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Average power and burst analysis revealed complementary
information on drug-related changes of motor performance
in Parkinson’s disease
Flavie Torrecillos1,2, Shenghong He1,2, Andrea A. Kühn 3 and Huiling Tan 1,2✉

In patients with Parkinson’s disease (PD), suppression of beta and increase in gamma oscillations in the subthalamic nucleus (STN)
have been associated with both levodopa treatment and motor functions. Recent results suggest that modulation of the temporal
dynamics of theses oscillations (bursting activity) might contain more information about pathological states and behaviour than
their average power. Here we directly compared the information provided by power and burst analyses about the drug-related
changes in STN activities and their impact on motor performance within PD patients. STN local field potential (LFP) signals were
recorded from externalized patients performing self-paced movements ON and OFF levodopa. When normalised across medication
states, both power and burst analyses showed an increase in low-beta oscillations in the dopamine-depleted state during rest.
When normalised within-medication state, both analyses revealed that levodopa increased movement-related modulation in the
alpha and low-gamma bands, with higher gamma activity around movement predicting faster reaches. Finally, burst analyses
helped to reveal opposite drug-related changes in low- and high-beta frequency bands, and identified additional within-patient
relationships between high-beta bursting and movement performance. Our findings suggest that although power and burst
analyses share a lot in common they also provide complementary information on how STN-LFP activity is associated with motor
performance, and how levodopa treatment may modify these relationships in a way that helps explain drug-related changes in
motor performance. Different ways of normalisation in the power analysis can reveal different information. Similarly, the burst
analysis is sensitive to how the threshold is defined – either for separate medication conditions separately, or across pooled
conditions. In addition, the burst interpretation has far-reaching implications about the nature of neural oscillations – whether the
oscillations happen as isolated burst-events or are they sustained phenomena with dynamic amplitude variations? This can be
different for different frequency bands, and different for different medication states even for the same frequency band.
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INTRODUCTION
Deep brain stimulation (DBS) is an established and effective
treatment to manage the symptoms of advanced Parkinson’s disease
(PD), which also offers a unique opportunity to record subcortical
electrophysiological activity in human participants1,2. The local field
potential (LFP) signals recorded from the depth electrodes reflect the
underlying activity of neuronal populations and hence provide direct
insight into basal ganglia function. Many studies have investigated
how the power of different oscillatory activities in the subthalamic
nucleus (STN) are broadly associated with motor functions. For
example, beta (13–30 Hz) and gamma (31–90 Hz) bands have gained
most attention due to their robust movement reactivity. It has been
shown that the latency of beta power desynchronization in the STN
correlates with reaction time across and within subjects3,4. The
percentage changes in the power of the beta and gamma
oscillations correlated with movement vigour5–7 and other kinematic
parameters8–10. In addition, averaged beta and gamma powers in the
STN have been found to correlate with hand bradykinesia during
sustained gripping11 and repetitive tapping12 in PD.
Most previous studies mentioned above quantified the power

of oscillatory activities during different time windows averaged
across trials. More recently, focus on the temporal dynamics of LFP
signal has revealed that beta and gamma oscillations may consist
of transient bursting episodes that last a few cycles rather than

sustained oscillatory activities13,14. This has led to the speculation
that the modulation of burst characteristics such as burst duration
and rate, which reflect the changes in the temporal dynamic of
the power of targeted oscillations, might contain more informa-
tion about pathological states and behaviour15–18. For STN LFPs,
slowing of repetitive movements have been associated with
increased burst duration and percentage of time spent in beta
bursts19,20 and with a decrease in gamma burst rate within PD
patients10. Two further studies have focussed on the motor effects
of trial-by-trial changes in beta burst characteristics before cued
movement onset in PD patients, demonstrating that STN beta
bursts in specific time windows can reduce the velocity of
externally-triggered ballistic movements, an effect that can be
amplified by the presence of longer duration and multiple bursts,
and ones that overlap in time across the two STNs21,22.
Interpreting frequency-specific patterns of neural activity as

transient bursts of isolated events rather than as rhythmically
sustained oscillations has potentially far-reaching theoretical impli-
cations14,23. It challenges models of how such ongoing oscillations
serve to route information flexibly and also questions models
proposing that oscillations are generated through ongoing recurrent
excitation and inhibition14. Computational modelling has shown
that transient beta events in the motor cortex could emerge from
the integration of synchronous bursts of excitatory synaptic drive
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targeting proximal and distal dendrites of pyramidal neurons24.
Meanwhile, several recurrent circuits in the cortico-basal ganglia-
thalamic network have been identified to be able to generate,
propagate and maintain excessive beta oscillations in PD25–28.
Therefore, we argue that the STN LFP signals reflect a mixture of

