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Objectives: The pathological mechanism for a disorder of consciousness (DoC)

is still not fully understood. Based on traditional behavioral scales, there is a

high rate of misdiagnosis for subtypes of DoC. We aimed to explore whether

topological characterization may explain the pathological mechanisms of DoC

and be e�ective in diagnosing the subtypes of DoC.

Methods: Using resting-state functional magnetic resonance imaging data, the

weighted brain functional networks for normal control subjects and patients

with vegetative state (VS) and minimally conscious state (MCS) were constructed.

Global and local network characteristics of each group were analyzed. A support

vector machine was employed to identify MCS and VS patients.

Results: The average connection strength was reduced in DoC patients and

roughly equivalent in MCS and VS groups. Global e�ciency, local e�ciency,

and clustering coe�cients were reduced, and characteristic path length was

increased in DoC patients (p < 0.05). For patients of both groups, global network

measures were not significantly di�erent (p > 0.05). Nodal e�ciency, nodal local

e�ciency, and nodal clustering coe�cient were reduced in frontoparietal brain

areas, limbic structures, and occipital and temporal brain areas (p < 0.05). The

comparison of nodal centrality suggested that DoC causes reorganization of

the network structure on a large scale, especially the thalamus. Lobal network

measures emphasized that the di�erences between the two groups of patients

mainly involved frontoparietal brain areas. The accuracy, sensitivity, and specificity

of the classifier for identifying MCS and VS patients were 89.83, 78.95, and

95%, respectively.

Conclusion: There is an association between altered network structures and

clinical symptoms of DoC. With the help of network metrics, it is feasible to

di�erentiate MCS and VS patients.
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1. Introduction

Every year, more than 50 million people in the world suffer a variety of brain

injuries (Maas et al., 2017; Jiang et al., 2019). After an acute coma, some of

them fall into a disorder of consciousness (DoC) (Bernat, 2006; Fernandez-Espejo

and Owen, 2013). DoC is a serious brain dysfunction that results in the patients

partially or totally losing the ability to perceive the surrounding environment and

their state. To maintain the life of DoC patients, long-term treatment and heavy

nursing burden have brought great pressure on families and society (Bernat, 2006).
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Consciousness consists of two components: arousal and

awareness. Numerous studies have shown that DoC is characterized

by disruptions in the neural pathways that maintain arousal and

awareness. However, the pathological mechanism of DoC is still

not fully known. According to the level of consciousness, DoC can

be mainly classified as coma, vegetative state (VS) or unresponsive

wakefulness syndrome, minimally conscious state (MCS), etc.

VS patients resume the sleep–wake cycle and open their eyes

spontaneously or under stimulation, but they have no obvious signs

of consciousness. MCS patients show a weak and unstable state

of consciousness.

Consciousness cannot be measured directly. At present,

traditional behavioral scales (Giacino et al., 2004; Teasdale

et al., 2014) are still the gold standard for assessing the state

of consciousness. However, due to subjective differences and

interference of other factors (e.g., medical complications, motor

deficits, and sensory deficits) (Giacino et al., 2009), 40% of MCS

patients may be misdiagnosed as VS patients based on behavioral

assessment (Wang et al., 2017; Galiotta et al., 2022). This may

raise serious medical and social–ethical problems. Therefore, it is

urgent to seek a more effective diagnostic method for the level

of consciousness.

The brain is a complex system. The network connectivity

pattern of multiple brain areas interacting with each other has

been proven to be the physiological basis of information processing

in the brain (van den Heuvel and Sporns, 2019). Based on

graph theory, this pattern is abstractly represented as a model

composed of numerous nodes and edges connecting these nodes, to

facilitate the understanding of the relationship between functional

integration, functional separation, and human cognition (Lynn

and Bassett, 2019). The default mode network was involved in

the regulation of internal consciousness (Scalabrini et al., 2022).

