover,

dopamine neurons have been shown to encode errors in predictions of sensory features of

reward in addition to value [37]. There is also growing evidence that dopamine neurons are

sensitive to various aspects of locomotion and kinematic behaviour [36, 71–73] as well as

choice behaviour [74, 75] and indeed that this heterogeneity is topographically organised due

to spatially organised cortical projections [35, 73].

The existence of striato-dopaminergic modules seems to contradict a common belief that

activity of dopamine neurons is transmitted throughout the whole striatum. This belief origi-

nates from the observation that dopamine receptors are located outside synapses so they can

be only activated by dopamine diffusing through extrasynaptic space [76]. However, it has

been pointed out [76] that only a small volume of space around the axonal release site (within

1μm) is likely to reach sufficient dopamine concentration for receptor activation. So although

dopamine release is not targeted at single synapses, it has substantial spatial precision. More-

over, despite dopamine neurons being known to have exceptionally large axons, it has been

reported [77] that axonal bush of a single dopamine neuron covers on average 2.7% of volume

of striatum in the corresponding hemisphere, and this area in concentrated to a particular

region of striatum. Hence the existence of modules within the striatum modulated by distinct

sets of dopamine neurons is anatomically plausible.

Given the importance of being able to appropriately select actions according to physiologi-

cal state, similar mechanisms to those considered in this paper may also operate in simpler ani-

mals that do not have the basal ganglia. In particular, there is a strong match between the

neuroanatomy postulated by the Reward Bases model and that found in the mushroom body

of fruit flies (drosophila). This region includes Kenyon cells encoding sensory information,

and Mushroom Body Output Neurons (MBON) which are mutually connected with dopamine

Neurons (DAN) [78]. A large body of evidence, strongly suggests that the MBONs and DANs

are specialised and separated into different zones or compartments which respond to and rep-

resent rewarding aspects of specific stimuli, and connectivity between MBONs and DANs is

mostly within a given compartment [78–82]. Moreover, experimentally it has been shown that

specific DANs respond to specific reinforcement types such as sugar [39, 83], water [21, 40],

courtship [41, 84] and aversive stimuli [42, 80, 85, 86], and appear to be instrumental in learn-

ing associations based on these specific reinforcement type. Hence if we associate environmen-

tal state x with Kenyon cells, value bases Vi with the MBONs and the prediction errors δi with

the DANs, then the circuitry in the mushroom body appears to almost precisely fit the single

selectivity implementation of the Reward Bases model.

3.2 Comparison with alternative models

Several recent theoretical studies have analysed RL models learning different reward dimen-

sions. Our results are consistent with studies showing that primate and rodent behaviour is

well described by models that learn expected reward in multiple dimensions via prediction

errors for different reward dimensions [87, 88]. Our paper additionally shows how such

learned values may be combined to enable flexible behaviour. Additionally, recent theoretical

work has demonstrated that RL agents including separate modules predicting reward in differ-

ent dimensions have advantages in tasks requiring acquisition of multiple resource types [89].

The Reward Bases model is closely related (but not equivalent) to a multi-objective RL

model [48] which also learns separate value functions for different reward dimensions, and

combines them while controlling behaviour. In that model, the prediction error for dimension

i is computed based on reward scaled by the “drive priority” playing a similar role to our mi, so
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in the notation of our paper this prediction error can be written as δi = miri(x) + . . .. The over-

all value is computed as a sum of individual value functions, which in our notation can be writ-

ten as V(x) = ∑iVi(x). Despite the similarity of these two equations to Eqs 4 and 5, they are not

identical, because in the multi-objective RL model, motivation scales the reward during learn-

ing (as it appears in the prediction error), rather than the value function during choice of

behaviour (it is not weighting individual values being summed). Although both models gener-

ate the same behaviour if motivational drives mi are constant, they behave very differently after

a change in motivation: The Reward Bases model instantly changes the overall value function,

while in the multi-objective RL model [48] behavioural change would only follow after

experiencing the reward in order to update the value. Consequently, that model cannot cap-

ture instant salt revaluation seen in salt-deprivation before any interactions with the salt [10],

or instant changes in dopamine responses after devaluation seen before receiving devalued

reward [31], while we demonstrated that the Reward Bases model can reproduce these data.

The Reward Bases model is related with the models of homeostatic regulation [44–46],

which also consider multiple dimensions of rewards. While the Reward Bases model defines

the reward as the linear summation of elementary rewards scaled by their motivational needs,

the homeostatic RL defines the reward as a reduction in drive and defines drive as a nonlinear

combination of different dimensions of the distance between the current and desired physio-

logical state. Consequently, homeostatic RL can account for multiple experimentally observed

phenomena, for example that deprivation of one need reduces the rewarding value of other

outcomes [45]. The homeostatic RL model has also been applied to explain behaviour in tasks

where animals were repeatedly offered choice between salt solutions, and to explain dopamine

responses to salt infusion [90]. However, in these models, the agent learns a single overall

value function, rather than separate value bases associated with individual reward dimensions.

Therefore, when the motivation changes, these models require experiencing reward to change

the overall value function (analogously as the multi-objective RL model discussed above). The

contribution of the Reward Bases model is that it describes how value can change without

experiencing reward, and hence can capture the data on instant changes in behaviour and

dopamine release due to changes in motivation.

The Reward Bases model is also related to a model of RL in multidimensional environment

[91]. This study demonstrated that if participants are asked to learn reward probability associ-

ated with stimuli described by multiple features, their behaviour is best described by a model

assuming that they learn values associated with the individual features, and compute the value

of a stimulus as a sum of values of individual features. Although the formulation of this model

is different (e.g., it only employs a single prediction error), this study suggests that decompos-

ing value into multiple dimensions is a general feature of biological RL.

The Reward Bases model is also related to a feature specific prediction error model [92]. It

explains the diversity of responses of dopamine neurons, by assuming that, due to anatomical

constraints, individual dopamine neurons receive inputs from striatal neurons representing

value of just a subset of features environmental states. So in this respect that model is similar to

Reward Bases. However, that model assumes that as a population, dopamine neurons encode

the standard prediction error, and this single prediction error is used to update a single value

function represented in the striatum, hence it differs from the Reward Bases which assumes

the basal ganglia learn multiple value functions and flexibly combine them according to the

physiological state.

