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Abstract
Rationale Non-invasive home cage monitoring is emerging as a valuable tool to assess the effects of experimental interven-
tions on mouse behaviour. A field in which these techniques may prove useful is the study of repeated selective serotonin 
reuptake inhibitor (SSRI) treatment and discontinuation. SSRI discontinuation syndrome is an under-researched condition 
that includes the emergence of sleep disturbances following treatment cessation.
Objectives We used passive infrared (PIR) monitoring to investigate changes in activity, sleep, and circadian rhythms during 
repeated treatment with the SSRI paroxetine and its discontinuation in mice.
Methods Male mice received paroxetine (10 mg/kg/day, s.c.) for 12 days, then were swapped to saline injections for a 13 day 
discontinuation period and compared to mice that received saline injections throughout. Mice were continuously tracked 
using the Continuous Open Mouse Phenotyping of Activity and Sleep Status (COMPASS) system.
Results Repeated paroxetine treatment reduced activity and increased behaviourally-defined sleep in the dark phase. These 
effects recovered to saline-control levels within 24 h of paroxetine cessation, yet there was also evidence of a lengthening 
of sleep bouts in the dark phase for up to a week following discontinuation.
Conclusions This study provides the first example of how continuous non-invasive home cage monitoring can be used to 
detect objective behavioural changes in activity and sleep during and after drug treatment in mice. These data suggest that 
effects of paroxetine administration reversed soon after its discontinuation but identified an emergent change in sleep bout 
duration, which could be used as a biomarker in future preclinical studies to prevent or minimise SSRI discontinuation 
symptoms.
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Introduction

Sleep and circadian rhythm disruption (SCRD) is highly 
comorbid with depression and many other mental health 
disorders. Major depressive disorder (MDD), for exam-
ple, produces circadian rhythm disturbances (reviewed in 
Walker et al. 2020), increases rapid eye movement (REM) 
sleep (Palagini et al. 2013) and causes insomnia in approxi-
mately 60% of patients (Geoffroy et al. 2018). Many psy-
choactive drugs also affect sleep, including antidepressants. 
Selective serotonin reuptake inhibitors (SSRIs) are currently 
the first-line pharmacological treatment of MDD and are 
known to promote wakefulness and suppress REM sleep by 
as much as 85% (Argyropoulos et al. 2009; McCarthy et al. 
2016; Palagini et al. 2013; Saletu et al. 1991; Staner et al. 
1995; Trivedi et al. 1999; Wichniak et al. 2017). Similar 
effects have been observed in preclinical studies of the SSRI 
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paroxetine (Gervasoni et al. 2002; Kantor et al. 2017; Mon-
aca et al. 2003; Neckelmann et al. 1996). In this way, SSRIs 
counteract increased sleep, one of the SCRD hallmarks of a 
depressive episode.

Nonetheless, SSRIs also have negative effects on sleep. 
Insomnia is a common side effect of SSRI therapy, espe-
cially at the beginning of treatment (Hickie et al. 2013; van 
Bemmel et al. 1993; Wilson and Argyropoulos 2005). SSRIs 
can also disrupt circadian rhythms, for example causing 
phase advancement in the activity of the suprachiasmatic 
nucleus (SCN), the mammalian “master clock” in the hypo-
thalamus, as observed in rats in vivo and ex vivo (Nomura 
et al. 2008; Prosser et al. 1990; Sprouse et al. 2004, 2006).

Stopping treatment with an SSRI can also produce sleep 
disturbances in patients, including initial and middle insom-
nia, interrupted sleep, and vivid dreams (Barr et al. 1994; 
Black et al. 1993; Coupland et al. 1996; Davies and Read 
2019; Dominguez and Goodnick 1995; Fava et al. 2015; 
Fava and Grandi 1995; Haddad 1997; Haddad et al. 1998; 
Jha et al. 2018; Louie et al. 1994; Mallya et al. 1993; Zajecka 
et al. 1998). Clinical trials have demonstrated that insomnia 
and sleeping difficulties occur in a significantly greater pro-
portion of patients stopping SSRI medications than those 
maintained on-drug (Baldwin et al. 2006; Coupland et al. 
1996; Fava et al. 2007; Hindmarch et al. 2000; Judge et al. 
2002; van Geffen et al. 2005). Human electroencephalogram 
(EEG) studies have also shown that SSRI discontinuation 
can produce a rebound increase in REM sleep (Staner et al. 
1995). Moreover, daytime somnolence, or the desire to go 
to sleep during the day, has also been reported in patients 
undergoing SSRI discontinuation (Black et al. 1993; Haddad 
et al. 1998; Zajecka et al. 1998).

Despite the well-documented existence of these symp-
toms, preclinical data on SSRI discontinuation are lim-
ited. For instance, three weeks of paroxetine treatment was 
shown to suppress REM sleep in rats, yet this had reversed 
within 24 h of discontinuation (Gervasoni et al. 2002). Simi-
larly, the time that mice spent in both REM and non-REM 
(NREM) sleep did not differ from vehicle controls when 
EEG was performed two weeks after discontinuation from 
chronic paroxetine treatment (Kantor et al. 2017). SSRI-
induced changes in sleep therefore appear to rapidly reverse 
following treatment cessation; yet these studies only meas-
ured sleep at two discrete time points, and how sleep changes 
over time during and after paroxetine administration has not 
been studied. SSRI treatment and discontinuation are there-
fore interesting examples of where continuous preclinical 
monitoring may be a useful way to assess changes in sleep/
wake behaviour over time.

