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Abstract

Magnetoencephalography (MEG) recordings are often contaminated by interference

that can exceed the amplitude of physiological brain activity by several orders of

magnitude. Furthermore, the activity of interference sources may spatially extend

(known as source leakage) into the activity of brain signals of interest, resulting in

source estimation inaccuracies. This problem is particularly apparent when using

MEG to interrogate the effects of brain stimulation on large-scale cortical networks.

In this technical report, we develop a novel denoising approach for suppressing the

leakage of interference source activity into the activity representing a brain region of

interest. This approach leverages spatial and temporal domain projectors for signal

arising from prespecified anatomical regions of interest. We apply this denoising

approach to reconstruct simulated evoked response topographies to deep brain stim-

ulation (DBS) in a phantom recording. We highlight the advantages of our approach

compared to the benchmark—spatiotemporal signal space separation—and show that

it can more accurately reveal brain stimulation-evoked response topographies.

Finally, we apply our method to MEG recordings from a single patient with Parkin-

son's disease, to reveal early cortical-evoked responses to DBS of the subthalamic

nucleus.
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1 | INTRODUCTION

Magnetoencephalography (MEG) is a powerful technique for interro-

gating brain network dynamics (Baillet et al., 2001; Brookes

et al., 2011; De Pasquale et al., 2010; Hämäläinen et al., 1993; Hipp

et al., 2012). Disturbances of network dynamics are increasingly

recognised to contribute to the pathophysiology of neurological con-

ditions such as Parkinson's disease (PD) (Oswal et al., 2013). MEG has

also been used to investigate how therapeutic interventions including

brain stimulation techniques can modulate large-scale brain networks

(Abbasi et al., 2018; Airaksinen et al., 2011; Hartmann et al., 2018;

Litvak et al., 2010; Litvak et al., 2011). Deep brain stimulation (DBS) is
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one example of such a technique that is used to treat PD, which

involves electrically stimulating basal ganglia structures such as the

subthalamic nucleus (STN) (Limousin & Foltynie, 2019; Lozano

et al., 2019).

A significant challenge of MEG is its vulnerability to contamina-

tion from physiological and non-physiological artefacts. MEG record-

ings during brain stimulation are particularly challenging since the

magnitude of the stimulation signal far exceeds that of brain activity

of interest (Oswal, Beudel, et al., 2016; Oswal, Jha, et al., 2016). A

related problem is that source estimation techniques are ill-posed,

meaning that a few hundred channels cannot sufficiently discriminate

brain activity in many thousands of voxels. This issue can partly con-

tribute to a problem known as ‘source leakage’, whereby reconstruc-

tions of true dipolar point sources are spatially spread over several

sometimes spatially segregated voxels, thereby leading to artefactual

correlations between inferred brain sources (Brookes et al., 2012;

Colclough et al., 2015; Hauk et al., 2022). Importantly for brain stimu-

lation studies using MEG, the leakage of stimulation artefacts can pre-

clude the accurate estimation of the effects of stimulation on a brain

region of interest (ROI).

Spatiotemporal signal space separation (tSSS) (Taulu et al., 2004;

Taulu & Kajola, 2005; Taulu & Simola, 2006) is a useful approach for

suppressing interference sources that are external to the MEG sensor

array. In tSSS, a spatial filter derived from spherical harmonic func-

tions is first used to decompose the data into components corre-

sponding to source locations inside and outside the sensor array. A

temporal projector is subsequently applied to remove signal compo-

nents that are highly correlated—representing artefacts—between

these two subspaces. This method has an important shortcoming in

that it does not explicitly account for the fact that artefactual

sources—whose activities can leak into the reconstructed activity of

brain ROIs—can originate from within the brain. Here, we overcome

this limitation by developing an extension of the tSSS approach for

spherical or cuboidal anatomical regions of interest. A spatial filter

derived from spherical harmonics is first used to divide the data into

components originating from within and from outside an ROI (Ozkurt

et al., 2006; Özkurt et al., 2009). Temporal projection is subsequently

applied to remove instantaneously correlated (at zero-lag) compo-

nents representing leakage between these two subspaces. Interest-

ingly, our approach bears resemblance to leadfield-based spatial

filtering (beamspace) algorithms (Cai et al., 2019; Oswal et al., 2014;

Rodríguez-Rivera et al., 2006; Sekihara et al., 2016; Sekihara

et al., 2018), but a key difference is that it is independent of the com-

putation of a forward model.