It is useful to clarify the distinction between the Reward Bases model and distributional RL

[57]. That model assumes that the value function is represented by the probability distribution

of expected reward. In that model separate modules learn different percentiles of reward distri-

bution and the heterogeneity of dopamine neurons arises as they encode prediction error
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associated with different percentiles of the distribution. By contrast, the Reward Bases model

proposes heterogeneity in dopamine neurons in another orthogonal dimension—that of

reward type. Since distributional RL does not learn reward associated with different reward

dimensions, it cannot explain changes in behaviour and dopamine response after change in

motivation. Nevertheless, it is possible to straightforwardly combine distributional RL and the

Reward Bases models by estimating a distributional value estimate for each value basis in

parallel.

Our results demonstrate that behavioural flexibility in the face of changing reward func-

tions does not require model-based methods as argued before [17] but instead can be handled

in a purely model-free manner using a straightforward extension to the classical TD learning.

We do not claim that the mammalian brain does not employ model-based RL in tasks involv-

ing changes in desirability of outcomes [10, 31], but rather that in addition to model-based RL,

model-free processes can also underlie performance on these tasks. We show that model-free

TD learning, which is usually considered as inflexible, can be extended to adapt to changing

reward functions, and we are proposing a mathematical model and neural implementation of

how this flexibility can be achieved in the evolutionarily old structures of the basal ganglia

thought to support model-free RL.

As a comparable model-free method for instantly generalising to different reward func-

tions, it is worthwhile to perform a detailed side-by-side comparison of the properties of the

successor representation [18] and the Reward Bases model. On a computational level, as dis-

cussed in detail in Results, the Reward Bases model achieves the same performance as succes-

sor representation, but is much more memory efficient, because it does not require storing the

successor matrix. The advantage of the successor representation is that zero-shot reward reval-

uation can be achieved for any reward function. The Reward Bases method requires that the

reward function be expressable as a linear combination of reward basis vectors (which them-

selves can be nonlinear functions of the environmental state). Secondly, the Reward Bases

model assumes that these reward basis vectors can be specified beforehand, ideally at the

beginning of the task. This means that successor methods alone can handle tasks where the

reward function can change in truly arbitrary and unexpected ways over the course of a task.

Reward Bases models, on the other hand, has an advantage where the space of potential reward

function changes occurs in a relatively small linear subspace of the total reward space which

can thus be represented well with a smaller set of basis vectors than the full dimensionality of

the environmental state-space. While thus being slightly less generalisable in theory, for bio-

logical organisms, these conditions may well hold in practice such that while the reward func-

tion changes often, it typically only changes over a relatively well-known range such that a

relatively small set of reward bases (relative to the total dimensionality of the world) suffice to

cover the reward revaluations that actually occur. For instance, an animal may know that its

reward function often changes as a function of its level of satiety, or its level of tiredness and

thus these can form natural reward bases.

Another possibility for extending model-free TD learning methods to handle varying

reward functions is to simply assume that x includes both environmental and physiological

state, and use RL to estimate the value function of such combined state. This method, however,

suffers from three substantial disadvantages compared to the Reward Bases approach

described in this paper. Firstly, such a model does not incorporate any prior knowledge on

how the physiological state affects the value function, so it would need to learn this dependence

from training data. Hence training of such a model would take much longer than Reward

Bases which already assumes the dependence (Eq 4). Secondly, it entails a substantial increase

in the ultimate size of the state-space which hampers the generalizability and sample-efficiency

of the resulting algorithm, and is especially acute in the presence of continuously-valued
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physiological states which would require the animal to essentially learn its value functions

from scratch for every possible setting of the physiological state. Continuously varying physio-

logical states are handled naturally, however, in the Reward Bases model by just using the

weighting coefficients. Thirdly, this approach of extending the state-space is not guaranteed to

achieve the zero-shot generalisation that the Reward Bases scheme is capable of. This is

because it uses standard TD learning which can only associate outcomes with a novel physio-

logical state by directly experiencing those outcomes. For instance, in the salt-deprivation

experiments [10], the combined state method may not exhibit instant generalisation but may

have to experience several positive pairings of the salt with the salt-deprived physiological state

to allow for this generalisation—while in the original experiment the rats were specifically

never previously salt-deprived in their lives to prevent this possible association developing out-

side the experimental paradigm.

The network implementation of the Reward Bases model is based on work [61] pointing

out that the striato-dopaminergic circuit is a remarkable example of the brain structure whose

known anatomical and physiological properties match those required to implement the feed-

back alignment algorithm for training of multi-layer neural networks [64]. In particular, the

dopamine neurons, which encode the errors in predictions made by the network, project back

to the striatum and modulate the plasticity of hidden-layer cortico-striatal weights [8]. In the

previous model [61] the dopamine neurons encoded prediction errors associated with just a

single dimension of the target. This paper thus extends the previous work and shows that basal

ganglia can learn through feedback alignment also when dopamine neurons encode mixtures

of prediction errors. While the previous work [61] demonstrated the effectiveness of feedback

alignment for training of a model of a motor part of the striato-dopaminergic system, this

paper shows that this algorithm is also effective for training the value-based part of the system,

suggesting that feedback alignment may be a general principle employed by different parts of

the striato-dopaminergic system. If neurons encoding mixtures of prediction errors in other

striatal areas are observed in future studies, an analogous model could be applied to explain

how the striatum can learn based on such mixed teaching signals.

3.3 Generalisations of the model and future work

While introducing the model (Eq 5) we assumed that the temporal discounting γ of all the

components of the reward is the same. However, this may not be the case, e.g., the temporal

discounting for money in humans is much slower than for food or water. Nevertheless, the

model could be easily extended to include separate discount factors γi for different reward

dimensions. For such an extended model it would not be possible to show its equivalence to

the standard TD learning when weighting coefficients are equal across dimensions (Eq 6), but

it would still learn separate value bases. Since experiments re-analysed in this paper did not

investigate temporal discounting, such extended model is equally consistent with these experi-

mental data as the models described earlier.