Home cage activity monitoring in mice provides a valu-
able tool to assess the effects of experimental interventions 
on physiology and behaviour. While cortical EEG provides 
the gold standard for determining sleep state in rodents, 

several approaches exist to continuously and non-invasively 
monitor mouse sleep. These include video recording (Fisher 
et al. 2012), piezoelectric sensors on the cage floor (Flores 
et al. 2007) and infrared beam break boxes (Pack et al. 2007). 
Recently, the Continuous Open Mouse Phenotyping of Activ-
ity and Sleep Status (COMPASS) system was developed as 
an alternative approach to simultaneously measure circadian 
rhythms in locomotor activity as well as sleep (Brown et al. 
2016; Tam et al. 2021). COMPASS uses passive infrared 
(PIR) measurements to determine the amount and distribution 
of sleep as well as common measures of circadian stability 
(Brown et al. 2019). This approach is ideally suited for track-
ing changes in behaviour over extended periods of time, such 
as in disease models or during chronic drug administration.

Recently, we developed a model of paroxetine discontinu-
ation in mice. We found that two days after discontinuation 
from repeated paroxetine administration, male mice showed 
evidence of increased anxiety-like behaviour compared 
to continued paroxetine and saline controls (Collins et al. 
2022), mirroring another symptom of SSRI discontinuation 
in patients (Davies and Read 2019; Fava et al. 2015). This 
model therefore provides the opportunity to study sleep and 
circadian disturbances in mice known to exhibit other behav-
ioural correlates of the human discontinuation syndrome. 
Here, we used PIR monitoring to simultaneously assess the 
effect of repeated paroxetine treatment and its discontinuation 
on home cage activity, sleep, and circadian rhythms in mice. 
A secondary aim of this study was to investigate how con-
tinuous home cage monitoring can be used to investigate the 
impact of long-term drug administration on mouse behaviour.

Materials and methods

Animals

Twenty four C57BL/6 J male mice (7 weeks old, Charles 
River) were single housed in large opaque open-top cages 
lined with sawdust. Female mice were not used as previous 
experiments suggested that behavioural effects of parox-
etine discontinuation were evident in male but not female 
mice (Collins et al. 2022). Cages contained a small amount 
of sizzle nest bedding and mice had ad libitum access to 
food and water. Mice were housed at 21 °C on a 12:12 
light–dark cycle (200 lx white LED light) in light tight 
chambers (LTC, 6 mice per LTC) for seven days before 
the start of the experiment. Experiments followed the 
principles of the Animal Research: Reporting of In Vivo 
Experiments (ARRIVE 2.0) guidelines and were conducted 
according to the United Kingdom Animals (Scientific Pro-
cedures) Act of 1986, under project license P6F11BC25 at 
the University of Oxford.
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Experimental design

Mice were allocated to one of two experimental groups 
by stratified randomisation: i) saline group: saline (0.9% 
sodium chloride) injections throughout; ii) paroxetine 
group: paroxetine injections (paroxetine hydrochloride, 
Abcam ab120069, 1  mg/ml in saline) during dosing 
period + saline during discontinuation period (Fig. 1a). 
Mice were handled for three days to habituate them to 
daily treatment. Mice were weighed daily throughout the 
experiment, with a humane endpoint set at 85% of base-
line body weight. Mice were weighed and injections were 
given between 16:00 and 17:00 each day. The order in 
which mice were injected was varied each day to avoid 
confounds of treatment order.

All mice received once-daily 10 ml/kg s.c. saline injec-
tions for four days to establish a baseline weight and 
activity levels (baseline period, treatment day 0 represents 
the mean value for each mouse in the baseline period; 
Fig. 1a). Mice then received 12 days of either once-daily 
s.c. injections of saline or 10 mg/kg paroxetine. Parox-
etine was chosen as it is the SSRI most likely to cause dis-
continuation symptoms in patients (Gastaldon et al. 2022; 
Price et al. 1996). The dose, frequency and duration of 
paroxetine administration were optimised in Collins et al. 
2022, and reflect common doses and durations of SSRI 
treatment in the literature (Elizalde et al. 2008; Karlsson 
et al. 2011; Venzala et al. 2012). Doses of 5–10 mg/kg 
have also been shown to produce a serotonin reuptake 
transporter (SERT) occupancy of 80–92% in rodents (for 
example, Leiser et al. 2015; Severino et al. 2018), similar 
to the approximately 80% occupancy required for clinical 
therapeutic effects in patients (Meyer et al. 2004; Sanchez 
et al. 2014). S.c. injections were used rather than a more 
refined or continuous method of drug treatment (e.g., 
osmotic minipumps or drinking water administration) 
due to the limited solubility and bitter taste of parox-
etine. This dosing period was then followed by a 13 day 
discontinuation period, where all mice received saline 
injections (Fig. 1a).

An a priori power calculation from data in a previous 
study suggested that n = 12/group was needed to detect 
significant effects of SSRI discontinuation on anxiety-
like behaviour (power = 0.8, α = 0.05, expected effect 
size = 0.55, based on analysis with one-way ANOVA; 
Collins et al. 2022). In an initial cohort (n = 6/group), all 
mice received saline injections for seven days to monitor 
the effects of paroxetine discontinuation. Following pre-
liminary evidence of persistent changes to sleep structure 
seven days after discontinuation, the discontinuation period 
was extended to 13 days in the second cohort to identify 
when such behavioural changes normalised to control lev-
els (n = 12/group total) (Fig. 1a).

Activity and sleep screening with PIR monitoring

Activity was automatically tracked with passive infrared sen-
sors (Panasonic, AMN32111 NaPiOn) as in (Brown et al. 
2016). Briefly, activity was detected every 100 ms (% time 
active reported in 10 s intervals) and plotted as actograms 
using a freely available function (https:// github. com/ bradm 
onk/ actog raph).

Data were binned into 1 h epochs using scripts written 
in MATLAB R2021b to calculate the mean hourly activity 
per day. Data were then averaged over each day, dark phase, 
and light phase. The interday stability (IS, the variability in 
activity of a 24 h period compared to the total variance of the 
whole experiment) and intraday variability (IV, a measure 
of the stability of a mouse’s sleep and wake periods) were 
calculated from activity data for each mouse as described in 
(Brown et al. 2019).