A number of different algorithms have been developed and

tested for their ability to suppress brain stimulation artefacts during

MEG recordings (Abbasi et al., 2016; Kandemir et al., 2020; Oswal

et al., 2014; Oswal, Jha, et al., 2016). Of these, only tSSS has been

successfully employed for the estimation of brain stimulation-

evoked responses, which are short-lived and tightly correlated to

high-amplitude stimulation pulses and subsequent artefacts

(Bahners et al., 2023; Hartmann et al., 2018; Spooner et al., 2023).

Here, we build on this work and compare the utility and accuracy

of tSSS and our new approach, ROI-based tSSS (ROI-tSSS), for esti-

mating DBS-evoked responses using phantom and patient

recordings.

2 | METHODS

2.1 | Phantom recording for validating estimation
accuracy of stimulation-evoked responses

We have previously described a phantom experiment to characterise

DBS artefacts during MEG recordings (Oswal, Jha, et al., 2016). We

used a CTF current dipole phantom, comprising a spherical plastic

container holding saline (with an inner diameter of 13 cm), in which a

dipolar source was immersed. The dipolar source was driven by

a 27 Hz sinusoidal signal, to mimic activity within the physiological

beta range, and its amplitude was set to 6.7 μA to create a peak in the

power spectrum that slightly exceeded the background noise level. To

allow for monopolar stimulation, a DBS electrode (Medtronic model

3389, with four platinum-iridium contacts with centre-to-centre sepa-

ration of 2 mm) and an anodal reference electrode were additionally

implanted into the phantom. Monopolar DBS was administered using

a Medtronic external stimulator (type 3628) between contact 1 (cath-

ode) of the DBS electrode and the anodal reference. DBS was deliv-

ered at frequencies of 0 (no stimulation condition), 5, 20 or 130 Hz

(pulse width = 60 μs; fixed voltage, amplitude = 3 V). We simulated

evoked responses using this data by epoching continuous data seg-

ments into trials that were locked to a specific phase of the 27 Hz

source.

To create a more realistic phantom simulation, two additional and

related artefacts were incorporated to replicate what is typically

observed in patient recordings. First, low-amplitude movements were

simulated to replicate arterial pulsations and slight head movements

resulting from each heartbeat. These movements were generated by

placing an inflatable balloon under the phantom, which was periodi-

cally inflated with air 60 times per minute using custom-made elec-

tronics. We ensured that the resulting movements of the phantom

were similar in terms of their magnitude to head movements that are

observed in patient recordings. To simulate the second type of arte-

fact, two ferromagnetic extension wires identical to those used in

patient recordings were positioned on the spherical surface of the

phantom. We have previously shown that movements of the ferro-

magnetic wires are related to arterial pulsations and that the interac-

tion of these two phenomena is a major source of artefacts (Litvak

et al., 2010; Oswal, Jha, et al., 2016).

MEG recordings—sampled at 2.4 kHz using a CTF 275 channel

system—were first denoised using either tSSS or our novel method,

ROI-tSSS (see below). A high pass filter (5 Hz) was subsequently

applied before epoching. Trial data were averaged, and topographies

of the simulated evoked response were compared for the different

combinations of stimulation conditions and denoising approaches. A

control condition (‘Standard’) where no denoising was applied is also

included. Simulated dipole time courses were reconstructed for
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visualisation using the ft_dipolefitting function in FieldTrip (Oostenveld

et al., 2011).