In this paper, we have simply assumed that the motivational drives mi are known to the

agent, but the brain would have to determine their correct values. One way to bring an organ-

ism towards a homeostatic set-point is to set the motivation mi for a specific homeostatic vari-

able proportional to the difference between the optimal set-point of that variable and its

current level [60]. So for example, in the case of the salt experiment, the resulting motivation

weighting coefficient would be negative when the salt level is higher than optimal, and positive

after salt is depleted. Animals possessing the ability to compute motivation weights in this way

could thus value salt when depleted even if they never experience its depletion before. Such a

model is closely related to drive reduction theory [44, 93, 94] which fits closely with notions of
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homeostasis and allostasis in biology. Due to the importance of the computation of this differ-

ence between optimal and current physiological levels, it could be hardwired in subcortical

regions of the brain such as the hypothalamus. Beyond simple homeostatic set-point control-

lers, it is possible that more complex controllers also exist to achieve more fine-grained and

context sensitive control over more abstract reward types such as monetary rewards. It is also

plausible that such controllers would also learn the optimal motivation weighting coefficients

for given contexts.

In this paper, we have assumed that a set of reward bases which can correctly reconstruct

the reward function is defined a priori. It is likely that there is a set of ‘hardcoded’ reward bases

originating in the hypothalamus and midbrain which directly code for primary rewards. These

reward bases may include multiple dimensions of nutrients such as proteins and carbohy-

drates, because animals are able to balance their intake [95]. They may also include water, salt,

sex, as well as other survival-relevant quantities such as social rewards or energetic/metabolic

cost. In drosophila at least 3 distinct dimensions of positive reinforcement are encoded by

around 100 dopamine neurons [80], so it is plausible that mammals, which have orders of

magnitude more dopamine neurons, may represent more dimensions. Additionally the brain

may learn a good set of reward bases to be able to generalise across the kinds of reward revalua-

tions that happen often in its environment. Computationally learning such bases could be

achieved through finding the representations that are optimal for satisfaction of animal’s

needs [96].

Our study provides initial evidence for learning value in multiple reward dimensions in the

basal ganglia based on the limited available experimental data. Thus, future studies utilising a

larger number of animals would be necessary to confirm if individual dopamine neurons are

selective for value coding in different reward dimensions. Future studies are also needed to

identify which dimensions of reward are represented by the dopamine neurons, whether neu-

rons encoding specific dimensions are topographically organised, and if dopamine neurons

can learn to represent novel reward dimensions.

4 Methods

4.1 Temporal difference learning

In multiple simulations we included the TD learning model for comparison with the Reward

Bases model. In the TD model, the value function is learned by directly updating the estimated

value of the current environmental state [97],

DVðxÞ ¼ adðxÞ ð10Þ

dðxÞ ¼ rðxÞ þ gVðx0Þ � VðxÞ ð11Þ

This learning rule is analogous to that in the Reward Bases model, but is based on the total

reward r(x) rather than reward bases.

4.2 Analysis of activity of individual dopamine neurons

For a full description of the paradigm and data acquisition, please refer to the original paper

[43]. The data from this study [43] consists of series of spike-times for each neuron for each

trial and the associated condition. There were five conditions corresponding to the monkey

being presented with 1.5g banana, 0.3g banana, 0.9ml juice, 0.5ml juice, and 0.2ml juice.

To obtain the subjective values plotted in Fig 3B, we read off the values from the subjective

value plot of Figure 4 in the original study [43]. We then shifted the obtained values by +0.5 so
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as to move the range of subjective values to lie between 0 and 1. This has no impact on the rela-

tive ranking or differences between conditions but makes the resulting regression coefficients

more interpretable.

In Fig 3C, 3D and 3E, we plot the average firing rate over the trials of each condition for

sample neurons. To obtain a smoothed number of spikes, we counted the number of spikes

within a set of overlapping windows, each 200ms long and starting every 50ms. To convert

from the raw number of spikes in the window to an average firing rate, we simply divided the

number of spikes by the window size (i.e. by 0.2s). We plot the average firing rate of the neuron

in each condition. We aligned the timestamps of each trial so that the condition cue was pre-

sented at time 0. In the accompanying histograms, we show the distribution across trials of

neural firing rates within a window of 150–500ms after stimulus onset for each condition. The

same window was used in the analysis of neural data in the original study [43], so we use it as

well for consistency. The firing rates are obtained as before by dividing the number of spikes

within the window by the window size.

To quantify the extent to which different neurons encode prediction errors associated with

juice and banana, we fitted a regression model to each neuron, which predicts the total number

of spikes S in a window of 150–500ms after stimulus onset, based on a juice subjective value

and a food subjective value regressors:

S ¼ bk
1
r1ðxÞ þ b

k
2
r2ðxÞ þ b

k
0
þ o ð12Þ

where r1 and r2 are the reward bases for the banana and juice regressors, b
k
1

and b
k
2

are the

regression coefficients of dopamine neuron k for each reward basis while b
k
0

is the intercept

term and ω represents the noise term. The juice reward basis here assigned the subjective val-

ues associated with the juice for the juice conditions and 0 for the food conditions. Conversely,

the banana reward basis here assigns the subjective values associated with the banana for the

banana conditions and 0 otherwise. For instance, we can formally define the juice reward basis

r1 for condition x as,

r1ðxÞ ¼

(
RðxÞ; if x 2 Juice Conditions

0; otherwise
ð13Þ

The subjective values R(x) are those taken from [43] and replotted in Fig 3B. Note that if we

used regressors equal to prediction errors rather than ri, the resulting coefficients b
k
i would be

identical, because the prediction errors just differ from ri by a constant (expected reward) and

these constants are incorporated into b
k
0

in our regression. The resulting regression coefficients

are plotted in Fig 4A.

To statistically quantify if individual dopamine neurons are selective for a particular reward

type, we employed a regression analysis. For each neuron we fitted a set of models (listed in

Fig 4B) predicting the number of spikes emitted in each trial within a window of 150–500ms

after stimulus onset, based on value and identity regressors. The value regressor on a given

trial was assigned to the subjective value of reward on that trial found in the original study [43]

and plotted in Fig 3B. The identity regressor was coded such that +1 indicated a juice trial and

−1 indicated a banana trial.