Behaviourally-defined sleep was defined as ≥ 40 s of 
immobility, which was previously validated using EEG and 
beam-break methods (Brown et al. 2016; Fisher et al. 2012; 
Pack et al. 2007), including recently in a mouse model of 
sleep disruption (Krone et al. 2021). Sleep data were binned 
into 1 h epochs to calculate the percentage of time asleep 
per hour, then averaged over each day, dark phase, and 
light phase per mouse. The latency to the first sleep bout 
after the lights turned on was calculated for each mouse 
(assigned a value of 0 s if the mouse was already asleep 
when the light was turned on). The number of sleep bouts 
in each dark and light phase were counted. The duration 
of each sleep bout was calculated and durations grouped 
into bins of ≤ 1 min, > 1 but ≤ 10 min (1–10 min), > 10 min 
but ≤ 60 min (10–60 min) or > 60 min (Ang et al. 2021), and 
expressed as a percentage of the total number of sleep bouts 
in each dark phase.

Statistical analysis

Hourly activity on representative treatment days (baseline 
period, day 0; end of repeated paroxetine treatment, day 12; 
discontinuation day 2, day 14; discontinuation day 5, day 17) 
were analysed with repeated measures ANOVA with Bonfer-
roni’s post-hoc tests. These treatment days were based on 
experiments in Collins et al. (2022): these experiments found 
that there were significant effects on anxiety-like behaviour 
on discontinuation day 2 but had dissipated by day 5. These 
days were therefore specifically analysed to draw compari-
sons to the existing data on anxiety-like behaviour.

Mean activity, percentage of time asleep, sleep latency, 
number of sleep bouts, sleep bout durations and body weight 
were analysed using mixed effects models with Geisser-
Greenhouse corrections and Bonferroni’s post-hoc tests for 
between-subject comparisons. Data from day 25 were not 
included in analyses of the light phase as mice were culled 

https://github.com/bradmonk/actograph
https://github.com/bradmonk/actograph
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before 17:00 that day. IS and IV data were analysed with 
repeated measures ANOVA with Bonferroni’s post-hoc tests. 
Weight gain data were determined to be parametrically dis-
tributed with a D’Agostino Pearson’s test and were analysed 
with Student’s t-tests. All analyses were conducted by an 
experimenter blind to treatment groups. P values of p < 0.05 
were considered significant.

Results

Repeated paroxetine treatment reduced mean 
activity in the first half of the dark phase

To establish baseline activity measurements, all mice ini-
tially received four days of saline injections (baseline period; 
Fig. 1a). The paroxetine group then received 12 days of 
10 mg/kg s.c. paroxetine injections (dosing period), before 
swapping back to saline injections for a further 13 days (dis-
continuation period) (Collins et al. 2022), whereas the saline 
control group received saline injections throughout. Repre-
sentative actograms showed that activity was similar each 
day throughout the experiment in a mouse from the saline 
group (Fig. 1b). In the paroxetine group, however, activity 
was reduced in the first half of the dark phase during the dos-
ing period. This suppression reversed to control levels within 
two days of paroxetine discontinuation (Fig. 1c). Across both 
treatment groups, activity was low in the light phase, except 
for a spike in activity at ZT 11.5, corresponding to the daily 
injections.

Analysis of activity per hour on representative treat-
ment days confirmed these observations. On the final day 
of the baseline period (day 0), as expected there was no 
significant difference in activity between the saline and par-
oxetine groups (main effect of treatment:  F(1,22) = 0.5702, 
p = 0.4582; ZT*treatment interaction:  (F(23,506) = 0.4073, 
p = 0.9992; Fig. 1d). To assess the effects of repeated par-
oxetine dosing, data were compared on the final day of the 
dosing period (day 12). On this day, there was evidence of 

reduced activity in the first 6 h of the dark phase in parox-
etine-treated mice compared to saline controls (main effect 
of treatment:  F(1,22) = 5.821, p = 0.0246; ZT*treatment 
interaction:  F(23,506) = 6.728, p < 0.0001; significant post-
hoc between-subject comparisons shown in Fig. 1e). On 
discontinuation day 2 (day 14), there was no overall dif-
ference between the treatment groups. Although there was 
a significant ZT*treatment interaction, there were no sig-
nificant post-hoc differences at any individual time point, 
suggesting that the effect of paroxetine administration had 
already reversed to saline-control levels (main effect of treat-
ment:  F(1,22) = 3.455, p = 0.0765; ZT*treatment interaction: 
 F(23,506) = 1.720, p = 0.0065; Fig. 1f). There was also no dif-
ference between the groups on discontinuation day 5 (day 
17; main effect of treatment:  F(1,22) = 0.7610, p = 0.3925; 
ZT*interaction:  F(23,506) = 0.6333, p = 0.9523; Fig. 1g). Thus, 
repeated paroxetine treatment reduced home cage activity 
levels in the first half of the dark phase, but this rapidly nor-
malised to saline-control levels following discontinuation.

Repeated paroxetine reduced dark phase activity, 
which rapidly reversed following discontinuation

To understand how home cage activity changed day-to-day 
during the dosing and discontinuation periods, mean daily 
activity, and activity in both the light and dark phases, were 
then analysed. A mixed-effects model was used to compare 
the saline and paroxetine groups (between-subject compari-
sons), and to compare daily activity to the baseline period 
(day 0) and the end of paroxetine treatment (day 12) (within-
subject comparisons).

Overall, continued paroxetine treatment reduced activity, 
but this effect reversed to control levels following discontin-
uation. There was a main effect of treatment group, as well 
as an effect of day and a treatment*day interaction (main 
effect of treatment:  F(1,22) = 4.993, p = 0.0359; effect of day: 
 F(25,550) = 6.242, p = 0.0013; interaction:  F(25,550) = 2.782, 
p < 0.0001; Fig. 2a). Post-hoc analyses showed that par-
oxetine administration significantly reduced activity com-
pared to saline controls and the baseline period. Following 
paroxetine discontinuation, activity increased compared to 
the final day of paroxetine administration, but it was not 
significantly different to the baseline period or that of saline 
controls (Fig. 2a).

