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Abstract

Stimulation optimization has garnered considerable interest in recent years in order to effi-

ciently parametrize neuromodulation-based therapies. To date, efforts focused on automati-

cally identifying settings from parameter spaces that do not change over time. A limitation of

these approaches, however, is that they lack consideration for time dependent factors that

may influence therapy outcomes. Disease progression and biological rhythmicity are two

sources of variation that may influence optimal stimulation settings over time. To account for

this, we present a novel time-varying Bayesian optimization (TV-BayesOpt) for tracking the

optimum parameter set for neuromodulation therapy. We evaluate the performance of TV-

BayesOpt for tracking gradual and periodic slow variations over time. The algorithm was

investigated within the context of a computational model of phase-locked deep brain stimu-

lation for treating oscillopathies representative of common movement disorders such as

Parkinson’s disease and Essential Tremor. When the optimal stimulation settings changed

due to gradual and periodic sources, TV-BayesOpt outperformed standard time-invariant

techniques and was able to identify the appropriate stimulation setting. Through incorpo-

ration of both a gradual “forgetting” and periodic covariance functions, the algorithm main-

tained robust performance when a priori knowledge differed from observed variations. This

algorithm presents a broad framework that can be leveraged for the treatment of a range of

neurological and psychiatric conditions and can be used to track variations in optimal stimu-

lation settings such as amplitude, pulse-width, frequency and phase for invasive and non-

invasive neuromodulation strategies.

Author summary

Brain stimulation is an effective intervention for medically refractory neurological and

psychiatric disorders. Widespread clinical usage is however held back by the time burden

required to determine optimal patient-specific parameters which currently relies on an
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empirical process of trial and error. Additionally, clinical approaches to date have

assumed that the mapping between effective stimulation settings and patient’s symptom

severity is fixed over time. There is increasing evidence however that symptom severity

and profile can fluctuate over multiple timescales due to a variety of factors such as medi-

cation intake, biological rhythms, and disease progression. Here, we introduce a time

varying Bayesian Optimization algorithm to maintain optimal parameters for controlling

neurostimulation amidst shifting physiological demands. We provide an in-silico evalua-

tion of this technique using a computational model of synchronous neural activity. Our

results demonstrate that the proposed algorithm outperforms static controllers and can

simultaneously track gradual and periodic variations in optimal stimulation parameters

over time. This provides preliminary evidence that our proposed framework enables

dynamic neuromodulation. This approach can be leveraged to improve treatment delivery

for complex disorders such as epilepsy and Parkinson’s disease for which time varying fac-

tors can compromise treatment efficacy.

1. Introduction

Over the last four decades neuromodulation has been adopted as an adjunct therapy for a vari-

ety of treatment resistant neurological and psychiatric disorders [1–8], whereby electrical or

magnetic stimulation is applied to certain brain regions to reduce disease symptoms. Clinical

application of invasive and non-invasive stimulation-based therapies (i.e. Deep Brain Stimula-

tion, Transcranial Magnetic Stimulation, etc.) have so far relied on empirical selection of

patient-specific stimulation parameters [9,10]. Stimulation is parametrized according to both

symptom severity and side-effects, where an ideal parameter set is one that minimizes both.

Due to the high dimensionality of the stimulation parameter space, manual identification of

effective therapy parameters can be a difficult and time-consuming process [11]. Another

drawback, recently acknowledged by the neuromodulation community, are potential limita-

tions associated with titrating therapies based on a brief disease snapshot available from day-

time clinical assessments [12].

Optimization and machine-learning techniques have received considerable interest for effi-

cient identification of patient-specific stimulation parameters [13,14]. These techniques often

focus on sequential evaluation of samples from the stimulation parameter space to characterize

and guide future exploration of the parameter space. Implementation of these approaches in

practice requires objective quantification of each sample selected from the parameter space in

terms of its effect on patient’s symptom severity. Biomarkers (i.e., signals that correlate with

specific states of health or disease) can be derived from invasive and non-invasive recordings,

and utilized to determine the relationship between therapy settings and performance. A variety

of such signals have been explored; for instance synchronous neural activity in the beta band

for controlling stimulation in Parkinson’s disease and Essential Tremor, and gamma power in

treatment resistant depression [15–19].

Although several optimization approaches have been explored in both clinical and compu-

tational settings [20–25], a limitation of these is that the therapy parameter space is assumed to

be time-invariant (i.e., fixed). In practice, a patient’s symptom severity can vary across multiple

timescales due to factors, such as changes over several hours due to medication intake [15] or

the sleep/wake circadian rhythm [12,26,27]; or fluctuations at a much longer timescale due to

disease progression [28]. For this reason, optimization approaches which focus on identifica-

tion of a time-invariant, or stationary, optimal stimulation parameter set may provide
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suboptimal therapy as the patient’s symptoms, or the mapping between stimulation settings

and performance, drifts in response to these temporal variations.

To address these limitations, we designed a time varying controller that can maintain opti-

mal stimulation performance in the face of shifting physiological demands that might be

expected from factors highlighted above. This controller is based upon Bayesian Optimization

(BayesOpt) with modifications to enable time-adaptive therapy optimization (Time-Varying

Bayesian Optimization–TV-BayesOpt).
We evaluated the time-varying controller’s performance using a population model of syn-

chronous neural activity–coupled Kuramoto oscillators [29]. Kuramoto oscillators and their

response to external perturbation, such as deep brain stimulation (DBS), have been used as a

model for common movement disorders such as Parkinson’s disease, and Essential Tremor

[30]. These pathologies, sometimes referred to as oscillopathies [31], exhibit increased neural

synchrony and rhythmic activity across disease circuits when patients are symptomatic [32,33]

versus suppression of associated neural rhythms when patient’s symptoms are effectively man-

aged [15,34,35]. This close relationship licenses our use of a model of neural synchrony and its

control via external perturbation as a proxy to understand modulation of clinical symptoms

with brain stimulation [36–39]. Performance of the TV-BayesOpt algorithm for tracking peri-

odic drifts, representative of fluctuations due to the sleep/wake or medication schedule, and

linear drifts, representative of more gradual variations due to disease progression, were investi-

gated. In contrast to BayesOpt, TV-BayesOpt was continuously able to track variations in the

optimal stimulation parameter set and resulted in maintained suppression of the modelled bio-

marker, minimizing symptom rebound over the optimization process. We demonstrate the

utility of our time-varying controller in the context of pathological tremor while optimizing

stimulation timing during phase specific DBS. However, our observations and approach can

readily be extended to other neurological and psychiatric conditions, underpinned by rhyth-

mic neural activity, and used for the optimization of various stimulation parameters (i.e.,

amplitude, pulse width, frequency, and phase).

2. Materials and methods

2.1. Overview of methods

In this section, we detail the model used to evaluate the performance of our time-varying con-

troller whereby external perturbations are optimally parametrized in order to suppress a rhyth-

mic biomarker. We then familiarize the reader with the specifics of the BayesOpt algorithm

and outline our choices, namely the surrogate model (i.e., the model used to estimate the shape

of the true mapping between symptom severity and stimulation parameters) and the acquisi-
tion function (i.e., how to select the next sample from the parameter space). We finally intro-

duce the spatiotemporal covariance functions used for a time-varying implementation of the

BayesOpt algorithm (TV-BayesOpt) that incorporate prior knowledge regarding the form of

the objective function along with its anticipated drift in time.

2.2. Kuramoto model of a synchronous biomarker and deep brain

stimulation

The Kuramoto model provides a simple mathematical model to describe synchronization in

biological systems [40]. In a variety of neurological disorders, pathologically increased neuro-

nal synchrony, reflected as an increase in power within a specific frequency band, is observed

to correlate with disease symptom severity [15–18]. In this specific case, the Kuramoto model

represents a population of neurons as N coupled oscillators that oscillate about some center
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frequency, ω. To mimic synchronous activity associated with a specific disease pathology, the

value of ω is selected to lie within a frequency band that is observed to correlate with the sever-

ity of the associated disease’s symptoms. In this study, to model synchronous oscillatory activ-

ity characteristic of Essential Tremor, where tremor is observed to occur between 4–12 Hz, ω
was selected as 8 Hz [41]. The frequency of each oscillator simulated in the population was

selected from a Gaussian distribution centered around 8 Hz with a standard deviation of

0.0075. This resulted in a distribution of oscillator frequencies in the population between

8 ± 0.15 Hz. In a practical application, ω would need to be identified in a patient-specific man-

ner. This can be done by using accelerometer recordings from tremor patients to determine

the patient specific average tremor frequency and associated frequency variability. Alterna-

tively, for other neurological disorders ω may be identified using non-invasive and invasive

neural biomarkers which can be derived using electroencephalogram (EEG) and local field

potential (LFP) recordings. The strength of interaction between the oscillators is captured by a

coupling term γ, where the influence of the jth oscillator on the ith oscillator is described in

terms of phase progression (i.e., speeding up or slowing down) of the ith oscillator depending

on their difference in phase.

dyi

dt
¼ oi þ

g

N

XN

j¼1

sinðyj � yiÞ ð1Þ

To simulate the influence of electrical stimulation such as DBS on the behavior of the popu-

lation, the model has been extended to account for the effects of exogenous perturbations [42].

