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Editorial on the Research Topic

Explainable and advanced intelligent processing in the

brain-machine interaction

Brain-machine interfaces (BMIs), also known as brain-computer interfaces (BCIs), allow

their users to control external devices directly using brain signals without relying on the

peripheral nervous system and muscles (Wolpaw et al., 2002). As a new bioengineering

technology, BCI has a great potential in motor function enhancement to help patients

disabled by diseases, such as stroke. In particular, BCI systems with interactive brain

stimulation, such as deep brain stimulation (DBS), provide an active way to reveal

relationships underlying the interplay between body control and brain activities, as well

as to better understand pathological mechanisms underlying diseases such as Parkinson’s

disease (PD) and essential tremor (ET). While developing such advanced BCI systems,

one of the major challenges is to apply explainable and advanced intelligent processes to

decode the information embedded in brain signals such as EEG and functional Near-Infrared

Spectroscopy (fNIRS) recorded non-invasively from scalp, or local field potential (LFP)

recorded invasively from cortical (e.g., motor cortex) or subcortical (e.g., thalamus) brain

structures (Heldman et al., 2006; Opri et al., 2020; He et al., 2021).

The goal of this Research Topic for the Brain-Computer Interface section of Frontiers

in Human Neuroscience is to collect the current developments of explainable and advanced

intelligent methods in BCIs based on EEG, fNIRS, or LFPs. With this aim, we collected five

original research articles focusing on different aspects in developing an explainable BCI,

including artifact rejection, feature extraction, classification using explainable algorithms,

and hyper-parameter tuning.
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Artifact removal is a common topic in the BCI community. In

particular, it becomes more challenging to remove artifacts such as

electrooculogram (EOG)when the number of recorded EEG signals

is limited. To deal-with the over-complete issue while applying

independent component analysis (ICA) to remove EOG artifacts

from single-channel EEG recordings, Hu et al. proposed a method

called DWT-CEEMDAN-ICA, in which a complete empirical mode

decomposition method proposed by Torres et al. (2011) that can

adapt to noise (CEEMDAN) is used to decompose the discrete

wavelet transformation output of the raw EEG signals, ICA is then

applied on the decomposed intrinsic mode functions (IMFs) to

identify and remove EOG artifacts. This approach might be of

interest to those dealing with EOG artifacts in EEG recordings,

especially for those focusing on single-channel EEG-based BCIs,

further evaluation of the effectiveness of this approach on bigger

dataset is still needed though.

To improve the generalizability of motor imagery (MI)-based

BCIs, Wang et al. proposed an EEG joint feature classification

algorithm based on instance transfer and ensemble learning. In

their method, spatial and frequency domain features are extracted

through common spatial pattern (CSP, Ramoser et al., 2000) and

power spectral density (PSD) analysis, then the MI classification

is achieved using an ensemble learning algorithm based on

kernel mean matching (KMM, Huang et al., 2007) and adaptive

enhancement of transfer learning (TrAdaBoost, Dai et al., 2007).

Experimental results using BCI Competition IV Dataset 2a and

2b showed that their method achieved higher decoding accuracies

compared with some state-of-the-art methods, demonstrated its

effectiveness. However, as the authors acknowledged, this method

may not be applicable to other EEG data such as the P300 event-

related potential.

Recently, researchers interested in BCI studies have paid

great attention to deep leaning-based approaches, in particular,

convolutional neural networks (CNN)-based methods. However,

there tends to be a trade-off between the accuracy and

the interpretability of the trained models, and in many BCI

applications, the former is more important. Focusing on this trade-

off, Shibu et al. proposed an explainable artificial intelligence

(xAI) system that attempts to decompose the CNN model’s output

onto the input variables (i.e., channels) of fNIRS signals recorded

during motor execution or motor imagery. Specially, a method

called DeepShap is applied to compute the shapley values, which

are further used to explain the model’s output (Lundberg and

Lee, 2017; Alsuradi et al., 2020). In contrast, Rodriguez et al.

took another path and systematically compared the accuracy of

decoding movement states and the interpretability between end-

to-end CNN-based methods and feature-based methods, i.e., a

support vector machine (SVM), using both simulated and real

LFP data recorded from ET patients. The synthetic data consisted

of 7 different oscillatory patterns including power changes in

the beta and gamma bands, beta waveform sharpness, non-

linear phase, theta-gamma phase amplitude coupling (PAC), cross-

channel phase shifts, and beta burst length. The LFP data were

recorded from the bilateral ventra intermediate (VIM) nucleus of

the thalamus of ET patients while they perform self-paced upper

limb movement tasks (He et al., 2021). The experimental results

suggested that end-to-end deep leaning-based methods can yield

FIGURE 1

Improving brain-computer interface (BCI) performance and

facilitating the understanding of disease mechanisms using

explainable intelligent algorithms.

superior performance, especially in cases where the underlying

features of interest are not well-known or not easily captured by

standardized feature extraction pipelines. These studies highlighted

and made important contributions on the interpretability of CNN-

based methods, which may be particularly interesting to those

focusing on clinical applications of BCI such as adaptive deep brain

stimulation (aDBS).

The performance and interpretability of a BCI system is

both somehow determined and represented by a set of hyper-

parameters optimized in the trained models. In the last paper

collected in this Research Topic, Martineau et al. introduced

a Bayesian optimization (BO)-based pipeline for automatic

hyper-parameter tuning that is applicable through the entire

decoding process, including feature extraction, channel selection,

classification, and state-transition stages. The authors compared

the proposed method with five other real-time feature extraction

methods paired with four classifiers to decode voluntary movement

asynchronously based on LFPs recorded with DBS electrodes

implanted in the sub-thalamic nucleus (STN) of PD patients,

and demonstrated the effectiveness of the proposed pipeline.

This study provides a promising solution to deal with the

challenges surrounding hyper-parameter tuning while developing

BCI systems.

We believe explainable and advanced intelligent processing is

an important perspective while developing BCI systems, which

can help to improve the performance and interpretability of the

developed systems, and will further facilitate the understanding of

disease mechanisms (Figure 1). In collating a few good examples

of this, we hope this special topic can act as a resource for those

interested in this topic, trigger further discussion, and eventually

push forward development in this area.
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