Previous studies have reported that there is a decrease in functional

connectivity of the default mode network and the reduction

is proportional to the degree of consciousness impairment

when consciousness-related neuronal activity is severely disrupted

(Vanhaudenhuyse et al., 2010; Fernandez-Espejo et al., 2012;

Soddu et al., 2012). A similar phenomenon is present in the

executive control network, which is involved in maintaining

external consciousness (Vanhaudenhuyse et al., 2011). In addition,

a thalamocortical connectivity breakdown is observed in DoC

patients and is thought to be an important factor in triggering

DoC (Weng et al., 2017). Ample evidence supports differences

in brain connectivity patterns between DoC patients and healthy

populations. Recently, the changes in brain network topology

induced by impaired consciousness have been investigated in some

studies. Achard et al. showed that the hub nodes in comatose

patients exhibit an extensive readjustment (Achard et al., 2012).

Several studies indicated that compared with normal subjects,

impaired consciousness leads to a decrease in the information

integration ability of the brain network (Crone et al., 2014;

Chennu et al., 2017; Rizkallah et al., 2019). However, these studies

were almost always conducted based on binary brain networks.

Compared with the binary network, the weighted network can

more realistically describe the connectivity characteristics between

brain areas. The global and local topological characteristics of

the weighted brain network for MCS and VS patients have not

been clearly investigated. Furthermore, few studies have discussed

whether network representations of MCS and VS patients are

expected to be valid neural markers to distinguish them.

In this study, relying on resting-state functional magnetic

resonance imaging (fMRI), we constructed the weighted brain

functional networks for the normal control (NC) group,

VS group, and MCS group and analyzed the corresponding

structural characteristics of the brain network. Then, the network

characteristics of MCS and VS patients were fed into a support

vector machine to verify whether the network representations

could provide useful information to effectively differentiate the two

types of patients.

2. Materials and methods

2.1. Subjects

One hundred and four patients with DoC were recruited from

Beijing Tiantan Hospital, Capital Medical University, China. Each

patient suffered severe brain injury for more than 1 month. Based

on the currently most recognized Coma Recovery Scale—Revised

(CRS-R) assessment, these patients were divided into a group of

80 VS patients and a group of 24 MCS. patients by performing

multiple evaluations within 2 weeks. None of the patients had

any contraindications to MRI scans, and no sedation or anesthesia

was performed before MRI acquisition. Due to the excessive head

motion (translation > 3mm or rotation > 3◦) and terrible image

quality, the data of 40 VS and 5 MCS patients were discarded

in the follow-up analysis. The specific demographic and clinical

information for the remaining 40 VS (age = 42.95 ± 13.90, 17

men) and 19 MCS patients (age = 40.05 ± 14.80, 11 men) is

listed in Supplementary Table S1. Age- and sex-matched 30 healthy

volunteers (age = 41.24 ± 11.27, 15 men) were included in the

NC group. All healthy subjects have no history of neurological

or psychiatric disease. The overall experimental protocol complies

with the Declaration of Helsinki and is approved by the local ethics

committee. Before data collection, each healthy subject and the

legal surrogate of each patient were given a complete description

of the experiment and signed written informed consent.

2.2. Data acquisition and preprocessing

All images were collected using a Discovery MR750 3.0-T

scanner (General Electric, Milwaukee, Wisconsin, USA) equipped

with an eight-channel head coil. fMRI images were obtained

axially using a T2-weighted echo-planar imaging sequence sensitive

to the blood oxygenation level-dependent contrast. The detailed

acquisition parameters were as follows: repetition time (TR)/echo

time (TE) = 2000/30ms, thickness/gap = 4.0/0.6mm, matrix size

= 64 × 64 × 39, voxel size = 3.75 × 3.75 × 4 mm3, and flip

angle = 90◦. The scan time lasted 7min, generating a total of

210 volumes. T1-weighted high-resolution structural images were

acquired for registration of functional images using a sagittal brain

volume imaging sequence with the following parameters, TR/TE=

8.16/3.18ms, thickness/gap = 1.0/0mm, matrix size = 256 × 256

× 188, voxel size = 1 × 1 × 1 mm3, and flip angle = 7◦. During

data acquisition, each participant was instructed to keep their
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eyes closed, lie motionless, and not think about anything. Head

movements were minimized using wedge-shaped foam padding.