sustained level of rhythmic synchrony and transient bursting
events. This raises the possibility that both features of the
subcortical oscillatory activity – sustained oscillation which can
be quantified by power and transient bursting events which are
better quantified by bursting parameters – might provide
complementary information about the pathophysiology and motor
performance within PD patients29. Here, we test this hypothesis
through a direct comparison of the effect of mean power and
bursting patterns on how they differentiate dopamine states and
how they can predict motor performance on trial-by-trial basis in
PD. In addition, bursts in neural time series are usually identified by
applying a simple binary decision threshold based on the pooled
distribution of amplitude values. When using burst analysis to
compare the neural signals recorded when the patients are ON vs
OFF dopaminergic medication to understand the pathophysiology
of PD, decision has to be made on either defining the burst
threshold on the single condition (ON or OFF) or the combined
data. Using different thresholds on the same time series does not
alter its dynamics, it only alters how we binarise the time series and
define bursts. Therefore, we also investigated how different
thresholding methods (within single medication condition sepa-
rately vs one common threshold based on combined data) change
the results.

RESULTS
PD patients perform faster self-paced movements ON
medication
In the current study, PD patients were instructed to perform
ballistic self-paced joystick movements with their left or right
hands both OFF and ON medication (see Methods, Fig. 1a). The

individual velocity profiles were computed for each of the four
conditions separately (OFF-left hand, OFF-right hand, ON-left hand,
and ON-right hand) and normalized by z-scoring across hands and
states within a subject to facilitate group analysis. As can be seen in
Fig. 1b for a representative patient, there are two peaks in the
velocity profiles corresponding to the forward and backward
movement of the joystick respectively. Velocity peaks of the
forward movements were identified on each single trial and both
their amplitude (VPa) and latency (VPt) were extracted. The effects
of both hand (Left / Right) and medication (ON /OFF), as well as
their interaction, were then tested on VPa and VPt by applying
linear-mixed effect models. The results revealed a significant effect
of medication on mean VPa (Fig. 1c, b= 1.41 ± 0.11, t(34)= 2.13,
p= 0.04), but no effect of hand (b= 0.72 ± 0.12, t(34)= 1.1,
p= 0.29) or interaction between hand and medication
(b=−0.51 ± 0.07, t(34)=−1.2, p= 0.24). No significant effect was
observed on VPt (hand effect: p= 0.45; Medication: p= 0.92;
Interaction: p= 0.35). These results suggest that PD patients
performed faster movements ON medication, independently of
the hand used to hold the joystick.
Based on these behavioural results, we decided to focus our

analysis on VPa, and to group the movements performed with left
and right hands together treating each hand and the contralateral
STN as independent samples. In this way we considered a group
of 19 STNs OFF medication (sub5 performed the task with only the
left hand) and 17 STNs ON medication (recordings ON medication
of sub3 were compromised). The comparison of mean VPa
between the two medication states confirmed the results
described above, with faster forward movements performed ON
than OFF medication (Fig. 1c, paired t-tests, t(18)=−2.89,
p= 0.01).

Modulation of subthalamic activities by dopaminergic
medication at rest
One important pathological feature of the STN-LFP activity in the
dopamine-depleted state is its excessive synchrony in the beta

Fig. 1 Experimental Protocol and behavioural results. a Patients performed stereotyped self-paced movements of a hand-held joystick
repeated approximately every 10–20 s. b Averaged velocity profiles for a representative patient in the four conditions. c Averaged velocity
peak amplitudes and latencies at the group level, in the four conditions (top) and when movements of the left and right hands are grouped
together (bottom). The circles and dots indicate data from different individuals. In each box plot, the central line indicates the median, and the
bottom and top edges of the box indicate the 25th and 75th percentiles across all recorded samples, respectively. The whiskers extend to the
most extreme data points (minima and maxima) not considered outliers. VPa: Velocity peak; VPt: time from movement onset to velocity peak.
Each dot represents one STN. n.s: not significant; msec: milliseconds.
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frequency band, clearly visible on the time-frequency maps when
normalizing the signals across states (Fig. 2a). The comparison of
the power spectral densities (PSDs) at rest with a cluster-
permutation test allowed us to identify a range from 10 to
17 Hz where power was significantly higher in the OFF compared
to the ON state (Fig. 2b, p= 0.03).
In addition to the effect on STN beta power, dopaminergic