This reduction in activity was particularly apparent dur-
ing the dark phase. There was an overall effect of treatment, 
as well as an effect of day and a significant treatment*day 
interaction (main effect of treatment:  F(1,22) = 8.144, 
p = 0.0092; effect of day:  F(25,550) = 5.012, p = 0.0031; inter-
action:  F(25,550) = 3.240, p < 0.0001; Fig. 2b). Post-hoc tests 
again showed that paroxetine administration reduced activity 
compared to saline controls and the baseline period. Activity 
increased following paroxetine discontinuation but did not 

Fig. 1  Effect of continued paroxetine and discontinuation on hourly 
activity. Experimental design (a). Representative actograms of a 
mouse in the Saline group (b) and the Paroxetine group (c). Each 
row of the actograms represents 24  h of activity (zeitgeist time, 
ZT), each spike represents activity (arbitrary units). Points represent 
mean ± SEM values for hourly activity comparing the in the Saline 
group and the Paroxetine group during the baseline period (treatment 
day 0) (d), at the end of paroxetine treatment (treatment day 12) (e), 
discontinuation day 2 (treatment day 17) (f) and discontinuation day 
5 (treatment day 19) (g). Horizontal white bar represents light phase 
(05:00 to 17:00), black bar represents dark phase (17:00 to 05:00). 
Arrow represents time of daily injections. Saline group (n = 12), Par-
oxetine group (n = 12). Analysed with repeated measures ANOVA 
with post-hoc Bonferroni’s test (only the first 24 h included in analy-
sis), * p < 0.05 between-subject comparisons (d-g)

◂
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differ from saline controls or the baseline period at any time 
following discontinuation (Fig. 2b). In contrast to the dark 
phase, neither continued paroxetine treatment nor discontin-
uation altered activity in the light phase (effect of treatment: 

 F(1,22) < 0.0001, p = 0.9886; effect of day:  F(23,506) = 3.155, 
p = 0.0179; interaction  F(23,506) = 1.524, p = 0.5770; Fig. 2c).

In summary, repeated SSRI treatment reduced mean 
daily activity, specifically during the dark phase. This 

Fig. 2  Effect of continued paroxetine and discontinuation on daily 
activity and sleep. Points represent mean ± SEM values of the per-
centage of time spent active across the whole day (a), dark phase (b) 
and light phase (c), and the percentage of time spent asleep across the 
whole day (d) dark phase (e) and light phase (f). Dotted vertical line 
represents discontinuation. Saline group (n = 12), Paroxetine group 

(n = 12), data from day 20 removed from light phase analysis due to 
outliers. Analysed with a mixed-effects model with Geisser-Green-
house correction with post-hoc Bonferroni’s test, * p < 0.05 between-
subject comparisons, † p < 0.05 day 0 vs 1–12, # p < 0.05 day 12 vs 
days 13–25 within-subject comparisons
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effect was evident from the first day of paroxetine 
administration but returned to control levels within one 
day of discontinuation. There were no effects of parox-
etine administration or cessation on activity during the 
light phase.

Repeated paroxetine increased sleep, which 
also normalised following discontinuation

Behaviourally-defined sleep, defined as at least 40 s of 
immobility (Fisher et al. 2012; Pack et al. 2007) was then 
calculated from the activity data (Brown et  al. 2016). 
There was no significant effect of treatment on the per-
centage of time mice spent asleep across the whole 
day, although there was a significant effect of day and 
a treatment*day interaction (main effect of treatment: 
 F(1,22) = 3.343, p = 0.0811; effect of day:  F(25,550) = 4.229, 
p = 0.0090; interaction:  F(25,550) = 2.159, p = 0.0011; 
Fig. 2d). Post-hoc tests did not find any between-subject 
differences, but there was a reduction in sleep from the 
end of repeated paroxetine treatment compared to the first 
day of discontinuation in the paroxetine group (Fig. 2d).

Paroxetine treatment increased the percentage of time 
mice spent asleep during the dark phase, which then 
normalised following discontinuation. There was a sig-
nificant main effect of treatment, an effect of day and 
a treatment*day interaction (main effect of treatment: 
 F(1,22) = 5.373, p = 0.0301; effect of day:  F(25,550) = 5.887, 
p < 0.0001; interaction:  F(25,550) = 4.084, p < 0.0001; 
Fig.  2e). Post-hoc analyses showed that paroxetine 
administration significantly increased the percentage of 
time mice spent asleep compared to both saline controls 
and the baseline period (Fig. 2e). The percentage of time 
asleep fell following paroxetine cessation, and sleep did 
not differ from saline-treated controls or the baseline 
period on any day during the discontinuation period 
(Fig. 2e). In contrast, neither continued paroxetine treat-
ment nor discontinuation altered the time spent asleep in 
the light phase (treatment:  F(1,22) = 0.0428, p = 0.8379; day: 
 F(24,528) = 3.496, p = 0.0115; interaction  F(24,528) = 2.518, 
p = 0.0001; Fig. 2f). Although there was a significant effect 
of day and a significant treatment*day interaction, there 
were no significant post-hoc differences between paroxe-
tine-treated and saline-treated mice. There were also no 
differences in sleep latency (the time between the start 
of the light phase and sleep onset) between the groups 
(Suppl. Fig. 1).

In summary, paroxetine treatment increased the dura-
tion of time mice spent asleep in the dark phase. This 
effect reversed following paroxetine discontinuation, and 
there were no effects of paroxetine administration or its 
subsequent cessation on sleep during the light phase.