Data preprocessing is an essential step to reduce the noises

of physiological and instrument sources and increase the signal-

to-noise ratio. In the present study, data were screened and

preprocessed by running Data Processing and Analysis for Brain

Imaging (DPABI) Version 6.0 210501 software package (Yan et al.,

2016) on MATLab R2019a. In the initial stage of data acquisition,

the data quality was affected by the inhomogeneity of the magnetic

field and the inadaptability of subjects. Usually, the first 10

volumes of each subject were removed to improve the accuracy

of the recording. Then, slice timing correction was performed

on the remaining volumes to rectify temporal offsets between

slices. Each volume was realigned with the reference volume

such that the spatial position of the brain corresponds exactly.

Subsequently, the structural image was co-registered with the mean

functional image. Gray matter, white matter, and cerebrospinal

fluid were segmented from the co-registered structural image.

To reduce the effect of non-neuronal fluctuations, brain white

matter signals, cerebrospinal fluid signals, global signals, and head

motion parameters were regressed from fMRI data. Finally, the

functional images were spatially normalized to the standard space

of the Montreal Neurological Institute, thus eliminating individual

differences in brain size and morphology among different subjects.

The voxel size was resampled to 3 × 3 × 3 mm3. A 4-mm full-

width at half maximum Gaussian kernel was applied to smooth

the spatially normalized image. The time series of all voxels were

bandpass filtered between 0.01 to 0.1 Hz.

2.3. The construction of the brain network

In essence, the brain function network can be regarded as a

model with a large number of network nodes and connection edges

connecting these nodes. Here, a widely used brain partition scheme

namedAutomated Anatomical Labeling (AAL) atlas was employed,

which parcellates the brain excluding the cerebellum into 90

separated brain functional areas (45 in each brain hemisphere).

The 90 areas are abstracted into network nodes. Then, the average

time series of all voxels in each brain area were extracted. The

relationship between the network nodes for each subject was

revealed by a 90 × 90 matrix, which was obtained from calculating

the Pearson correlation coefficient r of the time series. To improve

the normality of the data, the Pearson correlation coefficient r

was subjected to Fisher’s r -to- z transformation. Owing to poor

knowledge of its complexity, the negative correlation coefficients

are usually not considered to establish the connection edges.

Consistent with previous studies, each negative element in the

matrix was set to 0. Network sparsity refers to the ratio of the actual

number of connection edges to the maximum possible number of

connection edges in the network. A small network sparsity means

that there are a lot of isolated network nodes. A big network sparsity

may introduce a batch of false connections. The first leading

elements in the matrix were retained to build the connection edges

between the brain areas with the strongest coupling. As a result, a

total of 36 weighted adjacency matrices from the network sparsity

range of 5% to 40% with an interval of 1% were generated in the

graph formation.

2.4. The measures of brain network

Ten metrics were adopted to characterize the topological

organization of the brain function network for healthy subjects,

VS patients, and MCS patients, including global efficiency, local

efficiency, clustering coefficient, characteristic path length, nodal

efficiency, nodal local efficiency, nodal clustering coefficient, degree

centrality, betweenness centrality, and eigenvector centrality. The

first four are called global network metrics. The last six are referred

to as local network metrics. The subsequent discussion was carried

out in the weighted form of all network measures. Nodal efficiency

reflects the difficulty for a node to transmit information to its

neighbor. Nodal local efficiency describes the ability of information

exchange between the first-hop neighbors of a node. Nodal

clustering coefficient of a node quantifies the clustering degree

for its first-hop neighbors. Nodal centrality reveals the importance

of nodes in the whole network. Degree centrality evaluates

node importance based on edge weight. Betweenness centrality

assesses the status of nodes according to their contribution to

information flow in the network. The eigenvector centrality of a

node emphasizes the quantity and quality of its neighbors. In other

words, if a node has a large number of important neighbors, the

node is also very important. The characteristic path length is the

average shortest path length of all node pairs. Global efficiency

is defined as the average nodal efficiency of all nodes. These two

indicators represent the capability of information transmission

at the network level, depicting the functional integration from

the side. Similarly, local efficiency and clustering coefficient are

the average representations for nodal local efficiency and nodal

clustering coefficient of all nodes, respectively. In addition to

information interaction, they measure functional separation to

some extent.