IðxÞ ¼

(
1; if juice trial

� 1; if banana trial
ð14Þ
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The winning model can be described mathematically as:

S ¼ bk
1
RðxÞ þ bk

2
IðxÞRðxÞ þ bk

0
þ o ð15Þ

where S is the number of spikes within the window, R(x) is the value regressor, I(x) is the iden-

tity regressor, bk
1

and bk
2

are the regression coefficients for neuron k, bk
0

is the intercept term

and ω is the noise term in the linear model. Fig 4C plots the regression coefficients bk
1

and bk
2

for each neuron k.

We now show that the regression model of Eq 15 is equivalent to that of Eq 12. We first

note that there exist relationships between regressors in the two models: r1(x) = R(x)(I(x) + 1)/

2 and r2(x) = R(x)(−I(x) + 1)/2. For example, if x is one of the stimuli predicting juice, then

I(x) = 1, so R(x)(I(x) + 1)/2 = R(x) = r1(x). It is insightful to substitute these relationships into

Eq 12:

S ¼ bk
1
RðxÞðIðxÞ þ 1Þ=2þ b

k
2
RðxÞð� IðxÞ þ 1Þ=2þ b

k
0
þ o ð16Þ

¼ ðb
k
1
þ b

k
2
Þ=2 RðxÞ þ ðbk

1
� b

k
2
Þ=2 RðxÞIðxÞ þ bk

0
þ o ð17Þ

One can observe that Eq 12 can be rewritten as a regression with respect to R(x) and I(x)

R(x), and there exist the following relationships between the coefficients in the two models:

bk
1
¼ ðb

k
1
þ b

k
2
Þ=2 and bk

2
¼ ðb

k
1
� b

k
2
Þ=2.

4.3 Model with state-modulated prediction errors

Reward Bases model with state-dependent prediction error employs a ‘modulated prediction

error’ ~d i,

~d i ¼ midi ¼ miriðxÞ þ gmiV iðx0Þ � miV iðxÞ ð18Þ

The TD update can then be derived as a gradient descent on the squared prediction errors,

Li ¼
1

2
~d2

i ð19Þ

DViðxÞ ¼ � a
@Li

@ViðxÞ
¼ ami

~d i ð20Þ

This results in a modified TD learning rule for the value bases which effectively defines an

adaptive learning rate schedule where the learning rate depends on the physiological state.

Although slightly complicating the algorithm, this approach has potential advantages for the

brain. It provides a natural scaling of the learning rate with physiological stress, so that the

learning rate is higher when the physiological state is more perturbed and hence the mi weight-

ings are higher. This has clear advantages since it is important to learn fast in such cases. On

the other hand, having a reduced (or no) learning rate in the case of satiation may also be bene-

ficial. Reducing the learning rate may reduce the metabolic cost of making the updates, since

less synaptic plasticity is required and the brain has been heavily optimised by evolution to

minimise energy expenditure [98].

Please note that adding the state-modulated prediction error to the standard TD model,

would on its own not be able to explain dopaminergic activity or behaviour seen on the first

trial after changes in reward values [10, 31], because the TD model would still require an inter-

action with the environment for at least one trial to update the values. To explain the
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dopamine activity on the first trial after changes in reward values [31], we added the state-

modulated prediction error to the Reward Bases model.

4.4 Mixed selectivity model

We constructed a model in which each dopamine neuron encoded a weighted sum of predic-

tion errors, and demonstrated that this model can learn correct value bases in the task of Lak

et al. [43]. The architecture of the model and notation used are shown in Fig 5A. We index var-

iables associated with dopamine and striatal neurons with superscripts, to highlight that they

encode prediction errors and value bases in distributed fashion, and to distinguish from the

dimension-specific prediction errors and value bases indexed with subscripts in previous vari-

ants of the Reward Bases models. Each dopamine neuron in the model receives input from

reward areas and inhibition from the striatum:

~dk ¼
X2

i¼1

wR!D
k;i miri �

XM

i¼1

wS!D
k;i si ð21Þ

The inhibition from the striatum provides information on the expected value. This predic-

tion error term contains no future value term corresponding to gViðx0Þ since our task lasted

for just a single step. We assume that dopamine neurons in addition to coding the above pre-

diction error (e.g. in the phasic activity) also encode the corresponding motivational drives

(e.g. in their tonic activity):

Dk ¼
X2

i¼1

wR!D
k;i mi ð22Þ

The activity of striatal neurons depends on their input from the cortex:

sk ¼ gk
X5

i¼1

wC!S
k;i xi ð23Þ

In the above equation gk is the gain of striatal neuron k which is determined by motivational

drives encoded by dopamine neurons projecting to striatal neuron k:

gk ¼
XN

i¼1

wD!S
k;i Di ð24Þ

Setting the gain of striatal neurons in the above way enables the value bases encoded by stri-

atum to be weighted by motivational drives, as required by the Reward Bases model. The value

function is encoded in the model by the total output from the striatum received by all dopa-

mine neurons, defined as:

Sout ¼
XN

k¼1

XM

i¼1

wS!D
k;i si ð25Þ

For this striatal output to be equal to the value function, the weights from reward areas to

dopamine neurons need to be normalised so that each reward basis is equally represented by
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the dopamine neurons:

XN

k¼1

wR!D
k;i ¼ 1 ð26Þ

We now demonstrate that if all prediction errors are equal to 0, then the total striatal output

is equal to the value function. If all ~dk ¼ 0, then from Eqs 25 and 25:

Sout ¼
XN

k¼1

X2

i¼1

wR!D
k;i miri ð27Þ

Using Eq 26, we see that the striatal output simplifies to:

Sout ¼
X2

i¼1

miri ð28Þ

We observe that the striatal output is indeed equal to the sum of the expected rewards

weighted by their corresponding motivational drives. Since encoding of the value function by

striatal output is enabled by prediction errors being equal to 0, the synaptic weights are modi-

fied to minimise the prediction errors. Hence we define the loss function:

L ¼
1

2

XN

k¼1

ð~dkÞ
2

ð29Þ

The striato-dopaminergic weights are found by the gradient descent on the loss:

DwS!D
k;i ¼ � a

@L
@wS!D

k;i
¼ a~dksi ð30Þ

The resulting update of a particular weight is equal to the product of the activity of the post-

synaptic neuron ~dk and the pre-synaptic neuron si, so it corresponds to Hebbian plasticity. The

gradient of the loss over cortico-striatal weights is equal to:

�
@L

@wC!S
i;j

¼
XN

k¼1

wS!D
k;i

~dkgixj ð31Þ

Modifying cortico-striatal weight according to the above rule would be biologically unreal-

istic because it assumes scaling of dopamine inputs by striato-dopaminergic weights rather

than reciprocal dopamine-striatal weights through which the dopamine signals are actually

transmitted. Therefore, we follow the models employing feedback alignment [61, 64], and

modify the cortico-striatal weights according to:

DwC!S
i;j ¼ a

XN

k¼1

wD!S
i;k

~dkgixj ð32Þ

Note that the above learning rule corresponds to local synaptic plasticity, because
PN

k¼1
wD!S

i;k
~dk is the total dopaminergic prediction error received by the postsynaptic neuron

i, gi is the gain of the post-synaptic neuron, and xj is the activity of the pre-synaptic neuron.

We simulated a network with 5 cortical neurons, as there were 5 stimuli in the study of Lak

et al. [43], and 2 reward neurons as there were 2 reward types in this study. The network also

included M = 50 striatal neurons and N = 10 dopamine neurons. All weights were initialised

according to Xavier uniform initialisation [99], and the weights from reward to dopamine
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neurons were additionally normalised according to Eq 26. At the start of each simulated trial, a

stimulus was randomly chosen, so the corresponding cortical neuron was set to xj = 1, while

other cortical neurons were set to 0. The reward basis corresponding to the type of reward pre-

sented by the stimulus was set to the subjective value (Fig 3B), while the other reward basis was

set to 0. The motivational drives were chosen randomly from uniform distribution [0, 1]. The

activities of striatal and dopamine neurons were computed, and then the cortico-striatal and

striato-dopaminergic weights were updated with learning rate α = 0.05. This training proce-

dure is summarised in Algorithm 1. To evaluate a stimulus based on cortical inputs xj and

motivational drives mi, the following variables were evaluated in turn: Dk (Eq 22), gk (Eq 24), sk

(Eq 23), Sout (Eq 25).

Algorithm 1: Training of the mixed selectivity model.
input: juice rewards for stimuli R1 = [1, 0.5, 0.1, 0, 0], banana

rewards for stimuli R2 = [0, 0, 0, 0.7, 0.05]
output: synaptic weights
Set learning rate α = 0.05
Set number of training iterations ITER = 100000
Initialise weights wC!S, wS!D, wD!S, wR!D with uniform Xavier
Normalise weights wR ! D (Eq 26)
for it = 1 to ITER do
stimulus = random from {1, .., 5}
xstimulus = 1, xj6¼stimulus = 0
r1 = R1[stimulus], r2 = R2[stimulus]
mi = random from [0, 1]
Compute Dk (Eq 22)
Compute gk (Eq 24)
Compute sk (Eq 23)
Compute ~dk (Eq 21)
Update wS!D

k;i (Eq 30)
Update wC!S

i;j (Eq 32)

The total striatal output Sout is sent to dopamine neurons in the model, while to be useful

for other brain systems, it needs to be transmitted also to them. There are several possibilities

in which this transmission may happen, for example, the striatal neurons could send collateral

projections to other structures, or the striatal neurons could send their projections to interme-

diate neurons (e.g. in the output nuclei) that could project both to dopamine neurons and thal-

amus, as in a previous model [61].

A summary of different variants of Reward Bases models is given in Table 1.

4.5 Modelling the dependence of dopaminergic response on physiological

state

The Reward Bases agent was trained in a simulated version of the task paradigm used in the

original study [31] and graphically described in Fig 6A. The agent maintained two reward and

Table 1. Summary of variants of the Reward Bases model.

Model Prediction error Value update Evaluation

Reward Bases di ¼ riðxÞ þ gViðx0Þ � V iðxÞ DViðxÞ ¼ adi VðxÞ ¼
P

i miViðxÞ
State-modulated ~d i ¼ midi DViðxÞ ¼ ami

~d i
VðxÞ ¼

P
i miViðxÞ

Mixed selectivity ~dk ¼
P

i wR!D
k;i miri �

P
i wS!D

k;i si DwC!S
i;j ¼ a

P
kw

D!S
i;k

~dkgixj

DwS!D
k;i ¼ a

~dksk

VðxÞ ¼
P

k

P
i wS!D

k;i si

sk ¼ gk P
i wC!S

k;i xi

gk ¼
P

i wD!S
k;i Di

Dk ¼
P

i wR!D
k;i mi

https://doi.org/10.1371/journal.pcbi.1012580.t001
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value bases V iðxÞ over the two environmental states of the experiment xk corresponding to

pressing the two levers. On each trial the agent was choosing between two options, with proba-

bility of selecting option k equal to:

Pk ¼
eVðxkÞ

eVðx1Þ þ eVðx2Þ
ð33Þ

In the above equation, VðxkÞ was computed from Eq 5 with mi = 1. After choice, there was a

80% chance of getting corresponding reward type, a 15% percent chance of switching to the

other reward type (SWITCH condition) and a 5% percent chance of getting 4 outcome units

(MORE condition). Consequently both value bases for chosen option k were modified accord-

ing to

DViðxkÞ ¼ aðriðxkÞ � ViðxkÞÞ ð34Þ

In the above equation, the discounted future reward was not included, because no further

reward was expected, and learning rate was set to α = 0.1. Simulations of learning were

repeated 3 times with unique seeds of random number generator, and within each repetition

the value functions were learned over 500 trials.