Paroxetine treatment altered circadian rhythms

The amount and distribution of home cage activity can be 
used to measure circadian disruption using a range of dif-
ferent measures (Brown et al. 2019). To determine if parox-
etine disrupted circadian rhythms, measures of the stability 
of circadian rhythms (interday stability, IS, and intraday 
variability, IV) were calculated from the daily activity data. 
Across the experiment (baseline, dosing, and discontinuation 
periods together), IS was significantly lower in the parox-
etine group than in the saline group  (t(22) = 4.358, p = 0.0003; 
Fig. 3a), suggesting the activity patterns of the paroxetine-
treated mice were less reproducible, and therefore less stable, 
than the saline-treated mice. When each treatment period 
was considered separately, IS was lower during the dosing 
and discontinuation periods compared to the baseline peri-
ods (effect of treatment period:  F(2,44) = 9.912, p = 0.0006; 
Fig. 3b), suggesting that activity became more variable as 
the experiment progressed. Nonetheless, there were no dif-
ferences between paroxetine- and saline-treated mice in any 
individual phase (main effect of treatment:  F(1,22) = 1.587, 
p = 0.2209; treatment*period interaction:  F(2,44) = 0.0030, 
p = 0.9970; Fig. 3b), suggesting that activity patterns were 
similarly stable in both groups within each treatment period.

There was no difference in IV between the treat-
ment groups across the whole experiment  (t(22) = 0.1730, 
p = 0.8640; Fig. 3c), or when the baseline, dosing and dis-
continuation periods were considered separately (main effect 
of treatment:  F(1,22) = 1.564, p = 0.2242; effect of treatment 
period:  F(2,44) = 1.983, p = 0.1582; treatment*period inter-
action:  F(2,44) = 0.5166, p = 0.6001; Fig. 3d). Thus, classi-
cal measures of circadian rhythms did not detect specific 
differences during repeated paroxetine treatment or its 
discontinuation.

Paroxetine discontinuation lengthened sleep bouts 
in the dark phase

To investigate sleep fragmentation, the number of sleep 
bouts per dark and light phase were then calculated. In the 
dark phase, continued paroxetine treatment reduced the num-
ber of sleep bouts compared to saline controls. There was 
a significant main effect of treatment and a treatment*day 
interaction (main effect of treatment:  F(1,22) = 5.373, 
p = 0.0301; effect of day:  F(25,550) = 5.887, p < 0.0001; inter-
action:  F(25,550) = 4.084, p < 0.0001; Fig. 4a). Post-hoc tests 
showed that paroxetine administration reduced the number 
of sleep bouts compared to saline controls and the base-
line period. The number of sleep bouts increased following 
paroxetine cessation but did not differ from saline controls 
or the baseline period on any day during the discontinu-
ation period (Fig. 4a). By comparison, neither continued 
paroxetine nor discontinuation altered the number of sleep 
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bouts in the light phase  (F(1,22) = 0.1342, p = 0.7176; day: 
 F(24,528) = 3.031, p = 0.0254; interaction:  F(24,528) = 1.750, 
p = 0.0145; Fig. 4b). Although there was a significant effect 
of day and a treatment*day interaction, there were no sig-
nificant post-hoc differences between paroxetine- and saline-
treated mice.

The fragmentation of sleep was then probed further by 
analysing the distribution of sleep bout durations in the dark 
and light phases. Mixed-effect models found that repeated 
paroxetine treatment did not alter the percentage of ≤ 1 min 
(Fig. 4c) or 1–10 min (Fig. 4d) sleep bouts, but it increased 
the proportion of sleep bouts of 10–60 min duration com-
pared to both saline-treated controls and the baseline 
period (main effect of treatment:  F(1,22) = 6.730, p = 0.0166; 
effect of day:  F(25,550) = 5.184, p = 0.0010; interaction: 
 F(25,550) = 4.563, p < 0.0001; Fig. 4e). These findings are 
consistent with the reduction in the number of sleep bouts 
in the dark phase during paroxetine administration – mice 

were sleeping for longer and hence the number of bouts was 
lower.

Following paroxetine discontinuation, however, the per-
centage of 10–60 min sleep bouts immediately reduced back 
to saline-control and baseline levels (Fig. 4e). Moreover, 
there was an emergent reduction in the number of ≤ 1 min 
sleep bouts between the second and seventh days after 
discontinuation compared to both saline controls and the 
baseline period (main effect of treatment:  F(1,22) = 3.484, 
p = 0.0754; effect of day:  F(25,550) = 4.731, p = 0.0001; inter-
action:  F(25,550) = 1.466, p = 0.0495; Fig. 4c). Moreover, 
there was an increase in the percentage of 1–10 min sleep 
bouts between the second and fourth days after discontinu-
ation compared to saline controls (main effect of treatment: 
 F(1,22) = 1.727, p = 0.2024; effect of day:  F(25,550) = 5.833, 
p < 0.0001; interaction:  F(25,550) = 2.785, p < 0.0001; Fig. 4d). 
Together, these results suggest a distribution of sleep bouts 
with fewer short sleep bouts in the dark phase in the week 

Fig. 3  Effects of continued 
paroxetine and discontinuation 
on the stability of circadian 
rhythms. Bars represent 
mean ± SEM values of the 
interday stability (IS) (a) and 
IS by treatment period (b), and 
the intraday variability (IV) 
(c) and IV by treatment period 
(d). Saline group (n = 12), 
Paroxetine group (n = 12), dots 
represent individual mice. Ana-
lysed with Student’s t-tests (a, c) 
and repeated measures ANOVA 
with post-hoc Bonferroni’s test, 
** p < 0.01
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following paroxetine discontinuation, implying that sleep 
was less fragmented.