2.5. Embedded feature selection and L1
regularization

Combining the selected complex network measures, the length

of the final feature vector for each subject was 544. Feature

selection is a very important process in the classification task,

which optimizes the original feature set by eliminating redundant

features. Feature selection helps to improve the classification

performance and, at the same time, reduces the training time and

storage requirements. Common feature selection can be roughly

divided into filtered type, wrapped type, and embedded type.

The filtered type relies on the importance score of the feature

to filter the features that meet the conditions, independent of

the training process of the classifier. The wrapped type is closely

linked to the training process. This method treats classification

performance as an evaluation criterion and searches for the optimal

subset of features by multiple iterations. Unlike the previous two

approaches, the embedded type integrates the feature selection

within the training process, enabling automatic and simultaneous
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feature selection during the training process. Therefore, the features

were selected in this study using an embedded method (Zheng

et al., 2022). Based on the logistic regression, it is mathematically

described as follows.

Given the data set D=
{ (

x1, y1
)

,
(

x2, y2
)

, · · · ,
(

xm, ym
)}

, where

x ∈ Rd, y ∈ R, the loss function of the logistic regression is

J (ω) = −

m
∑

i=1

[yi ln hω(xi)+
(

1− yi
)

ln
(

1− hω(xi)
)

],

hω(xi) =
1

1+ e−ωTxi
(1)

where ω denotes the model parameter to be learned. Due

to the small sample size and excessive features, L1 regularization

is introduced to prevent the logistic regression from falling into

overfitting. The new optimization objective becomes

minj(ω) + λ ‖ ω ‖1 (2)

where λ represents the regularization parameter, λ > 0

Solve for the vector ω. Many components of the vector ω are 0.

The attributes corresponding to its non-zero components are the

features we need.

2.6. Synthetic minority oversampling
technique

The sample size of the VS group was approximately twice as

large as that of the MCS group. Hence, the upcoming classification

task suffers from a severe class imbalance. In general, machine

learning algorithms show excellent performance when dealing with

class-balanced data. Class imbalance leads to the classifier learning

a priori information of sample proportion. Thus, the actual

prediction is focused on the majority class. To solve this problem,

the SMOTE algorithm (Chen et al., 2022) was introduced in this

study. The basic idea of the algorithm is to give a classifier the ability

to learn features of different classes equally by synthesizing samples

for minority classes. The implementation process is as follows:

(a) The distance between each sample and the other samples was

calculated to obtain the k nearest neighbors for each sample

in the minority class,

(b) The sampling rate N is set according to the imbalance ratio

of the sample,

(c) One sample is randomly selected from the k nearest

neighbors of each sample for linear interpolation, and the

new sample is synthesized as

xnew = xi + δ(x̂i − xi) (3)

where xnew is the new sample synthesized, xi is a sample of the

minority class, x̂i is a randomly selected sample from the k nearest

neighbors, δ is a random factor in the range (0, 1).

(d) The process is repeated N times.

2.7. Validation and evaluation

After feature selection and oversampling, a support vector

machine was employed to identify MCS and VS patients. Usually,

a small number of samples for training and testing may result

in low robustness and generalization of the model. To obtain a

stable and reliable performance evaluation, cross-validation is an

essential step. Here, leave-one-out cross-validation was used. In

each iteration, the method selects one sample as the test data,

while the rest are classified as training data. Until each sample has

acted as test data once, the cross-validation is over. Owing to the

class imbalance, it is not reasonable to adopt accuracy alone to

describe model performance. Therefore, sensitivity and specificity,

two common metrics, were also complemented to evaluate the

classification performance. The formula for each indicator is

listed below,

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Sensitivity =
TP

TP + FN
(5)

Specificity =
TN

TN + FP
(6)

where TP denotes the number of MCS patients correctly predicted,

TN represents the number of VS patients correctly predicted, FP is

the number of VS patients incorrectly identified as MCS patients,

and FN symbolizes the number of MCS patients incorrectly

identified as VS patients. The main implementation pipeline of this

study is illustrated in Figure 1.