2.2 | Extending spatiotemporal signal separation
for regions of interest

tSSS uses a spatial filter to decompose an N channel MEG signal, b

into two components (bin and bout) corresponding to source locations

inside and outside the MEG sensor array (Taulu & Simola, 2006).

b¼
XLin
l¼1

Xl

m¼�l

αlmalmþ
XLout
l¼1

Xl

m¼�l

βlmblm ¼ binþbout ð1Þ

In Equation (1), alm and blm are SSS basis functions, which depend

on sensor geometry and are derived from the gradients of spherical

harmonic functions in spherical coordinates. Lin and Lout govern

dimensions of the SSS basis set and are prespecified as 8 and

6, respectively, (Taulu & Simola, 2006). Equation (1) expressed in

matrix form is as follows:

b¼ Sx¼ SinSout½ � xin
xout

� �
ð2Þ

Sin ¼ a1,�1…aLin,Lin
� �

Sout ¼ b1,�1…bLout,Lout
� �

xin ¼ α1,�1…αLin,Lin
� �T

xout ¼ β1,�1…βLout,Lout

h iT

Equation (2) reveals that SSS coefficients, xin and xout can be com-

puted from the pseudoinverse of the SSS basis (S�) set and the data as

follows:

bx¼ bxinbxout
� �

¼ S�b ð3Þ

Estimates of xin and xout can then be used to estimate bin and bout:

bbin ¼ Sinbxin ð4Þ

bbout ¼ Soutbxout
Building on previous results (Ozkurt et al., 2006; Özkurt

et al., 2009), we show that manipulating the SSS coefficient xin can fil-

ter the SSS signal into separate components originating from within

and from outside a spherical brain ROI (e.g., motor cortex; see Sup-

porting Information S1 for further details). The modified SSS coeffi-

cient for the ROI, bxROI, is given by:

bxROI ¼GROIbxin ð5Þ

where

bxROI ¼ αROI
1,�1…αROI

Lin,Lin

� �T ð6Þ

GROI ¼diag
R5� r5
� �

r2l�2

R2lþ3� r2lþ3

 !
2lþ3
5

 !
: ð7Þ

In Equation (7), GROI is a diagonal matrix with dimensions

Linþ1ð Þ2�1 by Linþ1ð Þ2�1. This dimensionality arises due to the

double summation in Equation (1), which results in a number of terms

for bxin that is equal to the sum of the series of odd numbers from 3 to

2Linþ1. It can be shown that, l for each diagonal element GROI n,nð Þ is
given by the floor function of the square root of n,

ffiffiffi
n

p	 

(Özkurt

et al., 2009).

Importantly in Equation (7), r represents the radius of the ROI and

R is the radius of the sensor array from the SSS expansion origin,

added to the distance between the SSS expansion origin and the cen-

tre of the ROI (Özkurt et al., 2009) (see Figure 1a).

Similarly, the modified SSS coefficient for regions outside the

ROI, bx¬ROI, is as follows:

bx¬ROI ¼G¬ROIbxin ð8Þ

Here, the logical negation symbol, ¬ is used in the subscript to

indicate regions outside of the ROI. G¬ROI is a diagonal matrix with

the same dimensions as GROI and is given by:

G¬ROI ¼diag
r2Lin�2lR2lþ3� r2Linþ3

R2Linþ3� r2Linþ3

 !
2Linþ3
2lþ3

 !
ð9Þ

Consequently, estimates of the signal originating from the volume

of the ROI (bbROI) and from the brain volume external to it (bb¬ROI) are

given by:

bbROI ¼ SinbxROI ð10Þ

bb¬ROI ¼ Sinbx¬ROI ð11Þ

Following the spatial filtering step in tSSS, a temporal filter is

applied to remove correlated signal components (representing arte-

facts) in both bbin and bbout (Taulu & Simola, 2006). In ROI-tSSS, we

apply temporal filtering to remove from bbROI components that are cor-

related between bbROI and bb¬ROI (see Supporting Information S1). This

procedure removes zero-lag correlated signal components from brain

ROI activity and, therefore, offers source leakage correction.