The learned value bases were used to simulate dopaminergic responses in all experimental

conditions in Fig 6C and 6D. Due to similarity of dopaminergic responses to food and water

when these reward were valued (or devalued) seen in Fig 6B, we summarised these data by the

dopamine concentration averaged across valued (or devalued) trials, as illustrated by blue

shading from Fig 6B to 6D. The dopaminergic responses were simulated as the sum of the

weighted prediction errors, in accordance with the modulated prediction error model pre-

sented in Section 4.3. That is, we identify dopaminergic response in environmental state x as

X

i

~d iðxÞ ð35Þ

Without the loss of generality, we assumed that food was a valued option, while sucrose was

devalued. Thus for example, the response to valued lever (Fig 6C) was computed by substitut-

ing Eq 18 into Eq 35

gmfoodVfoodðxfoodÞ þ gmsucroseVsucroseðxfoodÞ ð36Þ

where xfood denotes the lever commonly associated with food. For simplicity we set γ = 1 in the

simulations. The response to devalued lever was computed analogously. Similarly, the response

to the expected valued reward (Fig 6D) was computed as

mfoodð1 � VfoodðxfoodÞÞ þmsucroseð0 � VsucroseðxfoodÞÞ ð37Þ

Responses to other outcomes were computed analogously.

The mfood and the msucrose are two free parameters. We fitted a single set of mfood and

msucrose to all experimental values in Fig 6C and 6D, which is in total 8 points to fit (2 in Fig 6C

and 6 in Fig 6D). The fitting was done by minimising a least squares error between the model

prediction and the corresponding experimental value. To identify the best fitting free parame-

ters we re-parameterised them as mfood = KR and msucrose = K, where R is a the ratio of weights,

and K is a scaling parameter. We sought R through grid searched between 1 and 10, with an

interval of 0.1; then, a coefficient K was solved analytically for each R in the grid search to min-

imise a squared error between the model prediction and the corresponding experimental

value. The above procedure of optimising R and K is equivalent to optimising mfood and

msucrose. The advantage is that if optimising mfood and msucrose, it has to be done via function
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evaluation (e.g., grid search on both of them); but while optimising R and K, only R need to be

optimised by function evaluation (in our case, grid search), but K can be solved analytically.

The experimental values were extracted from dopamine signals 2 seconds after the corre-

sponding events as described in the caption of Fig 6. The extraction was done via a online digi-

tal plot extractor at https://apps.automeris.io/wpd/, our extraction can be loaded to this online

tool via “loading project”, and the project files are located in directory Simulations/dopami-

ne_release/data_extraction/ of the repository associated with this paper, described in Data

Availability Statement.

4.6 Simulation of dead sea-salt experiment

In the simulated version of the experiment [10] presented in Fig 7, the agents were exposed to

the lever associated with the salt or the lever associated with the juice at random over 100 trials.

If the salt lever was presented, the TD agent received a reward of −1 while if the juice lever was

presented the agent received a value of + 1. The TD agent learnt a value function with 2 envi-

ronmental states—juice and salt. The Reward Bases agent maintained separate salt and juice

reward bases with the juice reward basis returning + 1 for juice and 0 for salt and vice-versa

for the salt basis. Reward Bases agent learned with state-modulated prediction errors. To

match the rewards received, during training we set msalt = −1 and mjuice = 1. The agents were

trained with a learning rate of α = 0.1. Since there are no multi-step dependencies in this task,

we trained with γ = 0.

To match the value functions of our agents to behavioural data, we assumed that the degree

of appetitive approach and ‘liking’ behaviour plotted in the original experiment varied linearly

to the value of the stimulus the animal had learned. That is, we simulated the simple equation,

approachesðxÞ ¼ b1VðxÞ þ b0 ð38Þ

Regression parameters βj were fitted for each model to data from the normal (non-depleted)

condition. During testing in the deprivation conditions, the value functions remained the

same for TD learning, while they were recomputed for Reward Bases with msalt = 0.5, as this

value resulted in quantitative match with experimental data.

4.7 Successor representation

Let us first introduce the notation required to describe the successor representation. Let r

denotes a vector containing expected instantaneous rewards of all environmental states, i.e. a

vector of a length equal to the number of possible environmental states, where each entry is

equal to expected instantaneous reward for the corresponding environmental state. Analo-

gously, let V denote the vector of values of all environmental states. Furthermore, let T denote

matrix with environmental state transition probabilities, where entry T y;x denotes the proba-

bility of agent transitioning from environmental state x to y under the current policy. Using

this notation, the definition of the value function from Eq 1 can be written as follows.

V ¼ rþ gT rþ g2T 2r � � � ð39Þ

By a simple rebracketing, we can express this as,

V ¼ ðI þ gT þ g2T 2
� � �Þr ð40Þ
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We can then separate out the matrix ðI þ gT þ g2T 2
. . .Þ and call it M, the successor

matrix giving us the following equation for the value function,

VðxÞ ¼
X

y

Mx;yry ð41Þ

It is therefore clear that if we know M and have it stored, then, given any change to the

reward function r, it is trivial to recompute the correct value function. This allows for instanta-

neous reward revaluation since the value function can be recomputed so easily.

The successor matrix M can be learned from agent’s experience. Each time an agent transi-

tions from environmental state x to x0, all entries in row x of matrix M are updated,

DMx;: ¼ aðx þ gMx0 ;: � Mx;:Þ ð42Þ

where x is one-hot environmental state vector which signifies the environmental state of the

agent before the transition (i.e. its entry corresponding to x is equal to 1 while other entries to

0), and Mx;: denotes the row x of matrix M.

It is possible to show mathematically that the Reward Bases model is closely related to the

successor representation and, indeed, can be intuitively thought of as a compressed successor

representation with rewards tuned only to relevant dimensions. Recall that according to Eq 40,

the value function can be expressed as V ¼Mr, so analogously a value basis can be expressed

as

Vi ¼Mri ð43Þ

This can be demonstrated by substituting Eq 2 into Eq 40:

V ¼Mr ¼M
X

i

miri ¼
X

i

miMri ð44Þ

Since the value function also satisfies V = ∑i miVi, the condition of Eq 43 must hold.

The relationship of the Reward Bases model with the successor representation (Eq 43) helps

explain why the Reward Bases model achieves equivalent performance to the successor repre-

sentation at a significantly smaller computational cost.

4.8 Simulations of the room task

The simulated environment was similar to that in Fig 1, i.e. it consisted of a 6 × 6 grid world

containing 3 objects. Each of these objects had reward ri = 5 in one of the dimensions, while

ri = −1 in the other dimensions. At each trial, the total reward was set to one of the reward

bases, and the valued dimension was changed at the reversals.