There were no significant effects of treatment or 
time, or a treatment*time interaction, on the percentage 
of > 60 min duration sleep bouts (treatment:  F(1,22) = 0.1036, 
p = 0.7506; time:  F(25,550) = 2.430, p = 0.3090; interaction: 
F(25,550) = 1.742, p = 0.1521; Fig. 4f). Similar analysis was 
also conducted on the duration of sleep bouts in the light 
phase, but there were no effects of repeated paroxetine treat-
ment or discontinuation (Suppl. Fig. 2).

Paroxetine increased body weight, 
while discontinuation reduced weight gain

The weight of the mice was also monitored throughout the 
experiment as an ongoing assessment of animal welfare. 
Overall, mice receiving paroxetine treatment gained more 
weight, whereas mice undergoing discontinuation gained 
less weight, than saline controls. All mice gained weight 
during the experiment (time:  F(25,550) = 32.05, p < 0.0001), 
in accordance with C57BL/6 mouse growth curves (Somer-
ville et al. 2004). There was no effect of treatment but there 
was a significant treatment*day interaction (treatment: 
 F(1,22) = 1.110, p = 0.3036; interaction:  F(25,550) = 5.057, 

p < 0.0001; Fig. 5a). Between-subject comparisons found 
that mice receiving continued paroxetine weighed signifi-
cantly more than saline-treated mice after repeated parox-
etine administration (treatment days 10–14; Fig. 5a).

This increase in weight in paroxetine-treated mice was 
confirmed by comparing weight gain during the dosing 
period  (t(22) = 4.513, p = 0.0002 treatment day 0 vs day 12; 
Fig. 5b). By comparison, two days after paroxetine discon-
tinuation, there was no difference in weight gain between the 
paroxetine and saline groups (day 12 vs 14:  t(22) = 0.9381, 
p = 0.3584; Fig. 5c). Five days after paroxetine discontinu-
ation, mice had gained significantly less weight than saline 
controls (day 12 vs 17:  t(22) = 2.454, p = 0.0225; Fig. 5d). 
Thus, continued paroxetine increased weight gain, but mice 
gained less weight during discontinuation.

Discussion

SSRI treatment and its subsequent discontinuation are 
known to affect sleep and circadian rhythms, and yet how 
these changes emerge and resolve during and after treatment 
have yet to be studied. Here, we investigated whether PIR 
monitoring could be used to detect changes in activity, sleep, 

Fig. 5  Effects of continued par-
oxetine and discontinuation on 
body weight. Points represent 
the mean ± SEM values for 
body weight each day (a). Dot-
ted line represents paroxetine 
discontinuation. Bars represent 
the mean ± SEM values for 
weight change during parox-
etine treatment (b), two days 
of discontinuation compared to 
the end of paroxetine treatment 
(c) and five days discontinu-
ation compared to the end of 
paroxetine treatment (d). Saline 
group (n = 12), Paroxetine group 
(n = 12), dots represent individ-
ual mice. Mixed-effects model 
with Geisser-Greenhouse cor-
rection with post-hoc Bonfer-
roni’s test (a) or Student’s t-test 
(b-d), * p < 0.05 ** p < 0.01 
between-subject differences
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and circadian rhythms in mice during repeated paroxetine 
treatment and its subsequent discontinuation. We found that 
paroxetine reduced activity in the dark phase compared to 
saline-treated controls, an effect that was particularly appar-
ent in the first 6 h of the dark phase. Paroxetine administra-
tion was also associated with an increase in behaviourally-
defined sleep during the dark phase compared to controls, 
and specifically an increase in the proportion of sleep bouts 
of 10–60 min duration. The effects of continuous paroxetine 
treatment reversed within 24 h of discontinuation, but there 
was also evidence of a reduction in the number of < 1 min 
sleep bouts and an increase in the number of 1–10 min sleep 
episodes, suggesting a lengthening of sleep bouts.

To our knowledge, non-invasive home cage monitoring 
has not previously been used to assess such sleep behaviour 
during chronic drug administration. Saline-treated mice in 
the current study provide a control for the effect of repeated 
systemic injections on spontaneous activity and sleep. Here, 
the daily activity patterns of the saline-treated mice were 
consistent throughout the experiment and were typical for 
wildtype C57BL/6 J mice (Pernold et al. 2021). For instance, 
the peak in activity early in the dark phase is a common 
feature of C57BL/6 behaviour and likely reflects initial dark 
phase activity and feeding following the inactive light phase 
(Hossain et al. 2004; Peirson et al. 2018). The second activ-
ity peak in the final few hours of the dark phase is also char-
acteristic, and reflects that mice are typically most active 
around the light/dark transitions (Peirson et al. 2018). By 
comparison, activity was low and sleep was high in the light 
phase, as would be expected for a nocturnal species. These 
data confirm that the control mice did not have any underly-
ing sleep disruption, which typically presents as increased 
activity in the light phase (Brown et al. 2019). Importantly, 
the interday stability and intraday variability values were 
similar to other reports in C57BL6 mice (Brown et al. 2019), 
suggesting that receiving daily saline injections did not dis-
rupt the activity patterns of these mice. These results provide 
an important validation for the use of PIR monitoring for 
assessing circadian behaviours in chronic dosing studies of 
this kind.

In contrast to the saline control group, paroxetine admin-
istration had marked effects on activity and behaviourally-
defined sleep in the dark phase. Paroxetine treatment reduced 
activity but increased sleep, with the number of sleep bouts 
decreasing but the proportion of longer sleep bouts increas-
ing. These effects appeared after just one dose of paroxetine 
and were stable throughout the dosing period. Such activity-
suppressant effects of paroxetine have also been reported in 
a mouse model of Huntington’s disease – repeated parox-
etine treatment was associated with reduced activity in the 
dark phase compared to vehicle-treated controls, without 
changes to light phase behaviour (Kantor et al. 2017; Ouk 
et al. 2018). We also detected a reduction in spontaneous 

locomotor activity in mice treated for 28 days with parox-
etine compared to saline controls (Collins et al. 2022).