This extended model is represented as:

dyi

dt
¼ oi þ

g

N

XN

j¼1

sinðyj � yiÞ þ IX tð ÞZ yið Þ ð2Þ

where I is the intensity of stimulation, X(t) is a function whose value equals 1 at time t if stimu-

lation is applied and is 0 otherwise, and Z(θi) is the phase response curve (PRC), which

describes the response of the ith oscillator to stimulation (i.e. speeding up or slowing down)

depending on the precise timing of the stimulation with respect to the phase of ith oscillator, θi.

To simulate effective phase-locked stimulation, I was selected as a stimulation intensity value

that resulted in desynchronization of population activity during continuous, 130 Hz high fre-

quency stimulation. In clinical practice identification of an effective stimulation intensity

value, or amplitude, is undertaken by systematic, stepwise evaluation of stimulation ampli-

tudes from the clinical parameter space [43]. Neurons have been classified into two distinct

categories based on their PRCs, that characterise their response to perturbation: type I PRCs

either exclusively delay or advance spike firing, whereas type II PRCs can both advance or

delay dependent upon the specific phase at which stimulation is delivered [44]. Cagnan et al.

(2017) have demonstrated that neural oscillators in the context of pathological tremor exhibit

type II PRCs [45]. Therefore, in this study, the PRC is described as Z(θi) = −sin(θi).

Under certain assumptions, the Kuramoto model can be solved to express the behaviour of

each oscillator in terms of the order parameters, ρ and ψ, describing the population’s mean

phase-coherence and mean phase, respectively.

dyi

dt
¼ oi þ grsin c � yið Þ þ IX tð ÞZ yið Þ ð3Þ

The population’s mean phase-coherence, ρ, represents synchrony where ρ = 0 and ρ = 1

correspond to either complete desynchrony or synchrony of the population, respectively. In
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this manner, ρ can be used as a control signal, as currently used in adaptive DBS to capture the

instantaneous biomarker power, or level of synchronization, in specific frequency bands

[37,46]. In line with clinical and experimental literature, we assume that lower levels of ρ corre-

sponds to reduced disease symptoms while higher levels of ρ reflects increased symptom sever-

ity. The performance of the TV-BayesOpt algorithm can therefore be assessed by quantifying

how the precise stimulation timing i.e., the optimal ψ at which to apply stimulation, or inten-

sity of stimulation can minimize population synchrony (in terms of ρ).

The objective function (i.e., the mapping between stimulation settings and symptom sup-

pression) for the TV-BayesOpt algorithm is represented as the effect of phase-locked stimula-

tion on neural synchrony (ρ). This can be quantified with an amplitude response curve (ARC)

where the ARC represents the change in population synchrony (ρ) due to stimulation deliv-

ered at a particular phase (ψ). The ARC therefore represents the underlying objective function

where certain phases of stimulation may increase or decrease population synchrony. The

shape of a population ARC can be varied over time by updating the PRC (Z(θi)) for the Kura-

moto oscillators to emulate gradual or periodic changes.

2.3. Bayesian optimization

2.3.1 Formulation of the surrogate model—the Gaussian Process prior. To estimate the

form of the ARC that maps from stimulation parameters to population synchrony (i.e., the

objective function), we implemented a surrogate model based on a Gaussian Process (GP)

prior. The GP prior model can be thought of as a probability distribution over a set of non-lin-

ear regression functions (as opposed to a Gaussian distribution which is a set over variables).

This permits efficient estimation of a mean function, as well as its relative uncertainty across

the parameter space, indicating the confidence in the evaluated objective function for each

parameter value.

The objective function f(x) is fully defined by its mean μ(x) and covariance K(x, x0), that

form sufficient statistics such that f ðxÞ � GPðmðxÞ;Kðx; x0Þ), where x in this context are the

stimulation parameters to be explored. The covariance function describes the relationship

between points in the parameter space, and is vital in determining the form (e.g., smooth-

ness, or periodicity) of the estimated objective function. Thus Ks(x, x0) describes the spatial
covariance (i.e., the space between parameter x and its neighbour x’). Our choice of covari-

ance function is described later (see section “2.3.3 Spatial Covariance Function Selection”).

The mean and covariance functions allow us to derive a joint distribution of the noisy out-

puts y (previously sampled simulation parameters) and the estimated value of the objective

function (mapping between stimulation settings and symptom suppression) f* evaluated at a

new sample point x* in the parameter space. This is commonly defined as:

y

f∗

" #

�
mðxÞ

mðx∗Þ

" #

;
Ksðx; xÞ þ s2

nI Ksðx; x∗Þ

Ksðx∗; xÞ Ksðx∗; x∗Þ

" # !

ð4Þ

where y � GPðμðxÞ;Ksðx; xÞ þ s2
nIÞ; x ¼ ½x1; . . . ; xn�and y ¼ ½y1; . . . ; yn�. As additional sam-

ples from the parameter space are evaluated, the prior is updated to form a posterior distribu-

tion to improve the model’s approximation of the shape of the objective function, f(x).

Conjugacy between the prior and likelihood function (i.e. a function which estimates how

probable it is to observe the outcome values y at the sampled values x) allows the posterior to

be computed analytically by omitting the evidence term (i.e. the integral of the likelihood func-

tion over the entire parameter space). The predictive distribution can therefore be written as

pðf∗jDn; x∗Þ � Nðm∗; s
2

∗Þ ð5Þ
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Where Dn = {x,f} represents the previously sampled parameter values and their respective out-

come values and the posterior distribution is defined as

m∗ ¼ Ksðx∗; xÞ½Ksðx; xÞ þ s
2

nI�
� 1y ð6:aÞ

s2

∗ ¼ Ksðx∗; x∗Þ � Ksðx∗; xÞ½Ksðx; xÞ þ s
2

nI�
� 1Ksðx; x∗Þ ð6:bÞ

2.3.2. Acquisition function. The acquisition function is used to identify regions of the

parameter space which should be tested during the optimization process. To determine the

next sample to test during the optimization process, the acquisition function α(x) uses the cur-

rent estimate of the underlying surrogate model and calculates the expected utility of all sam-

ples in the parameter space. The next sample to be tested is subsequently selected as the sample

point x* which minimizes the acquisition function:

x∗ ¼ argmin
x∗

aðx; DnÞ ð7Þ

A Gaussian Process—Lower Confidence Bound (GP-LCB) acquisition function was chosen

for the BayesOpt algorithm as it allows flexible tuning of parameter space exploration during

the optimization process. The GP-LCB is defined as

a∗ðx∗Þ ¼ m∗ðx∗Þ � kns∗ðx∗Þ ð8Þ

where the parameter κn rescales α* the uncertainty estimate of the GP. To balance between

exploration of under sampled regions of the parameter space, or exploit already sampled

regions, the value of κn in the acquisition function is chosen according to the specific needs of

the user where high κn values favour exploration, and low κn values favour exploitation of the

parameter space. The role of κn for guiding this exploration-exploitation trade-off when sam-

pling from the parameter space between optimization steps is illustrated in Fig 1 in which we

show an example of either maximally explorative or exploitative acquisition functions.

Fig 1. Parameter space exploration in comparison to exploitation for the selection of samples during Bayesian Optimization. Panels A and B illustrate the

true (dotted black line) and estimated (solid blue line) shape of the underlying objective function. The confidence bounds for the estimated shape of the

objective function are highlighted in pale blue while the associated samples previously taken and used for the estimation are represented as grey circles.

Selection of the next parameter value to be tested (displayed as a red circle) is subsequently determined as the minimum of an acquisition function calculated

from the mean and confidence bounds of the current estimated shape of the objective function. Panels C and D illustrate the corresponding lower confidence

bound acquisition function, where the value k determines whether the algorithm prioritizes exploring regions of the parameter space where there is greater

uncertainty (exploration) or prioritizes selecting regions of the parameter space where there is less uncertainty (exploitation).

https://doi.org/10.1371/journal.pcbi.1011674.g001
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2.3.3. Spatio-temporal covariance functions. To track a dynamically varying set of opti-

mal therapy parameters, we eschewed the common assumption that the objective function is

time-invariant. When applied to time-varying systems, the standard BayesOpt routine will

exhibit diminished performance as it assumes all samples have equal contribution to the cur-

rent estimate of the objective function. In contrast, a TV-BayesOpt algorithm weighs the con-

tribution of previously tested samples to the current estimate based on the time at which

samples were taken in relation to the current estimation step. Sources of temporal variation

which lead to changes in the optimal parameter(s) may be gradual (e.g., linear), such as during

disease progression, or due to other factors such as biological rhythms, like the circadian sleep-

wake cycle or medication cycles (e.g., periodic). The goal of the TV-BayesOpt algorithm is

thus to find the optimal parameter set for a given time, i.e., the parameters which provide the

best suppression of symptoms, and to subsequently track the development of this parameter

set over time.