3. Results

To improve the normality of the Pearson correlation coefficient,

a non-linear correction to the correlation coefficient matrix

was performed using Fisher’s r-to-z transformation. The group-

averaged corrected correlation coefficient matrix is shown in

Figure 2, where the horizontal and vertical axes are the node (brain

area) labels. Each element in the matrix portrays the coupling

relationship between the corresponding two brain regions. From

Figure 2, it can be roughly inferred that the average connection

strength of the NC group was higher than that of the patient

group. The group-averaged z-value distribution was estimated with

the help of histograms to confirm this hypothesis, as shown in

Figure 3. Because of symmetrical characteristics, only the elements

in the upper triangular region of the matrix were investigated.

Quantitatively, the group-averaged z-values of the NC group, MCS

group, and VS group roughly followed a normal distribution with

means µ of 0.31, 0.22, and 0.21 and standard deviation σ of 0.18,

0.14, and 0.14, respectively. The group-averaged z-values of the

MCS group and VS group were mainly concentrated in the interval

(0, 0.6). The number of z-values >0.3 was reduced in the MCS

group andVS group compared with the NC group. Therefore, when
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FIGURE 1

The main implementation pipeline of this study.

we constructed the brain functional network using the first 5% to

40% of z-values with an interval of 1%, the average connection

strength of the NC group was necessarily higher than that of the

remaining two groups. In addition, Figures 2, 3 show that the

average connection strength was roughly equivalent in the MCS

and VS groups.

Subsequently, the area under the curve (AUC) for each network

measure was calculated. The AUC of the network measure is

a summary scalar reflecting the structure of the brain network.

With this approach, the network parameters of various thresholds

can be integrated. A non-parametric permutation test was applied

to assess the between-group difference in the AUC of each

network measure. The number of permutations was 10,000. The

significance level α was 0.05. The between-group comparison

of global network measures for the NC group, MCS group,

and VS group is given in Figure 4. The significant differences

between groups are marked with an asterisk. As shown in

Figure 4, the global efficiency, local efficiency, and clustering

coefficient of the MCS group and VS group were significantly

lower than those of the NC group (p < 0.05). The characteristic

path length of the MCS and VS groups was significantly higher

than that of the NC group (p < 0.05). However, there was no

difference in these measures between the MCS and VS groups (p

> 0.05).

Equally, between-group differences in each local network

measure were examined using non-parametric permutation tests,

which were mapped to the brain surface using BrainNet Viewer

software (Xia et al., 2013) for visualization, as shown in Figure 5. In

Figure 5, from left to right, the between-group differences of local

network measures between the NC group and the MCS group, the

NC group and the VS group, and the MCS group and the VS group

are shown successively. Brain areas with significantly reduced local

network measures (MCS group < NC group, VS group < NC

group, and VS group < MCS group) are highlighted in yellow,

and brain areas with significantly increased local network measures

(MCS group > NC group, VS group > NC group, and VS group
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FIGURE 2

Group average connection matrix (A) NC group, (B) MCS group, (C) VS group.

FIGURE 3

Z-value distribution (A) NC group, (B) MCS group, (C) VS group, (D) stacking diagram of the three groups.
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FIGURE 4

Between-group comparison of global network measures (A) AUC of global e�ciency, (B) AUC of local e�ciency, (C) AUC of clustering coe�cient,

and (D) AUC of characteristic path length.

> MCS group) are marked in blue. More details on the between-

group comparisons for each local network measure are provided in

the Supplementary material.

Nodal efficiency, nodal local efficiency, and nodal clustering

coefficient quantify the ability of neural information transmission

in the node neighborhood. Compared with the NC group, nodal

efficiency, nodal local efficiency, and nodal clustering coefficient

were significantly reduced (p < 0.05) in multiple frontoparietal

brain areas of MCS and VS patients. These areas mainly

include the dorsolateral and medial prefrontal cortex, orbitofrontal

cortex, precentral gyrus, postcentral gyrus, paracentral lobule,

supplementary motor area, precuneus, inferior parietal lobule,

Rolandic operculum, supramarginal gyrus, and angular gyrus.

Analogous changes in nodal measures were observed in the insula,

amygdala, parahippocampal gyrus, and cingulate gyrus (p < 0.05).