The above procedure assumes spherical ROIs. To achieve

improved control of brain volumes encompassed by an ROI, we

extended our algorithm to include cuboidal ROIs (see Methods in Sup-

porting Information S1).
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2.3 | Construction of power functions

It has previously been shown (Taulu & Kajola, 2005) that the depen-

dence of signal power recovery on l is given by:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
m

f2l,m rα,R,Jinð Þ
r

ð12Þ

where m¼�l…l and

fl,m rα,R,Jinð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

l
2lþ1

r ðððR
0

rα
R

� �lþ2
iX�

l,m θ,φð Þ:Jin rαð Þdr dθ dφ ð13Þ

In Equation (13), R represents the radial distance of the sensor

array from the expansion origin, whilst rα is the radius of the source

volume. This expansion can be used to determine the optimal value

for Lin (see fig. 1 in Taulu & Simola, 2006). We modify this function for

regions of interest by scaling by GROI rð Þ, which is a function of the

ROI radius, r.

fROI
l,m r, rα,R,Jinð Þ¼GROI rð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l

2lþ1

r ðððR
0

rα
R

� �lþ2
iX�

l,m θ,φð Þ:Jin rαð Þdr dθ dφ
ð14Þ

This modified power function allows us to consider the relation-

ship between signal power recovery, r and l: We simulated 100 ran-

domly oriented current dipoles on the surface of a 4 cm (rα) sphere,

whilst R was fixed to 8 cm. The function
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
m
f2

ROI
l,m r, rα,R,Jinð Þ

r
was then

computed for different values of r and l. The results of this simulation

are shown in Figure 1 for spherical and cubic ROIs (for cubic ROIs we

selected dimensions such that the cube fitted perfectly within a

F IGURE 1 The effect of ROI size on signal recovery for spherical and cubic ROIs. Upper panel: (a) highlights the setup of the simulation with
100 randomly oriented sources on the surface of the blue sphere at a distance of 0.04 m from the expansion origin. The sensor distance from the
origin, R is fixed at 0.08 m. Grey spheres represent spherical boundaries of the ROIs that were tested (b) the effect of ROI radius on signal power
and cumulative signal power. When the ROI does not encompass the simulated sources a small proportion of the signal power is recovered and
there is little dependence on L. Signal power recovery and the dependence on L increase as the ROI radius approaches R. Lower panel (c and d) is
as per upper panel, except for a cubic rather than a spherical ROI. For cubic ROIs, we selected the dimensions of the side such that the body
diagonal was equal to the diameter of the corresponding sphere in (a).
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sphere of a particular radius). When the ROI does not encompass

simulated sources, little signal power is recovered as expected and

there is little dependence on l. Signal power recovery and dependence

on l increases as r!R. To preserve the mapping between sensor

space and source space representations when performing source anal-

ysis, we applied the spatial component of the ROI-tSSS filter to the

leadfields using the spm_eeg_montage function.

2.4 | Application of ROI-tSSS for detecting DBS-
evoked responses

We applied the ROI-tSSS algorithm to extract cortical-evoked

responses to 5 Hz monopolar STN DBS in a patient with PD (see

Methods in Supporting Information S1). LCMV beamformer (van Veen

et al., 1997) source localisation was performed for each 5 mm spaced

grid point on the 3D brain volume using the SPM DAiSS toolbox

(https://github.com/SPM/DAiSS). Data used for beamforming each

grid point were processed using the ROI-tSSS algorithm (spherical

ROI with 5 cm radius), before being high pass filtered (5 Hz) and

epoched to the onset of DBS pulses. For comparison, we also per-

formed source localisation after processing with tSSS.

For both phantom and patient recordings, three head position

indicator (HPI) coils were used to facilitate co-registration for source

reconstruction. We used continuous headtracking and employed a

previously described procedure to ensure that estimates of head

position were robust to interferences caused by the presence of fer-

romagnetic wires and DBS pulses (Oswal, Beudel, et al., 2016; Oswal,

Jha, et al., 2016). The full details are provided in the aforementioned

studies, but the overall idea is based on the fact that if head position

is accurately tracked, the pairwise distances between the HPI coils

should stay constant within a recording run. Time points where head

tracking was lost within a recording run could then be identified and

corrected by interpolation, such that the average of the resulting

interpolated values would yield a robust estimate of head position.

Head and sensor locations were always visually inspected for each

subject and compared across runs to make sure that there were no

gross outliers or misregistrations.