To meet these requirements, a spatio-temporal covariance function was constructed. The

spatio-temporal covariance function was comprised of two subcomponents which are referred

to as the spatial and temporal covariance functions. The spatial covariance function in this con-

text is equivalent to the covariance function used for time-invariant BayesOpt which captures

the prior knowledge regarding the shape of the objective function. On the other hand, the tem-

poral covariance function captures the anticipated variation in the shape of the objective func-

tion over time, i.e., rescaling the relevance of previously sampled data in relation to the most

recent sample. The resulting spatio-temporal covariance function, ~K~ðx; x0Þ, is formulated as the

Hadamard product of the spatial, Ks(x,x0), and the temporal covariance functions, Kt(t,t0):

~K~ðx; x0Þ ¼ Ksðx; x
0Þ � Ktðt; t

0Þ ð9Þ

A multitude of covariance functions exist across the field of machine learning that are capa-

ble of describing complex topologies [47]. The performance of the BayesOpt algorithm is thus

dependent on the selection of an appropriately shaped covariance function for the problem

that is being investigated.

Spatial covariance function selection

Here, we aim to identify an optimal phase for phase-locked stimulation to suppress a rhythmic

biomarker of disease. Therefore, the parameter space (target phase values) is periodic, where

-π and π radians represent the same point in the parameter space. Therefore, the spatial covari-

ance function (i.e., the covariance between target stimulation phases in the parameter space)

was selected to also be periodic using the exponential sine squared covariance function:

Ks x; x0ð Þ ¼ exp �
2sin2 pjx� x0 j

Tx

� �

lx
2

0

@

1

A ð10Þ

where hyperparameters lx and Tx are the lengthscale and period (incorporating our prior

knowledge of the periodicity of the parameter space).

Temporal covariance function selection

For biological systems, there are several sources of variations in the shape of the objective func-

tion over time, including disease progression (leading to monotonic changes) and biological

ryhthms such as the circadian sleep-wake cycle (leading to periodic changes), or a combination

of the two. To overcome these temporal variations, we outline the selection of appropriate
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temporal covariance functions in the following sections, summarizing the topology of these

covariance functions in Fig 2.

Temporal covariance function–gradual “Forgetting”

To accommodate gradual variations in the shape of the objective function a ‘forgetting’ covari-

ance function that reduces the influence of older samples on the current estimate can be imple-

mented, Fig 2A (i-iii). Bogunovic et al. (2016) introduced a covariance function [48], defined as

Kt t; t0ð Þ ¼ ð1 � �Þ
jt� t0 j

2 ð11Þ

where t is the current sample time, t’ is the time at which previous samples were taken and � is

referred to as the forgetting factor. The forgetting factor, �, has a value between [0, 1) which

determines how quickly the contribution of previously taken samples to the current estimate

are reduced. A forgetting factor � = 0 corresponds to no data being forgotten and all previous

samples contributing equally to the estimate of the objective function, while � values close to 1

correspond to previous data samples being forgotten so fast that only the current sample is used

to estimate the objective function.

Fig 2. Time-Varying objective functions and their respective covariance functions. The various drifts explored in this section are

illustrated for a periodic objective function with respect to the parameter of interest (stimulation phase). This objective function is

allowed to drift according to three cases: gradual (A.i), periodic (B.i), and the superposition of the two (C.i). At each time-step in the

optimization, samples from the objective function are weighed by their respective temporal covariance function (depicted in panels A-C.

ii). This resultant weighting is illustrated in panels A-C.iii in the colour gradient of the drifting objective function, with brighter colours

representing a stronger sample weight.

https://doi.org/10.1371/journal.pcbi.1011674.g002
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An appropriate value of � can be learned using past data through maximum likelihood esti-

mation or empirically selecting � to reduce the contribution of previous samples based on a

specified half-life:

� ¼ l ¼
ln 2

t1=2

ð12Þ

where λ corresponds to the half-life decay factor and t1/2 defines half-life, specified as number

of samples, i.e. a t1/2 value of 100 corresponds to the objective function value associated with

the 100th last sample taken contributing only 50% of its orignal value to the current estimate of

the surrogate model.

Temporal covariance function–periodic

To accommodate repeating variations in the shape of the objective function, a periodic covari-

ance function can be implemented to weight the contribution of previously sampled data

based on specific time points in the cycle at which the samples were taken, Fig 2B (i-iii). In this

manner, the contribution of samples taken at time points near the same parts of the cycle are

weighted more similarly to those taken at other time points in the cycle which are weighted

less. This behaviour can be captured similar to the spatial covariance function by using the

exponential sine squared covariance function.

Kt t; t0ð Þ ¼ exp �
2 sin2 pjt� t0 j

Tt

� �

lt;p
2

0

@

1

A ð13Þ

where Tt is the temporal period of the underlying biomarker oscillation (defined with the same

units as t) and lt,p, the length-scale, controlling the amplitude of the temporal oscillation. In prac-

tice, the units of Tt will depend on the sampling protocol and may be defined in either sample

counts or physical timescales such as hours or minutes. Furthermore, Tt can be estimated empiri-

cally by tracking the variation in symptom suppression under fixed stimulation parameters.

Temporal forgetting-periodic covariance function

For implementations in real-life scenarios where both gradual and periodic variations may be

superimposed, the forgetting and periodic temporal covariance functions can be combined,

Fig 2C (i-iii). Doing so produces the temporal covariance function below which is the product

of the forgetting covariance function and the periodic covariance function.

Kt t; t0ð Þ ¼ ð1 � �Þ
jt� t0 j

2 exp �
2 sin2 pjt� t0 j

Tt

� �

l2t;p

0

@

1

A ð14Þ

where �, lt,p and Tt are the covariance function hyperparameters as described above in the pre-

vious sections. This temporal covariance function is used to reduce the contribution of older

samples on the current estimate while also flexibly tracking periodic variations in the shape of

the objective function over time, as depicted in Fig 2C (ii).

2.4. Simulation details

The Kuramoto model of DBS was initially simulated for a 200 s period to allow the model to

reach its steady state behaviour. The initial phase of each oscillator in the population was

selected from a uniform distribution between [0, 2π] at the start of the simulation. After 200 s,
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the model was subsequently simulated for 3000 optimization steps where each optimization

step corresponded to a 58 s simulation time. During each optimization step, phase-locked

stimulation at a target phase value was applied only during the last 8 s of the 58 s simulation

period. The initial 50 s of each optimization step was included to allow the model to return to

its steady state following application of phase-locked stimulation in the previous optimization

step. The effectiveness of DBS after each optimization step, y, was quantified as the normalized

change in the mean phase-coherence of the population during the stimulation period from its

baseline value:

y ¼ Dr ¼
rstim � rbaseline

rbaseline
ð15Þ

where rstim is the phase-coherence of the population averaged over the 8 s stimulation period

and rbaseline is the baseline population phase-coherence, calculated over the 25 s period prior to

stimulation application.

To initiate the TV-BayesOpt algorithm, data from the parameter space was needed. To this

end, 12 equally spaced samples between [-π, π] were tested to coarsely characterize the popula-

tion response to phase-locked stimulation at different stimulation phase values. Following this,

selection of subsequent phase values was determined by the TV-BayesOpt algorithm as

described above.

Drifts in the objective function (mapping between stimulation settings and symptom sup-

pression) were simulated by incrementally adding a phase offset value, Δθ, to the population

PRC: i.e., ZðyjÞ ¼ � sinðyj þ DyÞ. This corresponded to the location of the optimal stimulation

phase, ψ*, being incrementally varied over the simulation duration. This is illustrated in Fig 3

where the change in population ARC, which represents the change in population synchrony

due to stimulation delivered at a particular phase (ψ), and PRC are highlighted.

At each optimization step, the associated regret of the algorithm was calculated as

R ¼ f ðc∗
kÞ � f ðctargetk

Þ ð16Þ

Where c
∗
k is the location of the true optimum value for phase-locked stimulation at optimiza-

tion step k, ctargetk
is the stimulation phase value tested at the kth optimization step, f(*) is the

measured objective function value in response to stimulation at the specified input phase

value, i.e. the change in the population mean-phase coherence due to stimulation at the speci-

fied input target phase value. Thus, at each optimization step the regret quantified the differ-

ence between the suppression achieved by the algorithm in comparison to the maximum

possible suppression that was achievable at that optimization step. In a practical implementa-

tion this would correspond to the difference between the symptom suppression achieved by

the algorithm, objectively quantified based on an accelerometer or LFP power signal at the fre-

quency band of interest recorded from a patient, and the maximum symptom suppression that

was possible at that optimization step. The overall performance of the algorithm at each step

over the optimization process was subsequently quantified using the cumulative regret,

defined as

CR ¼
Pn

k¼1
ðf ðc∗

kÞ � f ðctargetk
ÞÞ

n
ð17Þ

where n is the total number of optimization steps. The cumulative regret thus quantifies the

total regret that is accumulated over the entire optimization process.