treatment has been suggested to also change the temporal
dynamics of beta power, reflected in the relative distribution of

beta bursts, which become longer when OFF medication
compared to ON16. To allow comparison with this previous study
we first defined bursts based on a common threshold across both
medication states (Fig. 2e). The bursts analysis revealed similar
results as the average power, with increased oscillatory activities
in the low beta frequency band at rest, characterized by an
increase in burst probability across trials (Fig. 2c, d, cluster from 11
to 18 Hz, p= 0.05), an increase in the number of bursts per trial
(burst rate, Fig. 2e, f, cluster from 9 to 22 Hz, p= 0.007). In
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addition, the comparison of burst rate and duration between the
two medication states revealed that bursts during OFF medication
were longer than ON medication for the frequencies ranging from
27 to 39 Hz (p < 0.001) and occurred at a higher rate between 28
and 48 Hz (Fig. 2e, f, p= 0.019).
To control for the influence of the medication-related modula-

tion of mean power in the burst analysis, we re-defined bursts
using separate thresholds, which helps emphasize the within-state
dynamic changes (Fig. 3). This revealed additional medication-
related changes in the high-beta frequency range, with shorter
burst duration (20–25 Hz, p= 0.02) and smaller number of bursts
(21–27 Hz, p= 0.03) when OFF medication compared with ON
medication, opposite to the direction of change in burst rate in
low-beta frequency band (Fig. 3c, 12–18 Hz, p= 0.004). Note that
the modulations observed in the low gamma band with a
common threshold were still present (duration, cluster from 30 to
38 Hz, p < 0.001; rate, cluster from 34 to 46 Hz, p= 0.003).
All together, these results suggest that average power, burst

duration and rate are modulated by levodopa, in a frequency-
specific way. Burst analysis reveal a complementary modulation of

the LFP activity in the gamma band that was not observed in the
averaged power. In addition, the results of these analysis
in the beta band are strongly dependent on how bursts are
defined, and separate thresholds are able to identify opposite
modulation of bursts in the two beta sub-bands.

Modulation of subthalamic activities before and during
voluntary movements
As already observed in Fig. 2a, c, power and burst probabilities
were modulated by movements, with a clear desynchronization
during movement spanning the alpha and beta frequency ranges.
To evaluate the effect of medication on this movement-related
profile, power time courses were defined in four predefined
frequency bands and normalized across medication state or within
medication states (see Methods).
When the power was normalised across medication states, we

observed higher power in the absence of levodopa in the alpha
band from 5 to 1.45 s before the movement onset (p= 0.005,
Fig. 4a) and until approximately the end of the movement for the
low beta power (from 5 to 0.83 s, p < 0.001, Fig. 4a). For burst

Fig. 2 Power and burst analysis with across-state normalization revealed drug-related modulation in the low-beta frequency band in
STN at rest. a Averaged time frequency plots aligned to the movement onset (MO) both OFF and ON medication. To visualize the effect of
medication, an across-state normalization is used (average OFF-ON), similar to a common burst threshold. b Averaged power spectral
densities for both medication states at rest (from −5 to −3 seconds before MO, see dashed box in plot a. Power values are normalized to the
average power across both medication states in the 1–100 Hz to allow group average (see methods). The solid line and shaded area indicate
mean values +/− sem. Cluster based-permutation test revealed a significant cluster from 10 to 17 Hz (black bar). c Averaged burst probability
over time for all frequencies from 4 to 48 Hz. Burst probabilities are computed across trials based on a common burst threshold and then
averaged across all STNs. d Averaged burst probabilities (n= 19 STNs) at rest. The solid lines and shaded areas indicate the mean +/− sem
across all STNs, respectively. Cluster based-permutation test revealed a significant cluster from 11–18 Hz (black bar). e Schematic of burst
definition. Raw LFP signals are filtered at a specific frequency and a threshold is applied to the amplitude envelope (75th percentile, see text).
In this example 5 bursts are identified. f Burst analysis revealed additional changes in the low-gamma frequency bands between OFF and ON
medications. The vertical bar and whiskers indicate the mean +/− sem across all STNs. Frequencies at which the paired comparison between
OFF and ON is significant are indicated with the horizontal black bars (cluster-based permutation tests, *p < 0.05, **p < 0.01, ***p < 0.001, after
FDR correction).