Furthermore, nodal efficiency, nodal local efficiency, and nodal

clustering coefficient were significantly reduced in some occipital

and temporal regions (p < 0.05), such as the superior occipital

gyrus, middle occipital gyrus, inferior occipital gyrus, cuneus,

lingual gyrus, calcarine fissure and surrounding cortex, fusiform

gyrus, superior temporal gyrus, middle temporal gyrus, inferior

temporal gyrus, and Heschl’s gyrus. Compared with the NC group,

the nodal efficiency, nodal local efficiency, and nodal clustering

coefficient of the bilateral caudate nucleus were significantly

increased in the VS group (p < 0.05). Differently, there were no

such changes in the MCS group yet (p > 0.05).

Compared with the VS group, the nodal efficiency of the right

middle frontal gyrus and the right caudate nucleus decreased, and

the nodal efficiency of the left precentral gyrus, left postcentral

gyrus, left inferior parietal lobule, right paracentral lobule, and left

Heschl’s gyrus increased in the MCS group (p < 0.05). The nodal

local efficiency and nodal clustering coefficient of the left caudate

nucleus were smaller in the MCS group than those of the VS group

(p< 0.05). The nodal local efficiency of the left Rolandic operculum

and the left supramarginal gyrus was larger in the MCS group than

that of the VS group (p < 0.05). The nodal clustering coefficient of
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FIGURE 5

Between-group di�erences in AUC of local network measures: (A) nodal e�ciency, (B) nodal local e�ciency, (C) nodal clustering coe�cient, (D)

degree centrality, (E) betweenness centrality, and (F) eigenvector centrality. Yellow areas (MCS group < NC group, VS group < NC group, and VS

group < MCS group) and blue areas (MCS group > NC group, VS group > NC group, and VS group > MCS group) represent local areas with

significant di�erences.
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the left Rolandic operculum was larger in the MCS group than that

of the VS group (p < 0.05).

Nodal centrality is a key indicator to measure the influence

of a node in the network. The NC group, MCS group, and VS

group were compared using three common centrality measures,

namely degree centrality, betweenness centrality, and eigenvector

centrality. Despite the perspectives of these centrality metrics to

quantify the importance of nodes being different, comparative

analyses based on nodal centrality consistently showed a general

readjustment of brain functional network structure in MCS and

VS patients compared with the NC group. In particular, the degree

centrality, betweenness centrality, and eigenvector centrality of

the thalamus were significantly increased (p < 0.05) in MCS

and VS patients, indicating an elevated status of the thalamus in

the network.

As for theMCS group and VS group, the degree centrality of the

right dorsolateral superior frontal gyrus, right middle frontal gyrus,

and right caudate nucleus in the MCS group was lower than that in

the VS group, and the degree centrality of the left precentral gyrus,

left postcentral gyrus, left inferior parietal lobule, right paracentral

lobule, and left Heschl’s gyrus were higher than that in the VS group

(p < 0.05). The betweenness centrality of the right dorsolateral

superior frontal gyrus, right middle frontal gyrus, left orbital

inferior frontal gyrus, left cuneus, bilateral angular gyrus, and right

inferior temporal gyrus was lower in the MCS group than that in

the VS group, and the betweenness centrality of the right Rolandic

operculum, bilateral olfactory cortex, right posterior cingulate

gyrus, bilateral hippocampus, right parahippocampal gyrus, right

putamen, and right middle temporal gyrus was higher than that

in the VS group (p < 0.05). The eigenvector centrality of the right

dorsolateral superior frontal gyrus, right middle frontal gyrus, and

right caudate nucleus was lower in the MCS group than that in

the VS group, and the eigenvector centrality of the left precentral

gyrus, left Rolandic operculum, right superior occipital gyrus,

left postcentral gyrus, left supramarginal gyrus, right paracentral

lobule, left Heschl’s gyrus, and left superior temporal gyrus were

higher than that in the VS group (p < 0.05).

Abnormal brain activities induced by DoC can be effectively

analyzed using the network mapping approach. Whether brain

topological properties hold promise as a neurological marker

to accurately separate MCS from VS patients has not been

clearly explored. Here, a support vector machine was used to

verify the distinguishing ability of brain topological characteristics.