A gradual drift was simulated as a phase offset advancing from 0 to—π over 3000 optimiza-

tion steps, a periodic drift was simulated as a sinusoidal phase offset advancing from 0 to–π
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and returning back to 0 to over 100 optimization steps, and lastly the superimposed gradual

and periodic drifts were simulated as the superposition of the gradual and periodic drifts. For

each simulated scenario, the hyperparameters of the utilized temporal covariance functions

were independently selected based on the anticipated temporal drift in the data. In this man-

ner, simulations of only gradual or periodic drifts in the phase offset utilized gradual “for-

getting” or periodic temporal covariance functions in the algorithm, respectively. Meanwhile

in the superimposed drift scenario, the hyperparameters for the gradual “forgetting” and peri-

odic temporal covariance functions were respectively selected based on these anticipated com-

ponents of the overall simulated drift. For a real-world implementation, longitudinal

recordings of biomarker signal(s) (derived from an accelerometer or electrophysiological

recordings) should be undertaken prior to algorithm deployment to characterize patient-spe-

cific temporal variations in therapy (potentially due to the 24-hour circadian rhythm or patient

medication cycles). These characterized temporal variations can be subsequently incorporated

as a priori information for the algorithm when selecting appropriate hyperparameter values,

i.e. the periodic covariance function period.

Finally, sensitivity analyses were conducted to investigate the influence of the temporal

covariance forgetting factor, �, and period, Tt, on the TV-BayesOpt algorithm’s performance at

tracking a gradual and periodic temporal drift and purely periodic temporal drift, respectively.

Model simulation, post-processing and signal analysis were conducted using custom scripts

developed in MATLAB (MathWorks, Inc., Natick, MA). The source code used to produce the

Fig 3. Illustration of Dynamic Variation of the population ARC and PRC. Illustration of the shape of the initial population ARC corresponded to a PRC of Z
(θi) = −sin(θj) at the first optimization step (t = 1). By incrementally adding an offset value, Δθ, to the PRC, the shape of the ARC and location of the optimum

phase value for phase-locked stimulation, ψ*, were gradually varied over the optimization process. For each PRC and ARC fmax and fmin correspond to the

phase trigger values that produced the maximum and minimum attenuation of the synchronous activity in the KM model, respectively.

https://doi.org/10.1371/journal.pcbi.1011674.g003
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results and analyses presented in this manuscript is available for download from the OUI Soft-

ware Store (https://process.innovation.ox.ac.uk/software/) with reference 21242. Parameter

values for the Kuramoto model in (2) are included below in Table 1.

3. Results

This study develops and evaluates the performance of a time-varying optimizer to determine

the optimum stimulation parameter set. We test the algorithm’s performance in the context of

an oscillopathy, Essential Tremor, in order to determine the optimum stimulation phase when

this value would change gradually as a result of disease progression and/or periodically due to

patient’s sleep/wake cycle. However, these observations can be extended to any other neuro-

logical and psychiatric condition, which is driven by rhythmic neural activity, and other stimu-

lation parameters (e.g., amplitude, pulse width and frequency).

3.1. Kuramoto model behaviour

We implemented a coupled Kuramoto neural oscillator model to test the efficacy of the

TV-BayesOpt algorithm in tracking gradual and/or periodic changes in the optimum stimula-

tion phase. The model reached its steady state with an order parameter ρ (i.e., population syn-

chrony taken to be a direct correlate of symptom severity) of 0.8, reflecting a highly

synchronized state in the absence of stimulation after a 200 s transient period. The popula-

tion’s response to phase-locked stimulation was investigated using a static PRC, set to −sin(θ).

This represents a type 2 oscillator, in line with previous experimental observations from

phase-locked deep brain stimulation in Essential Tremor [45]. Stimulation was initially applied

at 12 equally spaced population phase values, ψtarget, ranging between (−π,π) (Fig 4). Phase-

locked stimulation at ctarget ¼ � p; �
p

2

� �
radians and ctarget ¼

p

2
; p

� �
radians resulted in desyn-

chronization of the population and a reduction in mean phase-coherence (Δρ<0), in line with

theoretical expectations. In contrary, phase-locked stimulation applied between ctarget ¼

� p

2
; p

2

� �
radians resulted in increased population synchrony which was reflected in an increase

in the population mean phase-coherence (Δρ>0). In oscillopathies such as Parkinson’s disease

and Essential Tremor, stimulation is used to reduce exasperated neural synchrony, which is

correlated with patients’ symptom severity. Therefore, the “optimal phase value” for stimula-

tion, ψ*, was identified as the value that resulted in the greatest reduction in population syn-

chrony. This value was identified as ψ* = −π radians. After this initial “burn-in” period, the

location of ψ* was dynamically varied as described in the subsequent sections.

3.2. Algorithm performance

3.2.1. Gradual drift. A gradual drift in the optimal stimulation setting may be anticipated

due to disease progression in common neurological and psychiatric conditions. Such a change

Table 1. Summary of Kuramoto DBS Model Parameters.

Model Parameter Parameter Description Value

N Number of oscillators in population 50

f0 Natural frequency of the population oscillators 8 Hz

ω Natural frequency of the population oscillators 2π * f0
σ Standard deviation of population oscillators from the natural frequency, ωbiomarker 0.0075

γ Coupling strength between the oscillators in the population 0.8

I Stimulation intensity 30

https://doi.org/10.1371/journal.pcbi.1011674.t001
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Fig 4. Kuramoto DBS model response to phase-locked stimulation. Individual oscillators in the population are represented as blue circles distributed around

the unit circle where the position of each oscillator represents its phase value at the associated timestep. The population mean phase-coherence at different

simulation timesteps is illustrated in 2). In the top row of 2) the red line within the unit circle illustrates the magnitude of the population mean phase-

coherence, ρ, and the mean phase of the population, ψ. The red line points in the direction of ψ and the length of the line represents the synchronization level of

the population ρ (a short line represents low synchrony, and a long line represents high synchrony). The 1) panel represents the distribution of oscillators prior

to stimulation when the model is at its steady state behaviour. In panel 2) the rows illustrate the change in population synchrony in response to stimulation at a

specific phase value, ψtarget. The bottom row summarizes the change in population synchrony, Δρ, as a function of phase-locked stimulation applied between

ψtarget = (−π,π) radians. Δρ<0 corresponded to phase-locked stimulation at the specified ψtarget values desynchronizing the population, while Δρ>0

corresponded to the phase-locked stimulation increasing population synchrony.

https://doi.org/10.1371/journal.pcbi.1011674.g004
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in the stimulation phase, ψ*, ranging from π to 0 radians over 30 days was continuously

tracked using the TV-BayesOpt algorithm (Fig 5A). The TV-BayesOpt algorithm with the “for-

getting” temporal covariance function Kt t; t0ð Þ ¼ ð1 � �Þ
jt� t0 j

2 (see section 2.3 “Temporal

Covariance Function–‘Gradual Forgetting’”) resulted in lower cumulative regret over the opti-

mization process, calculated as the area under the curve (AUC) of the cumulative regret plot,

when compared to the time-invariant implementation of the BayesOpt algorithm (Fig 5B).

Here, cumulative regret represents the difference between the true optimal stimulation phase

and the one identified by the optimization algorithm. ± π offset between true optimal and pre-

dicted phase values would result in population synchrony not being different from baseline

untreated levels. Under the assumption that synchrony reflects symptom severity, this would

be equivalent to symptom severity not changing. The shape of the TV-BayesOpt estimated

Gaussian Process Regressor (GPR) at different timepoints is displayed in Fig 5C–5E. At each

timepoint the estimated GPR had low uncertainty in the region of the parameter space around

ψ* while this uncertainty is gradually increased for regions more distant from ψ*.
3.2.2. Periodic drift. A periodic drift, characterizing changes in the effective stimulation

parameters due to circadian cycles, was emulated by varying ψ* from π to 0 radians over 100

optimization steps, representing a 1-day period. Implementation of the TV-BayesOpt algo-

rithm with a temporal periodic covariance function Kt t; t0ð Þ ¼ exp �
2 sin2 pjt� t0 j

Tt

� �

lt;p
2

� �

(where Tt =

100; see section 2.3 “Temporal Covariance Function–Periodic”) led to accurate tracking of the

location of ψ* (Fig 6A). The temporal periodic covariance function with a one-day period led

to better tracking of ψ* in comparison to static BayesOpt, as evidenced by a lower cumulative

regret AUC (Fig 6B). Beyond circadian cycles, such a periodic change could also be expected

Fig 5. TV-BayesOpt algorithm performance for tracking a gradual drift in the optimal stimulation phase for phase-locked stimulation, ψ*. Panel A

illustrates the tracking performance of the TV-BayesOpt algorithm (blue dots) at locating the true optimal phase value (black dots) for population

desynchronization. Panel B illustrates the associated average regret for the TV-BayesOpt algorithm at tracking the true optimum phase value in comparison to

when static BayesOpt was implemented alone. Panels C-E illustrate the true location of the optimal stimulation phase (black dot), the minimum predicted by

the TV-BayesOpt algorithm (black circle and cross) and the shape of the GPR predicted by the TV-BayesOpt algorithm at 0.01, 17.62 and 20.00 day time points.