For all simulated agents, the value function was represented as a flattened vector of

6 × 6 = 36 environmental states, which was initialised at 0. For the successor representation

agent, the successor matrix was initialised as a 36 × 36 matrix of 0s and was updated on each

timestep by the successor representation update rule (Eq 42). The successor agent computed

its estimated value functions according to Eq 41.

For all agents a learning rate of α = 0.05, a discount factor of γ = 0.9 and a softmax tempera-

ture of 1 were used. Actions were selected by random sampling over the softmaxed distribu-

tion over actions. We used 500 steps between reversals. Means and standard deviations were

obtained over 10 seeds for each agent in Fig 8.
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Supporting information

S1 Fig. Average firing rates during a trial for all recorded neurons. The plot shows the firing

rate as a function of time within a trial (see Methods Section 4.2), where time 0 corresponds to

onset of the stimulus indicating which reward type will be presented. The neurons are ordered

by the interaction coefficient of value and identity (i.e., as in Fig 4C).

(TIF)

S2 Fig. Comparison of the ability of different regression models to describe the activity of

dopamine neurons after stimuli predicting rewards. The graph shows results of an analysis

analogous to that in Fig 4B, but here Bayesian Information Criterion (BIC) is measured and

reported.

(TIF)

S3 Fig. Model recovery analysis investigating if the Akaike Information Criterion (AIC)

can reliably distinguish between the two models from Fig 4B with formulas: “value + iden-

tity:value” and “stimulus”. For each model, we generated 1000 surrogate datasets, each con-

taining surrogate activity of the same number of neurons on the same number of trials as in

the experiment. To obtain surrogate data, we generated for each trial a prediction with the two

fitted models. When generating the prediction, we also added a random number from a nor-

mal distribution with the standard deviation equal to the standard deviation of the residuals

obtained when we fitting the model to the data from a given neuron. We then fitted both for-

mulas to the data generated from both models, and summed the AIC score across neurons.

We plot the results as a histogram of the difference of AIC score between the fit with formula

“stimulus” and the fit with formula “value + identity:value”. Different colours indicate the

model used to generate the surrogate data. There is little overlap between orange and blue his-

tograms indicating that the AIC can reliably distinguish between the two corresponding mod-

els. The difference between the AIC scores computed from real data for the two models in

Fig 4B was 16.8. Such or higher difference was obtained only for 0.8% of surrogate datasets

generated from “stimulus” model, indicating that it is very unlikely for the actual data to be

generated by that model.

(TIF)

S4 Fig. Stability of the selectivity of dopamine neurons for different reward types. Here,

the same analysis as in Fig 4C is conducted, i.e., the regression model “value + identity: value”

is fitted to the data, but this is done separately for different portions of the data—first time

based on the first half of the trials in the recording session, and second time using the second

half of the trials. The interaction coefficients from the two fittings are plotted in a scatter

graph, in which each dot corresponds to a neuron, and its x and y coordinates correspond to

the coefficients. As can be seen, there is a significant correlation (r = 0.69, p = 0.001) between

the coefficients from the two periods, indicating that the selectivity of neurons for different

reward types is stable. The solid line represents the best-fit linear regression line. The shaded

area around the regression line, indicates the 95% confidence interval.

(TIF)
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62. Möller M, Bogacz R. Learning the payoffs and costs of actions. PLoS computational biology. 2019; 15

(2):e1006285. https://doi.org/10.1371/journal.pcbi.1006285 PMID: 30818357

63. Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. nature.

1986; 323(6088):533–536. https://doi.org/10.1038/323533a0

64. Lillicrap TP, Cownden D, Tweed DB, Akerman CJ. Random synaptic feedback weights support error

backpropagation for deep learning. Nature communications. 2016; 7(1):13276. https://doi.org/10.1038/

ncomms13276 PMID: 27824044

65. Krause EG, Sakai RR. Richter and sodium appetite: from adrenalectomy to molecular biology. Appetite.

2007; 49(2):353–367. https://doi.org/10.1016/j.appet.2007.01.015 PMID: 17561308

66. Willmore L, Minerva AR, Engelhard B, Murugan M, McMannon B, Oak N, et al. Overlapping representa-

tions of food and social stimuli in mouse VTA dopamine neurons. Neuron. 2023; 111(22):3541–3553.

https://doi.org/10.1016/j.neuron.2023.08.003 PMID: 37657441

67. Bogacz R. Dopamine role in learning and action inference. Elife. 2020; 9:e53262. https://doi.org/10.

7554/eLife.53262 PMID: 32633715

68. Brischoux F, Chakraborty S, Brierley DI, Ungless MA. Phasic excitation of dopamine neurons in ventral

VTA by noxious stimuli. Proceedings of the national academy of sciences. 2009; 106(12):4894–4899.

https://doi.org/10.1073/pnas.0811507106 PMID: 19261850

69. Watabe-Uchida M, Uchida N. Multiple dopamine systems: weal and woe of dopamine. In: Cold

Spring Harbor Symposia on Quantitative Biology. vol. 83. Cold Spring Harbor Laboratory Press;

2018. p. 83–95.

70. Greenstreet F, Vergara HM, Pati S, Schwarz L, Wisdom M, Marbach F, et al. Action prediction error: a

value-free dopaminergic teaching signal that drives stable learning. BiorXiv. 2022; p. 2022–09.