Interestingly, the most robust reduction in activity by 
repeated paroxetine treatment was in the first 6 h after its 
administration. This finding mirrored the effect paroxetine 
produced in a previous study of circadian activity in rats 
(Gervasoni et al. 2002). The timing of this effect may reflect 
the short half-life of paroxetine (Kreilgaard et al. 2008), 
with the greatest effects occurring when its plasma, and 
ultimately brain, concentrations were at their highest. This 
altered activity pattern could be evidence of phase shifting 
and circadian disruption arising from elevated 5-HT in the 
SCN (Nomura et al. 2008; Sprouse et al. 2006, 2004). Alter-
natively, this reduction in activity could reflect the off-target 
blockade of noradrenaline reuptake transporters (NET) by 
paroxetine (Sanchez et al. 2014). Chronic administration of 
NET inhibitors has been shown to reduce spontaneous loco-
motor activity in mice (Mitchell et al. 2006). Hence, reduced 
locomotion could have arisen from the high plasma levels 
of paroxetine immediately following its injection, when its 
off-target effects will have been at their highest.

Paroxetine administration also increased sleep in the dark 
phase. This agrees with other studies suggesting that NREM 
increased in paroxetine-treated mice (Kantor et al. 2017) 
and rats (Leiser et al. 2015). On the other hand, this result 
was unexpected given that SSRIs often cause insomnia in 
patients (Thompson 2002; van Bemmel et al. 1993; Wilson 
and Argyropoulos 2005). Moreover, 5-HT transmission, 
which is elevated during SSRI treatment (Hajós-Korcsok 
et al. 2000; Malagié et al. 2000), is thought to promote 
wakefulness (McGinty and Harper 1976; Trulson and Jacobs 
1979). For instance, electrophysiological recordings from 
juxtacellular-labelled 5-HT neurons in the rat DRN showed 
that firing progressively fell during the transition from wake-
fulness to NREM sleep (McGinty and Harper 1976). 5-HT 
is also thought to stimulate wakefulness by suppressing 
sleep-promoting nuclei (reviewed in Donlea et al. 2017). 
Moreover, genetic knockout studies have suggested that the 
5-HT1A, 5-HT2A, 5-HT2C and 5-HT7 receptors are critical 
regulators of sleep homeostasis (reviewed in Monti 2011). 
Increased extracellular 5-HT during paroxetine treatment 
would therefore be predicted to reduce sleep.

The present effect of repeated paroxetine therefore resem-
bled the sedative effects of tricyclic antidepressants (Steriade 
2004; Wichniak et al. 2017) and could have arisen from the 
off-target effects of paroxetine on cholinergic or noradren-
ergic transmission (Sanchez et al. 2014; Wilson and Argy-
ropoulos 2005). While it is possible that reduced locomotor 
activity could have overestimated sleep, the sensitivity of the 
PIR system means that it can detect small movements associ-
ated with quiet wakefulness, such as grooming, even in the 
absence of locomotor activity. Thus, these data suggest that 
paroxetine both increased sleep and decreased locomotor 
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activity when the animal was awake. Nonetheless, future 
EEG studies should be performed to confirm these findings.

Paroxetine discontinuation, on the other hand, was asso-
ciated with a rapid reversal of the effects of continuous 
paroxetine treatment. Previous preclinical studies support 
these findings. For instance, the REM-suppressant effects 
of repeated paroxetine treatment reversed within 24 h of its 
washout in rats (Gervasoni et al. 2002), and NREM did not 
differ from vehicle controls two weeks after discontinua-
tion of paroxetine in mice (Kantor et al. 2017). Thus, the 
current data suggest that the activity-suppressant and sleep-
promoting effects of paroxetine reversed rapidly following 
treatment cessation.

In contrast, it was also predicted that there would be 
ongoing changes to sleep following discontinuation due to 
clinical observations of persistent insomnia and sleep dis-
turbances. This discrepancy could reflect the difficulties 
comparing the effects of drugs that affect circadian rhythms 
in nocturnal rodents to diurnal humans. Alternatively, the 
short-lasting effects of paroxetine treatment may suggest that 
the dose, once-daily injections, or duration may not have 
been sufficient to produce discontinuation effects. Although 
the existing literature suggests that two weeks of SSRI 
administration produces steady state plasma levels within 
the clinical therapeutic range (Benmansour et al. 1999; Cre-
mers et al. 2000), this treatment regime may not have led to 
the same neuroadaptive changes in the 5-HT system that 
occur clinically. Hence, the effects of paroxetine adminis-
tration may in fact represent repeated, acute effects of par-
oxetine rather than adaptive changes, potentially explaining 
their rapid reversal following discontinuation. This may also 
have limited the extent of the subsequent discontinuation 
phenotype.

Despite the lack of clear parallels to the insomnia and 
sleep disturbances present in the clinical discontinuation 
syndrome, there was evidence that the structure of sleep 
bouts changed following paroxetine discontinuation in mice. 
In the dark phase, the duration of sleep bouts increased 
in length for seven days after the end of paroxetine treat-
ment. This change in sleep bout duration could therefore 
act as a biomarker with which to further investigate SSRI 
discontinuation syndrome in rodents. These changes also 
occurred after paroxetine washout, and so unlike the poten-
tially sedative effects of paroxetine itself, must have been 
distinct effects of discontinuation. Moreover, this duration 
of effect was substantially longer than the transient increase 
in anxiety-like behaviour previously seen only two days after 
paroxetine cessation (Collins et al. 2022), suggesting it may 
be a more translational marker of the syndrome.

The increase of dark phase sleep with longer sleep bouts 
could imply a weakened circadian drive for wakefulness, 
as observed in rats and squirrel monkeys with SCN lesions 
(Edgar et al. 1993; Moore 1983; Stephan and Zucker 1972), 

and in mice missing core clock genes (reviewed in Fisher 
et al. 2013). This change in sleep structure could also be 
likened to daytime somnolence, or patients feeling the desire 
to sleep more during the daytime (Black et al. 1993).