For each estimated GPR the confidence bounds observed at the predicted optimal phase value are small and become larger for values further away from this

value due to the algorithm’s acquisition function prioritizing exploitation of the parameter space during the optimization process.

https://doi.org/10.1371/journal.pcbi.1011674.g005
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from medication intake, and other repeating patterns which may influence therapy efficacy.

To account for other rhythms, the Tt should be altered to reflect these changes (e.g., 3 hours

for medication intake, etc).

3.2.3. Superimposed drift. We next explored the performance of our algorithm in the

presence of both gradual and periodic changes in the optimal stimulation settings. Superposi-

tion of gradual and periodic drifts required the use of the temporal forgetting-periodic covari-

ance function Kt t; t0ð Þ ¼ ð1 � �Þ
jt� t0 j

2 exp �
2 sin2 pjt� t0 j

Tt

� �

l2t;p

� �

(see section 2.3 “Temporal Forgetting-

Periodic Covariance Function”) and produced a lower cumulative regret AUC in comparison

to the time-invariant BayesOpt algorithm (Fig 7A). This illustrates the “composite” nature of

the algorithm, whereby the temporal covariance function can be combined to account for dif-

ferent scenarios in a disease process.

3.3 Algorithm performance sensitivity analysis

3.3.1. Forgetting factor. One of the critical factors which influences the algorithm perfor-

mance is the forgetting factor, �. To evaluate this interaction, the AUC of the cumulative regret

plot was calculated for tracking a combination of gradual and periodic drifts, with high values

indicating inaccurate optimization (Fig 8). We also contrasted the algorithm performance

when solely a “forgetting” covariance function was used versus a “forgetting-periodic” covari-

ance function (Fig 8) in order to evaluate the impact of selecting a “suboptimal” temporal

covariance function i.e. when a priori knowledge regarding variations in the optimal stimula-

tion parameter set is considered (forgetting-periodic covariance function) vs not (forgetting

covariance function). For � values less than 0.04, the forgetting covariance function resulted in

Fig 6. TV-BayesOpt algorithm performance for tracking a periodic drift in the optimal stimulation phase for phase-locked stimulation, ψ*. Panel A

illustrates the tracking performance of the TV-BayesOpt algorithm (blue dots) at locating the true optimal phase value (black dots) for population

desynchronization. Panel B illustrates the associated average regret for the TV-BayesOpt algorithm at tracking the true optimum phase value in comparison to

when static BayesOpt was implemented alone. Panels C-E in the bottom row illustrate the true location of the optimal stimulation phase (black dot), the

minimum predicted by the TV-BayesOpt algorithm (black circle and cross) and the shape of the GPR predicted by the TV-BayesOpt algorithm at 0.01, 17.62

and 20.00 day time points. For each estimated GPR the confidence bounds observed at the predicted optimal phase value are small and become larger for values

further away from this value due to the algorithm’s acquisition function prioritizing exploitation of the parameter space during the optimization process.

https://doi.org/10.1371/journal.pcbi.1011674.g006
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Fig 7. TV-BayesOpt algorithm performance for tracking a superimposed (gradual and periodic) drift in the optimal stimulation phase for phase-locked

stimulation, ψ*. Panel A illustrates the tracking performance of the TV-BayesOpt algorithm (blue dots) at locating the true optimal phase value (black dots) for

population desynchronization. Panel B illustrates the associated average regret for the TV-BayesOpt algorithm at tracking the true optimum phase value in

comparison to when static BayesOpt was implemented alone. Panels C-E in the bottom row illustrate the true location of the optimal stimulation phase (black

dot), the minimum predicted by the TV-BayesOpt algorithm (black circle and cross) and the shape of the GPR predicted by the TV-BayesOpt algorithm at 0.01,

17.62 and 20.00 day time points. For each estimated GPR the confidence bounds observed at the predicted optimal phase value are small and become larger for

values further away from this value due to the algorithm’s acquisition function prioritizing exploitation of the parameter space during the optimization process.

https://doi.org/10.1371/journal.pcbi.1011674.g007

Fig 8. Sensitivity analysis of the TV-BayesOpt algorithm with a forgetting (orange line) or a forgetting-periodic

(blue line) covariance function for a range of ε values. Incorporation of prior knowledge of the temporal variation in

the objective function optimum value (blue line) resulted in improved TV-BayesOpt algorithm performance than

implementing a forgetting covariance function (orange line) alone. The performance of the algorithm at each

forgetting factor value was calculated as the cumulative regret AUC value from the resulting cumulative regret plot

generated at each respective forgetting factor value. Best algorithm performance was observed for an ε value of 0.22,

above this value the algorithm begins to forget previous samples too quickly to accurately track the optimal value in the

objective function.

https://doi.org/10.1371/journal.pcbi.1011674.g008
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greater cumulative regret than the forgetting-periodic covariance function. Incorporating

prior knowledge of periodicity led to a more stable performance of the algorithm. For � values

above 0.04, both covariance functions resulted in equivalent cumulative regret due to an

appropriate alignment between the forgetting factor (i.e., the rate of forgetting of older data)

and the simulated temporal drift in the optimum phase value. The algorithm provided the best

performance with an � value of 0.22 and corresponded to a data half-life (t1/2) of 3.15 samples

(representing a 45-minute simulation period). � values above 0.22 resulted in increased cumu-

lative regret AUC values as � values in this range led to the algorithm forgetting data too

quickly to accurately estimate the location of the optimal value.

3.3.2 Variation in temporal drift period. We next evaluated the algorithm’s performance

when the temporal drift anticipated by the algorithm, Tt, differed from the true rate of change

in the optimal stimulation settings. The performance of the algorithm was also contrasted

against a scheduler which made fixed adjustments to maintain stimulation at a certain value

over a 24-hour period (Fig 9). The scheduler and TV-BayesOpt with a periodic covariance

function were unable to track the location of the optimum stimulation phase when the drift in

the optimal stimulation phase was different from the anticipated period, based on a priori

information. This resulted in large AUC values for both approaches. When the forgetting-peri-

odic covariance function was implemented, the algorithm was able to accommodate the differ-

ence between the true and anticipated temporal periods, as evidenced by the lower regret AUC

value. The forgetting-periodic covariance function thus enabled the algorithm to more flexibly

locate the optimum by limiting the influence of samples that were previously taken based on

incorrect a priori information (i.e. an incorrect anticipated periodicity). With this, the location

of the optimum could still be determined based on the most recently taken samples.

Fig 9. Sensitivity analysis of the TV-BayesOpt algorithm performance at tracking a periodic temporal drift when

the period of the drift is offset from the covariance function period anticipated by the TV-BayesOpt algorithm.

The performance of a scheduler (green line), the TV-BayesOpt with a periodic temporal covariance function (purple

line) and the TV-BayesOpt with a periodic and smooth forgetting covariance algorithm were estimated by calculating

the AUC value for the associated cumulative regret plot for each implementation at different offset in the true temporal

period.

https://doi.org/10.1371/journal.pcbi.1011674.g009
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4. Discussion

Here, we introduce a new approach to therapy optimization that takes into account slow varia-

tions in therapy efficacy over time due to factors such as medication intake, circadian rhythms

and disease progression. We explored the efficacy of the proposed approach in the Kuramoto

model which is a well-established mathematical model that has been extensively used in litera-

ture to investigate synchronization in biological systems. The model has been previously used

to simulate time variability in systems using time-dependent model parameters [49,50], in

addition to modelling the effects of electrical stimulation on neural synchrony [42]. In this cur-

rent study, slow variations in therapy efficacy were emulated by incremental changes in the

shape of the model population PRC. By learning these variations, our time-varying controller

sustains therapy efficacy in contrast to time-invariant approaches which show degraded

performance.