3 | RESULTS

3.1 | Phantom recordings: Improved estimation of
evoked response topographies

Figure 2 shows the topography of the simulated evoked response for

the different monopolar DBS frequencies and pre-processing

approaches. When no denoising is applied (‘Standard’) the topogra-

phies are inaccurately reconstructed across all DBS settings. This

reflects the fact that monopolar DBS has non-linear effects that result

F IGURE 2 Application of spatiotemporal signal separation approaches to reconstructing evoked responses in a phantom recording. Left:
Topographies of the simulated dipole at the four different DBS settings (no stimulation, 5 Hz monopolar DBS, 20 Hz monopolar DBS and 130 Hz
monopolar DBS), after pre-processing the data with one of four different approaches (standard pre-processing, tSSS, ROI-tSSS sphere and ROI-
tSSS cube) are shown. The colour bars represent field strength measured in femtoteslas (fT). Plots to the right show the reconstructed time
courses of the simulated sinusoid, for each DBS setting and each pre-processing approach. The ROI-tSSS sphere and ROI-tSSS cube approaches
reproduce the dipole topography well across all stimulation conditions.
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in artefacts across a range of frequencies (Oswal, Jha, et al., 2016).

The ROI-tSSS approach—using either a spherical or cubic ROI centred

on the simulated dipole—provides accurate reconstruction of topogra-

phies across all stimulation frequencies.

For each pre-processing approach, we computed the mean

squared error (MSE) between the sensor timeseries of each stimula-

tion condition and the corresponding no-stimulation condition

(Figure 3). ROI-tSSS outperforms tSSS for all stimulation conditions

with the difference being particularly pronounced at 130 Hz, which is

the most commonly employed clinical DBS frequency. Figure 2 also

shows estimated time courses for the simulated dipole for the differ-

ent DBS conditions and pre-processing approaches.

3.2 | Patient recording: Effects of STN DBS on
cortical networks

Figure 4a shows the mean evoked response, averaged over trials and

channels, after constructing a spherical ROI around the right motor

cortex at MNI coordinates 37 �18 53 (Litvak et al., 2012). There are

early peaks after 2.5 and 4.2 ms. The sensor topographies of these

two peaks are also shown, revealing the activation of parietal sensors.

Finally, LCMV beamformer reconstructed source amplitudes at the

timings of the evoked response peaks are displayed on a cortical mesh

after processing with tSSS (Figure 4b) and ROI-tSSS (Figure 4c). Fron-

tal and temporal activations at 2.5 and 4.2 ms are observed with both

F IGURE 3 The mean squared error (MSE) of the simulated dipole
topography, computed between different DBS conditions and the no
stimulation condition is plotted for all four pre-processing approaches
in the phantom recording. The lowest MSE across all stimulation
conditions is achieved by the ROI-tSSS sphere and the ROI-tSSS cube
approaches. The ROI-tSSS approaches offer the greatest benefit at

clinically deployed DBS frequencies of 130 Hz.

F IGURE 4 (a) The ROI-tSSS approach is applied to detect the evoked response to monopolar 5 Hz DBS of the right subthalamic nucleus in a
patient with Parkinson's disease. The upper panel shows the sensor level evoked response (averaged across trials and channels after baseline
correction relative to a 20 ms window [�0.05 to �0.03 s] prior to the onset of the stimulation pulse at time 0) after constructing a 5 cm region of
interest centred on the right motor cortex at MNI co-ordinates 37–18 53; the lower panel shows the corresponding topography of the evoked
response peaks at 2.5 and 4.2 ms. (b and c) Right hemispheric source level evoked response amplitudes at the times of the two peaks are
extracted using LCMV beamforming and projected onto a cortical mesh after applying tSSS in (c) and ROI-tSSS in (d). In (d), for each grid point,
the ROI-tSSS sphere algorithm (with a 5 cm radius) was applied prior to beamforming. There are focal frontal, temporal and parieto-occipital
regions demonstrating high-amplitude evoked responses.
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tSSS and ROI-tSSS. Interestingly, with ROI-tSSS, the frontal activa-

tions are more anterior—including regions such as the middle and infe-

rior frontal gyri—and there are also activations in parieto-occipital

regions that are not seen with tSSS (see the Discussion section).