71. Barter JW, Li S, Lu D, Bartholomew RA, Rossi MA, Shoemaker CT, et al. Beyond reward prediction

errors: the role of dopamine in movement kinematics. Frontiers in integrative neuroscience. 2015; 9:39.

https://doi.org/10.3389/fnint.2015.00039 PMID: 26074791

72. Kremer Y, Flakowski J, Rohner C, Lüscher C. Context-dependent multiplexing by individual VTA dopa-

mine neurons. Journal of Neuroscience. 2020; 40(39):7489–7509. https://doi.org/10.1523/

JNEUROSCI.0502-20.2020 PMID: 32859713

73. Engelhard B, Finkelstein J, Cox J, Fleming W, Jang HJ, Ornelas S, et al. Specialized coding of sensory,

motor and cognitive variables in VTA dopamine neurons. Nature. 2019; 570(7762):509–513. https://doi.

org/10.1038/s41586-019-1261-9 PMID: 31142844

74. Parker NF, Cameron CM, Taliaferro JP, Lee J, Choi JY, Davidson TJ, et al. Reward and choice encod-

ing in terminals of midbrain dopamine neurons depends on striatal target. Nature neuroscience. 2016;

19(6):845–854. https://doi.org/10.1038/nn.4287 PMID: 27110917

75. Coddington LT, Dudman JT. The timing of action determines reward prediction signals in identified mid-

brain dopamine neurons. Nature neuroscience. 2018; 21(11):1563–1573. https://doi.org/10.1038/

s41593-018-0245-7 PMID: 30323275

76. Liu C, Goel P, Kaeser PS. Spatial and temporal scales of dopamine transmission. Nature Reviews Neu-

roscience. 2021; 22(6):345–358. https://doi.org/10.1038/s41583-021-00455-7 PMID: 33837376

77. Matsuda W, Furuta T, Nakamura KC, Hioki H, Fujiyama F, Arai R, et al. Single nigrostriatal dopaminer-

gic neurons form widely spread and highly dense axonal arborizations in the neostriatum. Journal of

Neuroscience. 2009; 29(2):444–453. https://doi.org/10.1523/JNEUROSCI.4029-08.2009 PMID:

19144844

78. Li F, Lindsey JW, Marin EC, Otto N, Dreher M, Dempsey G, et al. The connectome of the adult Drosoph-

ila mushroom body provides insights into function. Elife. 2020; 9:e62576. https://doi.org/10.7554/eLife.

62576 PMID: 33315010

79. Aso Y, Hattori D, Yu Y, Johnston RM, Iyer NA, Ngo TT, et al. The neuronal architecture of the mush-

room body provides a logic for associative learning. elife. 2014; 3:e04577. https://doi.org/10.7554/eLife.

04577 PMID: 25535793

80. Owald D, Waddell S. Olfactory learning skews mushroom body output pathways to steer behavioral

choice in Drosophila. Current opinion in neurobiology. 2015; 35:178–184. https://doi.org/10.1016/j.

conb.2015.10.002 PMID: 26496148

PLOS COMPUTATIONAL BIOLOGY Reward Bases

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012580 November 19, 2024 37 / 38

https://doi.org/10.1371/journal.pcbi.1007465
http://www.ncbi.nlm.nih.gov/pubmed/32453725
https://doi.org/10.1073/pnas.2221994120
https://doi.org/10.1073/pnas.2221994120
http://www.ncbi.nlm.nih.gov/pubmed/37527344
https://doi.org/10.1371/journal.pcbi.1006285
http://www.ncbi.nlm.nih.gov/pubmed/30818357
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/ncomms13276
https://doi.org/10.1038/ncomms13276
http://www.ncbi.nlm.nih.gov/pubmed/27824044
https://doi.org/10.1016/j.appet.2007.01.015
http://www.ncbi.nlm.nih.gov/pubmed/17561308
https://doi.org/10.1016/j.neuron.2023.08.003
http://www.ncbi.nlm.nih.gov/pubmed/37657441
https://doi.org/10.7554/eLife.53262
https://doi.org/10.7554/eLife.53262
http://www.ncbi.nlm.nih.gov/pubmed/32633715
https://doi.org/10.1073/pnas.0811507106
http://www.ncbi.nlm.nih.gov/pubmed/19261850
https://doi.org/10.3389/fnint.2015.00039
http://www.ncbi.nlm.nih.gov/pubmed/26074791
https://doi.org/10.1523/JNEUROSCI.0502-20.2020
https://doi.org/10.1523/JNEUROSCI.0502-20.2020
http://www.ncbi.nlm.nih.gov/pubmed/32859713
https://doi.org/10.1038/s41586-019-1261-9
https://doi.org/10.1038/s41586-019-1261-9
http://www.ncbi.nlm.nih.gov/pubmed/31142844
https://doi.org/10.1038/nn.4287
http://www.ncbi.nlm.nih.gov/pubmed/27110917
https://doi.org/10.1038/s41593-018-0245-7
https://doi.org/10.1038/s41593-018-0245-7
http://www.ncbi.nlm.nih.gov/pubmed/30323275
https://doi.org/10.1038/s41583-021-00455-7
http://www.ncbi.nlm.nih.gov/pubmed/33837376
https://doi.org/10.1523/JNEUROSCI.4029-08.2009
http://www.ncbi.nlm.nih.gov/pubmed/19144844
https://doi.org/10.7554/eLife.62576
https://doi.org/10.7554/eLife.62576
http://www.ncbi.nlm.nih.gov/pubmed/33315010
https://doi.org/10.7554/eLife.04577
https://doi.org/10.7554/eLife.04577
http://www.ncbi.nlm.nih.gov/pubmed/25535793
https://doi.org/10.1016/j.conb.2015.10.002
https://doi.org/10.1016/j.conb.2015.10.002
http://www.ncbi.nlm.nih.gov/pubmed/26496148
https://doi.org/10.1371/journal.pcbi.1012580


81. Vogt K, Schnaitmann C, Dylla KV, Knapek S, Aso Y, Rubin GM, et al. Shared mushroom body circuits

underlie visual and olfactory memories in Drosophila. Elife. 2014; 3:e02395. https://doi.org/10.7554/

eLife.02395 PMID: 25139953

82. Otto N, Pleijzier MW, Morgan IC, Edmondson-Stait AJ, Heinz KJ, Stark I, et al. Input connectivity

reveals additional heterogeneity of dopaminergic reinforcement in Drosophila. Current Biology. 2020;

30(16):3200–3211. https://doi.org/10.1016/j.cub.2020.05.077 PMID: 32619479

83. Huetteroth W, Perisse E, Lin S, Klappenbach M, Burke C, Waddell S. Sweet taste and nutrient value

subdivide rewarding dopaminergic neurons in Drosophila. Current biology. 2015; 25(6):751–758.

https://doi.org/10.1016/j.cub.2015.01.036 PMID: 25728694
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