In neurodegenerative disorders such as Parkinson’s disease and Essential Tremor, therapy

efficacy can be lost over time due to disease progression [51,52]. To counteract this, either the

medication dose is increased or for those patients treated with DBS the stimulation amplitude

is increased to capture a larger portion of the target nucleus. Other variations which influence

stimulation efficacy include concurrent medication intake, which in a subset of Parkinson’s

disease patients may induce dyskinesias when used on its own or in conjunction with DBS.

Beyond disease progression and medication intake, symptom variations over the course of the

day, which may reflect circadian dependencies (i.e., Parkinson’s disease, Essential Tremor,

etc), could also influence therapy efficacy [12,27].

Brain stimulation-based therapies currently take a time-invariant approach to stimulation

parametrisation. Optimal stimulation settings are chosen during day-time clinical visits

through a process of trial and error and these settings remain the same until the next clinic

visit. Adaptive brain stimulation approaches which switch ON stimulation when symptom

severity or a representative neural biomarker exceeds a threshold, assume that the subject spe-

cific thresholds do not change over time. Other adaptive stimulation approaches such as

phase-specific stimulation also do not take into account dynamic variations in effective stimu-

lation settings and use the same stimulation phase. However, taking a time-invariant approach

to stimulation parametrisation may either over stimulate or under stimulate patients, resulting

in stimulation induced side-effects and sub-optimal symptom management, respectively.

4.1. Adaptive bayesian optimization algorithms

Previous literature has suggested a variety of algorithms for solving dynamic optimization

problems [48,53–55]. In the context of Bayesian Optimization, many time-varying versions of

the algorithm build on the adaptive Bayesian Optimization (ABO) algorithm presented in [48]

which introduced the concept of smooth forgetting of older data samples by using a forgetting

temporal covariance function. Variations of the ABO algorithm have been subsequently inves-

tigated by Imamura et al. (2020) who explored the ABO algorithm performance when the time

between data samples was variable [56] and Chen & Li (2021) who implemented a threshold

on sample freshness to discard old data when sudden system changes occur [57]. In contrast to

using a smooth forgetting covariance function Nyikosa et al. (2018) explored an alternative

strategy using stationary temporal covariance matrices whose length-scales were optimized

from training data to determine the feasible prediction horizon for the time-varying algorithm

[58].

In our current work we build on both Bogunovic and Nyikosa’s algorithms to construct a

TV-BayesOpt algorithm capable of tracking periodic variations in optimal stimulation param-

eters while also smoothly forgetting older data samples. The temporal covariance in our
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proposed approach is not stationary due to our implementation of a periodic temporal covari-

ance function. This means that covariance between two sampled points in time is no longer

dependent solely on the distance between them, but rather on the absolute time at which the

samples were taken. Data points which were sampled at the same phase of a repeating periodic

rhythm, i.e., the 24-hour circadian rhythm, will have high covariance, while points taken at

opposite phases of the rhythm will have a small covariance. In this manner, we leverage the

advantages of both versions of the algorithm to enable smooth tracking of rhythmic variations

in the optimal value which may be changing over time. From a neuromodulation perspective,

this enables the proposed algorithm to track gradual and periodic variations in optimal stimu-

lation parameters which may occur due to disease progression and biological rhythms, respec-

tively. Moreover, incorporation of the smooth forgetting covariance function with a threshold

on sample freshness can be used to define a limit on the number of data samples required for

good algorithm performance in practical implementations of the algorithm as in [57]. Like-

wise, in the absence of gradual variations in optimal parameters, the algorithm may be used to

characterize optimal stimulation parameters for the entire cycle of a periodic variation. In this

manner, the algorithm could be hypothetically replaced with a scheduler that increments

through optimal stimulation parameters over the course of the periodic variation (see section

3.4 “Algorithm Performance Sensitivity Analysis”). Synchronized stimulation adjustments in

this manner have been previously proposed by Fleming et al. (2022) as an approach to opti-

mize neuromodulation therapy in the presence of biological rhythms [12].

4.2. Implementation and utility

In this work, we highlight how implementation of the TV-BayesOpt algorithm utilizing both a

smooth forgetting and periodic temporal covariance function leads to robust algorithm perfor-

mance for tracking slow periodic variations (Figs 8 and 9).

Good algorithm performance may be achieved with smooth forgetting alone, however this

requires careful selection of an appropriate forgetting factor well-matched to the temporal

oscillation being tracked (Fig 8). When � is too low, the algorithm weighs the contribution of

older samples too heavily which leads to poor tracking of the optimum stimulation phase over

time (Fig 8). When the TV-BayesOpt algorithm incorporates a periodic temporal covariance

function whose period is aligned to the expected temporal drift in optimal stimulation settings,

the performance is greatly improved for low � values. Robust algorithm performance is subse-

quently observed for all � values below 0.4. Above this value the algorithm performance begins

to worsen due to previously taken data samples being forgotten too quickly. Thus, once peri-

odic components of the temporal drift have been suitably characterized the practical trade-off

of the algorithm achieving good performance is dependent on identification of an appropriate

� value. Selection of an � value lower than necessary will result in the algorithm utilizing more,

potentially redundant data as part of its inference, while too high a value may lead to an insuffi-

cient amount of available data for algorithm inference. Selection of an � value thus requires a

balance of these two considerations.

When there is no difference between the actual and expected variations in optimal stimula-

tion parameters (Fig 9), the algorithm performs well with a periodic covariance function alone

and maintains tracking of the optimal stimulation phase. In this case, once the algorithm has

locked to the location of the optimum stimulation phase, its performance is equivalent to a

scheduler that updates the location of the optimum stimulation phase value based on the antic-

ipated temporal period (Fig 9). Worsened performance is observed by both the algorithm and

scheduler when there is a difference between the anticipated and actual variations in optimal

stimulation parameters (Fig 9). This worsened algorithm performance can be compensated
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using the smooth forgetting covariance function which maintains algorithm performance

when there is a mismatch between the actual and anticipated temporal period by limiting the

influence of the incorrect a priori information (i.e. the anticipated periodicity) on the

TV-BayesOpt algorithm. Incorporation of both smooth forgetting and knowledge of the rhyth-

mic variations in therapy efficacy leads to better performance of the TV-BayesOpt algorithm

than when either of these are utilized by the algorithm alone.

To facilitate the development of next generation neuromodulation therapies, future work

and consideration are required to implement the TV-BayesOpt algorithm on device hardware.

These implementations may require the algorithm to be deployed on embedded devices that

have limited computational and memory resources. In these cases, the performance of the

algorithm must be further investigated to avoid performance degradation due to limited

resources. Additionally, there are other questions related to the performance of the algorithm

that should be further explored. Most notably, only relatively slow variations in the optimum

stimulation parameter set were investigated in this present study to emulate temporal varia-

tions associated with biological rhythmicity and disease progression. The performance of the

algorithm to track fast changes in the optimum parameter set which may be encountered dur-

ing different activities of daily living or contexts was not evaluated. Moreover, the suitability of

the algorithm for optimization over higher dimensional parameter spaces and whether further

refinements to algorithm performance can be achieved by online hyperparameter optimization

should investigated in future work.

5. Conclusion

In this study, a time-varying implementation of Bayesian Optimization was proposed to enable

tracking of a dynamic, rhythmically varying optimal stimulation settings. The algorithm was

tested in an oscillator model representative of oscillopathies and DBS. The TV-BayesOpt algo-

rithm was utilized to track a temporally varying optimal stimulation phase for phase-locked

DBS in the presence of both gradual and rhythmic (circadian or multidien rhythms) varia-

tions. The TV-BayesOpt algorithm demonstrated superior performance to standard, time-

invariant BayesOpt resulting in lower regret over the optimization process. Finally, the for-

getting factor, and the covariance hyperparameters were investigated which illustrated an

interplay between these two hyperparameters leading to increased algorithm robustness.

Future work is required to investigate implementations of the TV-BayesOpt algorithm in

hardware.

Supporting information

S1 Fig. TV-BayesOpt algorithm performance for tracking a superimposed (gradual and

periodic) drift in the optimal stimulation phase for phase-locked stimulation, ψ^*, in the

presence of noise. Panels A, C and E illustrate the tracking performance of the TV-BayesOpt

algorithm (blue dots) at locating the true optimal phase value (black dots) for population

desynchronization when no noise, Gaussian distributed noise with zero mean and a 0.75 stan-

dard deviation or Gaussian distributed noise with zero mean and a 1.5 standard deviation was

added to the simulated optimum trajectory. Panels B, D and F illustrate the associated average

regret for the TV-BayesOpt algorithm at tracking the true optimum phase value in comparison

to when static BayesOpt was implemented alone for tracking the optimum trajectory in their

associated Panels A, C and E.