The magnification and shrinkage of the regularization coefficient

λ affect the number of retained features. Given the actual

mathematical expression of λ, it is more convenient to use its

reciprocal C to control the number of retained features, which is

a common practice in the field of machine learning. The smaller

the parameter C, the larger the penalty. The performance of the

classifier with the change of C is shown in Figure 6. We only

plotted the part of C taking from 0.1 to 1 in steps of 0.01.

From Figure 6, it can be seen that the best performance of the

classifier was achieved when parameter C was set to 0.25. The

accuracy, sensitivity, and specificity were 89.83%, 78.95%, and 95%,

respectively. Notably, with the value of parameter C greater than

0.5, the accuracy and specificity remain approximately 70% and

95%. The sensitivity was lower than 50%. This suggests that patients

who were misclassified essentially belong to the MCS group. In

general, it is feasible to classify MCS patients and VS patients using

network representations.

4. Discussion

By combining Figure 2 with Figure 3, we can see that the DoC

caused a diminished dependence of most brain areas on each

other. In addition, there was a similar spatial pattern of functional

connectivity between the MCS group and the VS group.

Global efficiency and characteristic path length are

interdependent but opposite, revealing functional integration

to some extent. The increased characteristic path length and the

reduced global efficiency imply that DoC occurs with a slow

interaction activity of neural information and an increase in

the consumption of information transfer between brain areas.

Local efficiency and clustering coefficient are two metrics that

describe functional separation. The reduced local efficiency and

reduced clustering coefficient reflect a lower degree of network

aggregation, blocking the communication between the neighbors

of nodes. In other words, the brain networks of patients with

impaired consciousness are loosely structured compared with

normal individuals. Functional integration and separation are the

basis for the emergence of cognitive behavior (Wang et al., 2021).

Generally, functional integration has a positive correlation with the

complexity of cognitive tasks. Functional separation determines

the speed of cognitive task processing. In Figure 4, altered global

network measures in DoC patients revealed weakened functional

integration and weakened functional separation, which may

proclaim underlying reasons for the patients failing to complete

complex neuromodulation.

These reasonsmay be refined using the analysis of local network

measures as shown in Figure 5. Frontoparietal brain areas are

closely associated with higher cognitive functions (e.g., memory,

emotion, movement, and language expression) (Nee, 2021).

Previous studies have suggested that the frontoparietal connectivity

pattern is a neural marker of behavioral awareness (Chennu et al.,

2014, 2016, 2017). Insula, amygdala, parahippocampal gyrus, and

cingulate gyrus are important components of the limbic system.

The anterior insula and the claustrum participate in the process of

consciousness through their interaction with the cortex (Critchley

et al., 2004; Crick and Koch, 2005; Taylor et al., 2009; Koubeissi

et al., 2014). The amygdala, parahippocampal gyrus, and cingulate

gyrus play an important role in the production and expression

of emotions and the storage and processing of memories. The

occipital and temporal lobes are responsible for visual and auditory

information processing. Abnormal nodal efficiency, nodal local

efficiency, and nodal clustering coefficient of the frontoparietal

brain areas, limbic system structures, occipital and temporal brain

areas may account for higher cognitive dysfunctions and impaired

visual and auditory activities in DoC patients.

The caudate nucleus is a part of the striatum, which is a

brain region that may be involved in consciousness (Llinas et al.,

2002). Some researchers have explored the possibility of using

deep brain stimulation (DBS), a technique that delivers electrical

impulses to specific brain areas, to treat disorders of consciousness
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FIGURE 6

The performance of classification. Accuracy reflects the proportion of patients correctly classified into the MCS and VS groups. Sensitivity describes

the proportion of patients correctly identified in the MCS group. Specificity portrays the proportion of patients correctly recognized in the VS group.

(DoC), which are conditions that affect the level or content of

consciousness in patients who have suffered a severe brain injury.

One study reported that DBS increased the volume of the caudate

nucleus in DoC patients (Raguz et al., 2021). However, it is

controversial whether such structural changes are the result of deep

brain stimulation effects or caused by recovery of consciousness. A

bilateral subcortical (thalamus and caudate nucleus) and cortical

(frontal–temporal–parietal) network exhibits metabolic damage

in non-traumatic and traumatic MCS patients (Bruno et al.,

2012). According to the presence or absence of language-related

consciousness signs, MCS can be divided into MCS- and MCS+.