4 | DISCUSSION

The overall goal of this report is to build on and to improve existing

methodologies for using MEG to characterise the effects of brain

stimulation techniques on large-scale brain networks in health and dis-

ease. To this end, we first developed an extension of the widely used

tSSS algorithm for anatomical regions of interest (ROI-tSSS). ROI-tSSS

involves the construction of separate spatial projectors for a brain

ROI and for brain areas outside the ROI. A temporal projector is then

used to remove signal components—representing leakage artefacts—

that are common to both the ROI and areas outside the ROI. Our

approach allows for the specification of both spherical and cuboidal

ROIs and may be useful as a leakage suppression approach prior to

source reconstruction. In contrast, previous studies addressing the

issue of source leakage have proposed post-hoc time series orthogo-

nalization approaches that are employed following source reconstruc-

tion (Brookes et al., 2012; Colclough et al., 2015). Of interest,

although ROI-tSSS is independent of forward model specification,

there are related ROI-based spatial filtering techniques, which rely on

eigendecomposition of source leadfields within an ROI (Oswal

et al., 2014; Rodríguez-Rivera et al., 2006; Sekihara et al., 2018). It

would be interesting to compare such leadfield-based approaches to

ROI-tSSS in future studies.

Using phantom recordings, we have shown that ROI-tSSS per-

forms favourably compared with tSSS for reconstructing a simulated

evoked response under different monopolar DBS conditions. It is

important, however, to bear in mind certain limitations when consid-

ering the results of our phantom recordings.

First, we simulated artefacts that are typically seen in externalised

patient recordings. In such cases, the DBS electrodes are temporarily

connected to ferromagnetic wires that leave the scalp to allow for

research recordings for a few days prior to a second procedure in

which the wires are removed and the electrode is connected to a

stimulator implanted in the chest wall. While it is possible that the

magnetic fields generated during externalised recordings may be dif-

ferent to those generated with the stimulator implanted within the

chest wall (see Oswal, Jha, et al., 2016 for a further discussion of this),

it is worth pointing out that tSSS has proven to be an effective

method for artefact suppression even with implanted devices in situ

(Bahners et al., 2023; Spooner et al., 2023). Second, the phantom

recordings were designed to reflect a scenario where we could be

sure of the ground truth for comparisons between tSSS and ROI-tSSS.

Patient recordings are undoubtedly more complex due to additional

physiological artefacts and the fact that the evoked responses to each

stimulation pulse will contain multiple interacting sources, whose

activity patterns are often correlated (see below). Finally, although in

our phantom recordings the simulated evoked response was not tem-

porally locked to the onset of each stimulation pulse, we did include a

130 Hz stimulation frequency, which we have previously shown to

result in continuous ringing artefacts between each 7.7 ms spaced

stimulation pulse (Oswal, Jha, et al., 2016). This ensured that each

simulated evoked response occurred on the background of continu-

ous artefacts and was within 7.7 ms of a stimulation pulse. Interest-

ingly, this time window of 7.7 ms is comparable to the latency of

short DBS-evoked responses (Miocinovic et al., 2018). In this 130 Hz

stimulation condition, we observed that ROI-tSSS provided the great-

est improvement in the MSE of topography reconstruction compared

with tSSS.

In MEG recordings from a single PD patient undergoing STN

DBS, we compared the spatial patterns of evoked responses at the

source level after data processing with tSSS and ROI-tSSS. In both

cases, there were early frontal and temporal activations, consistent

with previous findings from invasive electrocorticography studies

(Chen et al., 2020; Jorge et al., 2022). There were, however, also

important differences observed in the spatial activation patterns seen

with tSSS and ROI-tSSS. Frontal activations were more anterior and

focal with ROI-tSSS and there were also parieto-occipital activations,

which could be consistent with the existence of functional connectiv-

ity networks between these cortical areas and the STN (Litvak

et al., 2011). In addition, sensorimotor cortical activations observed

with ROI-tSSS were significantly smaller and much more focal. These

differences may reflect improved leakage mitigation and signal-

to-noise ratio offered by ROI-tSSS, which in turn could lead to

improved spatial resolution and source estimation.
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SUPPORTING INFORMATION

Additional supporting information can be found online in the Support-

ing Information section at the end of this article.
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