(DOCX)
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S2 Fig. TV-BayesOpt algorithm performance for tracking a superimposed (gradual and

periodic) drift in the optimal stimulation phase for phase-locked stimulation, ψ*, for vary-

ing Kuramoto model parameter values. Panels A, C, E and G illustrate the tracking perfor-

mance of the TV-BayesOpt algorithm (blue dots) at locating the true optimal phase value

(black dots) for population desynchronization when the Kuramoto model oscillator frequency

was centered at 8 or 23 Hz. The frequency of oscillators in the underlying population were

selected from a Gaussian distribution centered around each frequency. Panel C, E and G illus-

trate that increasing distribution of the oscillator natural frequencies, the size of the population

or the natural frequency of the oscillator population does not affect algorithm performance at

tracking the optimum stimulation phase since the shape of the objective is consistent across

these parameters. Panels B, D, F and H illustrate the associated average regret for the TV-Baye-

sOpt algorithm at tracking the true optimum phase value in comparison to when static Baye-

sOpt was implemented alone for tracking the optimum trajectory in their associated panels A,

C, E and G.

(DOCX)
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15. Kühn AA, Kupsch A, Schneider GH, Brown P. Reduction in subthalamic 8–35 Hz oscillatory activity cor-

relates with clinical improvement in Parkinson’s disease. Eur J Neurosci. 2006; 23(7):1956–60. https://

doi.org/10.1111/j.1460-9568.2006.04717.x PMID: 16623853

16. Rappel P, Marmor O, Bick AS, Arkadir D, Linetsky E, Castrioto A, et al. Subthalamic theta activity: a

novel human subcortical biomarker for obsessive compulsive disorder. Transl Psychiatry 2018 81. 2018

Jun; 8(1):1–11. https://doi.org/10.1038/s41398-018-0165-z PMID: 29915200

17. Staba RJ, Stead M, Worrell GA. Electrophysiological Biomarkers of Epilepsy. Neurotherapeutics. 2014

Apr; 11(2):334–334. https://doi.org/10.1007/s13311-014-0259-0 PMID: 24519238

18. Opri E, Cernera S, Molina R, Eisinger RS, Cagle JN, Almeida L, et al. Chronic embedded cortico-tha-

lamic closed-loop deep brain stimulation for the treatment of essential tremor. Sci Transl Med. 2020

Dec 2; 12(572):eaay7680. https://doi.org/10.1126/scitranslmed.aay7680 PMID: 33268512

19. Scangos KW, Khambhati AN, Daly PM, Makhoul GS, Sugrue LP, Zamanian H, et al. Closed-loop neuro-

modulation in an individual with treatment-resistant depression. Nat Med. 2021 Oct; 27(10):1696–700.

https://doi.org/10.1038/s41591-021-01480-w PMID: 34608328

20. Connolly MJ, Park SE, Laxpati NG, Zaidi SA, Ghetiya M, Fernandez AM, et al. A framework for design-

ing data-driven optimization systems for neural modulation. J Neural Eng. 2021 Feb; 18(1):016025.

https://doi.org/10.1088/1741-2552/abd048 PMID: 33271520

21. Sarikhani P, Miocinovic S, Mahmoudi B. Towards automated patient-specific optimization of deep brain

stimulation for movement disorders. In: 2019 41st Annual International Conference of the IEEE Engi-

neering in Medicine and Biology Society (EMBC). 2019. p. 6159–62. https://doi.org/10.1109/EMBC.

2019.8857736 PMID: 31947249

22. Haddock A, Mitchell KT, Miller A, Ostrem JL, Chizeck HJ, Miocinovic S. Automated Deep Brain Stimula-

tion Programming for Tremor. IEEE Trans Neural Syst Rehabil Eng. 2018 Aug; 26(8):1618–25. https://

doi.org/10.1109/TNSRE.2018.2852222 PMID: 29994714

23. Haddock A, Velisar A, Herron J, Bronte-Stewart H, Chizeck HJ. Model predictive control of deep brain

stimulation for Parkinsonian tremor. In: 2017 8th International IEEE/EMBS Conference on Neural Engi-

neering (NER). 2017. p. 358–62.

24. Tervo AE, Nieminen JO, Lioumis P, Metsomaa J, Souza VH, Sinisalo H, et al. Closed-loop optimization

of transcranial magnetic stimulation with electroencephalography feedback. Brain Stimulat. 2022 Mar 1;

15(2):523–31. https://doi.org/10.1016/j.brs.2022.01.016 PMID: 35337598

25. Peña E, Zhang S, Deyo S, Xiao Y, Johnson MD. Particle swarm optimization for programming deep

brain stimulation arrays. J Neural Eng. 2017 Jan; 14(1):016014. https://doi.org/10.1088/1741-2552/

aa52d1 PMID: 28068291

26. Gilron R, Little S, Wilt R, Perrone R, Anso J, Starr PA. Sleep-Aware Adaptive Deep Brain Stimulation

Control: Chronic Use at Home With Dual Independent Linear Discriminate Detectors. Front Neurosci.

2021; 0:1307–1307. https://doi.org/10.3389/fnins.2021.732499 PMID: 34733132

27. van Rheede JJ, Feldmann LK, Busch JL, Fleming JE, Mathiopoulou V, Denison T, et al. Diurnal modula-

tion of subthalamic beta oscillatory power in Parkinson’s disease patients during deep brain stimulation.

PLOS COMPUTATIONAL BIOLOGY Time-Adaptive bayesian optimization for neurostimulation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011674 December 13, 2023 22 / 24

https://doi.org/10.1111/j.1528-1157.1993.tb02134.x
http://www.ncbi.nlm.nih.gov/pubmed/8243357
https://doi.org/10.1016/j.brs.2011.10.001
http://www.ncbi.nlm.nih.gov/pubmed/22305345
https://doi.org/10.1002/mds.20961
http://www.ncbi.nlm.nih.gov/pubmed/16810675
https://doi.org/10.1016/j.clinph.2004.05.031
http://www.ncbi.nlm.nih.gov/pubmed/15465430
https://doi.org/10.1016/j.isci.2022.104028
https://doi.org/10.1016/j.isci.2022.104028
http://www.ncbi.nlm.nih.gov/pubmed/35313697
https://doi.org/10.1016/j.artmed.2021.102198
http://www.ncbi.nlm.nih.gov/pubmed/34823832
https://doi.org/10.1111/j.1460-9568.2006.04717.x
https://doi.org/10.1111/j.1460-9568.2006.04717.x
http://www.ncbi.nlm.nih.gov/pubmed/16623853
https://doi.org/10.1038/s41398-018-0165-z
http://www.ncbi.nlm.nih.gov/pubmed/29915200
https://doi.org/10.1007/s13311-014-0259-0
http://www.ncbi.nlm.nih.gov/pubmed/24519238
https://doi.org/10.1126/scitranslmed.aay7680
http://www.ncbi.nlm.nih.gov/pubmed/33268512
https://doi.org/10.1038/s41591-021-01480-w
http://www.ncbi.nlm.nih.gov/pubmed/34608328
https://doi.org/10.1088/1741-2552/abd048
http://www.ncbi.nlm.nih.gov/pubmed/33271520
https://doi.org/10.1109/EMBC.2019.8857736
https://doi.org/10.1109/EMBC.2019.8857736
http://www.ncbi.nlm.nih.gov/pubmed/31947249
https://doi.org/10.1109/TNSRE.2018.2852222
https://doi.org/10.1109/TNSRE.2018.2852222
http://www.ncbi.nlm.nih.gov/pubmed/29994714
https://doi.org/10.1016/j.brs.2022.01.016
http://www.ncbi.nlm.nih.gov/pubmed/35337598
https://doi.org/10.1088/1741-2552/aa52d1
https://doi.org/10.1088/1741-2552/aa52d1
http://www.ncbi.nlm.nih.gov/pubmed/28068291
https://doi.org/10.3389/fnins.2021.732499
http://www.ncbi.nlm.nih.gov/pubmed/34733132
https://doi.org/10.1371/journal.pcbi.1011674


Npj Park Dis 2022 81. 2022 Jul; 8(1):1–12. https://doi.org/10.1038/s41531-022-00350-7 PMID:

35804160

28. Hilker R, Portman AT, Voges J, Staal MJ, Burghaus L, van Laar T, et al. Disease progression continues

in patients with advanced Parkinson’s disease and effective subthalamic nucleus stimulation. J Neurol

Neurosurg Psychiatry. 2005 Sep 1; 76(9):1217–21. https://doi.org/10.1136/jnnp.2004.057893 PMID:

16107354

29. Kuramoto Y, Araki H. Proceedings of the International Symposium on Mathematical Problems in Theo-

retical Physics. In 1975.

30. Tass PA. A model of desynchronizing deep brain stimulation with a demand-controlled coordinated

reset of neural subpopulations. Biol Cybern 2003 892. 2003 Jul; 89(2):81–8.