Compared with MCS- patients, brain areas such as the precuneus,

thalamus, left caudate nucleus, and temporal/angular cortices

associated with semantics showed less hypometabolism and/or

larger gray matter volume in MCS+ patients (Aubinet et al., 2019).

Therefore, it may be reasonable to speculate that compared with the

NC group the increased nodal efficiency, nodal local efficiency, and

nodal clustering coefficient in the caudate nucleus of the VS group

as well as the non-significant changes in these indicators of theMCS

group may be caused by activated brain compensatory functions.

In terms of nodal efficiency, the topological differences between

the MCS and VS groups were mainly in the frontoparietal lobe.

This was consistent with comparisons of synaptic activity measured

indirectly in the resting state based on changes in glucose metabolic

rate or cerebral blood flow in various brain regions of MCS

and VS patients (Stender et al., 2015). The Heschl’s gyrus is

located in the primary auditory cortex. Compared with the VS

group, the increased nodal efficiency of Heschl’s gyrus in MCS

patients may be related to their residual external consciousness

capacity (auditory localization). Although there is some ability in

the functional connectivity of the visual and auditory cortex to

differentiate MCS and VS patients, the activation of the visual and

auditory cortex does not play a decisive role in the emergence

of consciousness. Notably, as the level of consciousness increases,

neural information interactions between the caudate nucleus and

other brain areas were inhibited in a local scope, as opposed

to Rolandic operculum and supramarginal gyrus, as derived

from the corresponding changes in nodal efficiency, nodal local

efficiency, and nodal clustering coefficient. Rolandic operculum

and supramarginal gyrus are situated in Wernicke’s area, which

controls language understanding. Clinical evidence shows that

many patients with MCS can respond to speech or follow verbal

commands (Aubinet et al., 2019). This may garner benefit from the

preservation of the neural information communication capacity in

speech-related cortices.

The altered node centrality captured the brain network

structure of DoC patients reorganized on a large scale. Particularly,

the importance of the thalamus in the network was improved.

The increased degree of centrality illustrates that the thalamus

has a stronger coupling relationship with its neighbors. The

increased betweenness centrality suggests that the thalamus has

enhanced communication control over other brain areas. The
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increased eigenvector centrality implies that the neighbors of the

thalamus also have a great influence on the whole network. The

thalamus is considered to be the switch of consciousness (Lemaire

et al., 2022). A large number of studies suspect that reduced

cortical–thalamocortical functional connectivity is key to the loss

of consciousness (Malekmohammadi et al., 2019). Our results may

also need to be explained by the compensatory mechanism of the

brain functional network. Furthermore, similar to the comparison

based on nodal efficiency, the centrality differences between MCS

and VS patients were mainly in frontoparietal brain areas.

When the value of parameter C is greater than 0.5, the

sensitivity was lower than 50%. Such a phenomenon is not

surprising, mainly for the following reasons. Our classification

task suffers from a severe class imbalance, which causes the

classifier to learn a priori information of sample proportion.

Thus, the actual classification is focused on the majority class.

In addition, many redundant features are retained when the

value of parameter C is controlled above 0.5. This is a

disaster for support vector machines if the features are of

high dimensionality and contain a lot of redundancy. At this

point, even if the class imbalance problem is improved by

an oversampling technique, the classification performance is

still poor.

5. Conclusion

hThe network mapping method can effectively recognize

the specific brain areas related to DoC, providing a new

window to explain the pathological mechanism of DoC. Network

characterization is effective in distinguishing MCS from VS

patients. Nevertheless, there were some limitations in this study.

First, our study was based on a small size of samples with

unbalanced classes. More reliable and convincing results need to

be supplemented by collecting sufficient samples with unbalanced

classes in future. Second, only the AAL90 brain template was

utilized to segment the brain to define the network nodes.

Some new findings may be obtained using a more refined

brain segmentation scheme. Next, the performance of other

classifiers, especially the emerging deep learning algorithms,

has not yet been discussed. Nevertheless, these algorithms

require a large amount of data for training. Finally, the

human brain achieves goal-directed behavior by dynamically

regulating neuronal activities. In the future, it is essential

to construct dynamic brain functional networks in patients

with DoC.
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