Alternatively, these data could be related to a rebound 
increase in REM sleep, which is reported to occur following 
SSRI cessation in patients. For example, one study found 
that paroxetine treatment suppressed REM sleep in humans 
compared to pre-treatment levels; within just two days of 
discontinuation, however, total REM sleep increased above 
pre-medication levels (Staner et al. 1995). REM rebound 
was also detected after fluoxetine and citalopram discontinu-
ation (Feige et al. 2002; Trivedi et al. 1999; van Bemmel 
et al. 1993). For rodents, the probability of entering REM 
sleep grows as the length of the sleep bout increases (Kantor 
et al. 2017). Moreover, mice with REM deficits showed evi-
dence of reduced sleep, suggesting changes in REM can alter 
overall sleep structure (Banks et al. 2020). By this logic, 
increased REM sleep could present as increased sleep bout 
durations, and therefore be an indication of discontinuation 
syndrome-like sleep disruption. Nonetheless, as the PIR sys-
tem is not able to differentiate between sleep states, EEG 
studies would be needed to determine if REM rebound is 
detectable in this model of SSRI discontinuation.

Interestingly, there were no changes to light phase sleep 
or activity during paroxetine treatment or its discontinua-
tion. Increased light phase activity is generally a hallmark of 
circadian disruption (Brown et al. 2019), so the lack of effect 
could suggest that neither paroxetine nor its discontinua-
tion were associated with broad circadian disruption. On 
the other hand, the light/dark cycle that mice were housed 
under may have limited our ability to detect disruption. 
Light is the main cue to entrain sleep to the environment in 
rodents (Peirson et al. 2018), and can force sleep regardless 
of sleep pressure (Mrosovsky and Hattar 2003). Thus, evi-
dence of sleep dysregulation may have been masked by the 
overwhelming drive to sleep during the light phase. Future 
experiments would therefore benefit from monitoring sleep 
and activity in constant free running conditions (continuous 
darkness), which may expose additional markers of sleep 
disturbances. The lack of effect of paroxetine on light phase 
activity and sleep may also relate to its half-life, meaning its 
greatest effects occurred during the dark phase immediately 
following administration. Continuous dosing methods such 
as osmotic minipumps could also be used to produce more 
consistent changes in behaviour across both the light and 
dark phase.

Continuously monitoring mice throughout paroxetine 
administration and discontinuation also made it possible 
to assess the effect of treatment on body weight. Increased 
weight gain has previously been reported in mice repeatedly 
treated with paroxetine (Zha et al. 2017, 2019). Moreover, 
reduced weight gain during paroxetine discontinuation could 
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indicate increased stress, as weight loss and low appetite can 
be indicative of poor wellbeing in mice (Talbot et al. 2019). 
Alternatively, a lack of weight gain could indicate GI dis-
ruption, another common symptom of SSRI discontinuation 
syndrome (Fava et al. 2015). Thus, there may be ongoing 
changes to appetite, metabolism, or general wellbeing in 
the week following paroxetine discontinuation, potentially 
resembling to somatic symptoms of the discontinuation syn-
drome (Fava et al. 2015).

Our findings illustrate that PIR monitoring provides a 
valuable high-throughput screen of mouse activity and sleep 
in the weeks following paroxetine administration and discon-
tinuation. The non-invasive nature of this approach means 
there is no need for surgical EEG electrode placement. This 
eliminates any potential inflammation resulting from neuro-
surgery and device implantation, which can produce changes 
in local neurotransmitter concentrations and alter behaviour 
(Albrecht et al. 2018; Balzekas et al. 2016). PIR monitor-
ing can also be used over extended time periods, providing 
activity and sleep data in real time, rather than requiring 
extensive post hoc data analysis. Finally, this approach is 
advantageous over the behavioural tests previously used to 
assess changes in anxiety-like behaviour during SSRI dis-
continuation (Collins et al. 2022), in that more data can be 
obtained from fewer animals. Within-subject comparisons 
also increase the power of the study by reducing between-
animal variability.

Nonetheless, this study did not include female mice. Pre-
viously, we failed to detect changes in anxiety-like behav-
iour in female mice undergoing paroxetine discontinuation 
(Collins et al. 2022); hence, this study exclusively used male 
mice. Although the explanation for this sex difference is 
not known, variation in the 5-HT system, for example dif-
ferential SERT expression between male and female mice 
(Hodes et al. 2010), may contribute. Moreover, the faster 
metabolism of SSRIs in female compared to male rodents 
(Renoir et al. 2011) may limit their subsequent discontinua-
tion effects. Given that women are more than twice as likely 
to take an SSRI than men (Wise 2014), future studies should 
optimise the administration of paroxetine to female mice 
to investigate the generalisability of the present findings to 
both sexes.

In conclusion, we found that repeated paroxetine treat-
ment reduced activity but increased behaviourally-defined 
sleep in the dark phase, which reversed within 24 h of par-
oxetine cessation. While this dosing regimen did not reca-
pitulate the common clinical side effects of SSRI treatment 
on sleep, there was evidence of an emergent lengthening 
of sleep bouts in the dark phase for up to a week following 
discontinuation that may relate to the symptom of daytime 
somnolence. There was also evidence of changes in weight 
gain at least five days after paroxetine cessation, again sug-
gesting distinct effects of discontinuation. Changes in sleep 

structure could be used as objective biomarkers of the effects 
of SSRI discontinuation in mice. Thus, this paradigm pro-
vides the opportunity to investigate novel approaches to pre-
vent the emergence of discontinuation symptoms, or to iden-
tify therapies that could minimise their severity, which could 
be translated to clinical studies. Our study also provides the 
first example of how non-invasive continuous home cage 
monitoring can detect changes in activity and sleep during 
repeated drug treatment in mice.
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