31. Schnitzler A, Gross J. Normal and pathological oscillatory communication in the brain. Nat Rev Neu-

rosci. 2005 Apr; 6(4):285–96. https://doi.org/10.1038/nrn1650 PMID: 15803160

32. Giovanni A, Capone F, di Biase L, Ferreri F, Florio L, Guerra A, et al. Oscillatory activities in neurological

disorders of elderly: Biomarkers to target for neuromodulation. Front Aging Neurosci. 2017 Jun; 9

(JUN):189–189. https://doi.org/10.3389/fnagi.2017.00189 PMID: 28659788

33. Kühn AA, Tsui A, Aziz T, Ray N, Brücke C, Kupsch A, et al. Pathological synchronisation in the subtha-

lamic nucleus of patients with Parkinson’s disease relates to both bradykinesia and rigidity. Exp Neurol.

2009 Feb; 215(2):380–7. https://doi.org/10.1016/j.expneurol.2008.11.008 PMID: 19070616

34. Beudel M, Little S, Pogosyan A, Ashkan K, Foltynie T, Limousin P, et al. Tremor Reduction by Deep

Brain Stimulation Is Associated With Gamma Power Suppression in Parkinson’s Disease. Neuromodu-

lation Technol Neural Interface. 2015 Jul; 18(5):349–54. https://doi.org/10.1111/ner.12297 PMID:

25879998

35. Kühn AA, Kempf F, Brücke C, Gaynor Doyle L, Martinez-Torres I, Pogosyan A, et al. High-frequency

stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson’s

disease in parallel with improvement in motor performance. J Neurosci Off J Soc Neurosci. 2008 Jun

11; 28(24):6165–73. https://doi.org/10.1523/JNEUROSCI.0282-08.2008 PMID: 18550758

36. Holt AB, Kormann E, Gulberti A, Pötter-Nerger M, McNamara CG, Cagnan H, et al. Phase-dependent

suppression of beta oscillations in parkinson’s disease patients. J Neurosci. 2019; 39(6):1119–34.

https://doi.org/10.1523/JNEUROSCI.1913-18.2018 PMID: 30552179

37. Little S, Pogosyan A, Neal S, Zavala B, Zrinzo L, Hariz M, et al. Adaptive deep brain stimulation in

advanced Parkinson disease. Ann Neurol. 2013 Sep; 74(3):449–57. https://doi.org/10.1002/ana.23951

PMID: 23852650

38. Malekmohammadi M, Herron J, Velisar A, Blumenfeld Z, Trager MH, Chizeck HJ, et al. Kinematic Adap-

tive Deep Brain Stimulation for Resting Tremor in Parkinson’s Disease. Mov Disord. 2016 Mar; 31

(3):426–8. https://doi.org/10.1002/mds.26482 PMID: 26813875

39. Priori A, Foffani G, Rossi L, Marceglia S. Adaptive deep brain stimulation (aDBS) controlled by local

field potential oscillations. Exp Neurol. 2013; 245:77–86. https://doi.org/10.1016/j.expneurol.2012.09.

013 PMID: 23022916

40. Strogatz SH. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and

Engineering. Nonlinear Dyn Chaos [Internet]. 2018 May; Available from: https://www.taylorfrancis.com/

books/mono/10.1201/9780429492563/nonlinear-dynamics-chaos-steven-strogatz

41. Thanvi B, Lo N, Robinson T. Essential tremor—the most common movement disorder in older people.

Age Ageing. 2006 Jul 1; 35(4):344–9. https://doi.org/10.1093/ageing/afj072 PMID: 16641144

42. Weerasinghe G, Duchet B, Cagnan H, Brown P, Bick C, Bogacz R. Predicting the effects of deep brain

stimulation using a reduced coupled oscillator model. PLOS Comput Biol. 2019; 15(8):e1006575–

e1006575. https://doi.org/10.1371/journal.pcbi.1006575 PMID: 31393880

43. Volkmann J, Herzog J, Kopper F, Deuschl G. Introduction to the programming of deep brain stimulators.

Mov Disord Off J Mov Disord Soc. 2002; 17 Suppl 3:S181–187.

44. Stiefel KM, Gutkin BS, Sejnowski TJ. Cholinergic Neuromodulation Changes Phase Response Curve

Shape and Type in Cortical Pyramidal Neurons. PLoS ONE. 2008; 3(12):3947–3947. https://doi.org/10.

1371/journal.pone.0003947 PMID: 19079601

45. Cagnan H, Pedrosa D, Little S, Pogosyan A, Cheeran B, Aziz T, et al. Stimulating at the right time:

Phase-specific deep brain stimulation. Brain. 2017 Jan; 140(1):132–45. https://doi.org/10.1093/brain/

aww286 PMID: 28007997

46. Meidahl AC, Tinkhauser G, Herz DM, Cagnan H, Debarros J, Brown P. Adaptive Deep Brain Stimulation

for Movement Disorders: The Long Road to Clinical Therapy. Mov Disord. 2017 Jun; 32(6):810–9.

https://doi.org/10.1002/mds.27022 PMID: 28597557

PLOS COMPUTATIONAL BIOLOGY Time-Adaptive bayesian optimization for neurostimulation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011674 December 13, 2023 23 / 24

https://doi.org/10.1038/s41531-022-00350-7
http://www.ncbi.nlm.nih.gov/pubmed/35804160
https://doi.org/10.1136/jnnp.2004.057893
http://www.ncbi.nlm.nih.gov/pubmed/16107354
https://doi.org/10.1038/nrn1650
http://www.ncbi.nlm.nih.gov/pubmed/15803160
https://doi.org/10.3389/fnagi.2017.00189
http://www.ncbi.nlm.nih.gov/pubmed/28659788
https://doi.org/10.1016/j.expneurol.2008.11.008
http://www.ncbi.nlm.nih.gov/pubmed/19070616
https://doi.org/10.1111/ner.12297
http://www.ncbi.nlm.nih.gov/pubmed/25879998
https://doi.org/10.1523/JNEUROSCI.0282-08.2008
http://www.ncbi.nlm.nih.gov/pubmed/18550758
https://doi.org/10.1523/JNEUROSCI.1913-18.2018
http://www.ncbi.nlm.nih.gov/pubmed/30552179
https://doi.org/10.1002/ana.23951
http://www.ncbi.nlm.nih.gov/pubmed/23852650
https://doi.org/10.1002/mds.26482
http://www.ncbi.nlm.nih.gov/pubmed/26813875
https://doi.org/10.1016/j.expneurol.2012.09.013
https://doi.org/10.1016/j.expneurol.2012.09.013
http://www.ncbi.nlm.nih.gov/pubmed/23022916
https://www.taylorfrancis.com/books/mono/10.1201/9780429492563/nonlinear-dynamics-chaos-steven-strogatz
https://www.taylorfrancis.com/books/mono/10.1201/9780429492563/nonlinear-dynamics-chaos-steven-strogatz
https://doi.org/10.1093/ageing/afj072
http://www.ncbi.nlm.nih.gov/pubmed/16641144
https://doi.org/10.1371/journal.pcbi.1006575
http://www.ncbi.nlm.nih.gov/pubmed/31393880
https://doi.org/10.1371/journal.pone.0003947
https://doi.org/10.1371/journal.pone.0003947
http://www.ncbi.nlm.nih.gov/pubmed/19079601
https://doi.org/10.1093/brain/aww286
https://doi.org/10.1093/brain/aww286
http://www.ncbi.nlm.nih.gov/pubmed/28007997
https://doi.org/10.1002/mds.27022
http://www.ncbi.nlm.nih.gov/pubmed/28597557
https://doi.org/10.1371/journal.pcbi.1011674


47. Rasmussen CE, Williams CKI. Gaussian Processes for Machine Learning. Gaussian Process Mach

Learn [Internet]. 2005 Nov; Available from: https://direct.mit.edu/books/book/2320/Gaussian-

Processes-for-Machine-Learning

48. Bogunovic I, Scarlett J, Cevher V. Time-varying Gaussian process bandit optimization. Artif Intell Stat.

2016;314–23.

49. Petkoski S, Stefanovska A. Kuramoto model with time-varying parameters. Phys Rev E. 2012 Oct 23;

86(4):046212. https://doi.org/10.1103/PhysRevE.86.046212 PMID: 23214668

50. Cumin D, Unsworth CP. Generalising the Kuramoto model for the study of neuronal synchronisation in

the brain. Phys Nonlinear Phenom. 2007 Feb 15; 226(2):181–96.

51. Paschen S, Forstenpointner J, Becktepe J, Heinzel S, Hellriegel H, Witt K, et al. Long-term efficacy of

deep brain stimulation for essential tremor: An observer-blinded study. Neurology. 2019 Mar 19; 92(12):

e1378–86. https://doi.org/10.1212/WNL.0000000000007134 PMID: 30787161

52. Limousin P, Foltynie T. Long-term outcomes of deep brain stimulation in Parkinson disease. Nat Rev

Neurol. 2019 Apr; 15(4):234–42. https://doi.org/10.1038/s41582-019-0145-9 PMID: 30778210
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