Fig. 3 Burst analysis with separate thresholds revealed difference in drug-related modulation for the low-beta vs high-beta frequency
bands in STN at rest. a Averaged burst probability over time for all frequencies from 4 to 48 Hz. Burst probabilities are computed across trials
based on two separate thresholds defined within each medication state, and then averaged across all STNs. b Averaged burst probabilities
(n= 19 STNs) at rest (from −5 to −3 s before MO, see dashed box on A.). The solid lines and shaded areas indicate mean +/− sem.
c Differences in burst duration and burst rate between OFF and ON medication states at rest for all frequencies from 4 to 48 Hz. The vertical
bars and whiskers indicate the mean +/− sem across all STNs. Frequencies at which the paired comparison between OFF and ON is significant
are indicated with the horizontal black bar (cluster-based permutation tests, *p < 0.05, **p < 0.01, ***p < 0.001, after FDR correction).
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analysis, the use of a common threshold revealed similar effects
on the probability of alpha (cluster from −5 to −0.15 s, p= 0.01,
Fig. 5a) and low beta bursts across trials (cluster from −5 to 0.89 s,
p= 0.003, Fig. 5a). Note that the effect of medication on the alpha
bursts was however prolonged compared to alpha power, and
revealed a difference until just before movement onset (0.15 s
before) in contrast to 1.45 s with power.
When the power was normalised within-state and bursts

defined using separate thresholds, different effects of the
medication were revealed (Figs. 4b, 5b). While the previous pre-
movement modulation disappeared in both alpha and low beta
band, an increase of power was observed with levodopa during
movement in the alpha (from −0.13 to 1 s, p= 0.002) and low
gamma bands (from 0.15 to 0.5 s, p= 0.012). Again, similar results
were reported when looking at burst probability with an effect in
both alpha (from 0.19 to 1 s, p= 0.043) and low gamma bands
(from −0.06 to 0.64 s, p= 0.033).
We then asked whether these new medication-related changes

in bursting activity were explained by a change in the rate or
duration of bursts. Linear mixed effect models were used to test
the effect of time (3 windows) and medication (OFF/ON) and their
interaction on both burst rate and mean burst duration (Fig. 6).
The results showed the preparation and execution of movement
were associated with a modulation of both burst rate and
duration, but differently for each frequency band and medication
state. First, gradual reductions of burst duration and rate were
observed from rest to movement execution in the low beta
(duration: b=−10.9 ± 3.8, t(111)=−2.8, p= 0.005, rate:
b=−0.5 ± 0.06, t(111)=−4.8, p < 0.001) and high beta (duration:
b=−7.3 ± 1.9, t(111)=−3.9, p < 0.001, rate: b=−0.6 ± 0.05,
t(111)=−10.3, p < 0.001) bands, independently of the medication
state. In contrast, modulation of both alpha and gamma band
bursts were conditioned by the medication state (significant
interactions). While OFF levodopa rate and duration of alpha
bursts were reduced when approaching movement (duration:
b=−22.1 ± 4.6, t(55)=−4.8, p < 0.001; rate: b=−0.4 ± 0.07,
t(55)=−5.5, p < 0.001), no significant modulation were observed

ON medication (duration: b=−5.9 ± 5.0, t(55)=−1.2, p= 0.025;
rate: b=−0.1 ± 0.08, t(55)=−1.8, p= 0.08). In the gamma band,
interaction effects were however not followed by significant
effects within either of the medication state. Finally, note that
high-beta bursts were longer ON than OFF also around move-
ment, in line with the observations made at rest (Fig. 3).
All together these results confirmed that both power and

bursting activities are modulated in preparation to the execution
of a voluntary movement. Normalising power or defining bursts
within the medication state helped to reveal increased activities in
the alpha and gamma frequency bands during movements when
on dopaminergic medication. In that medication state, the
modulation of bursts duration and rate seem specifically tuned
to the beta band, whereas they expand to the adjacent frequency
bands in the absence of levodopa.

Power and burst analysis allow the prediction of following
motor performance
In parallel to its sensitivity to medication, subthalamic LFP activity
has been shown to correlate with motor symptoms and motor
performance in PD. We then asked whether both power and burst
parameters could be related to motor performance on a trial-by-
trial basis and if so how. We first started by considering averaged
power for all frequencies from 8 to 48 Hz in the pre-Move and
Move windows. Note that for this analysis, the within-state
normalization was used to focus on the movement-related
dynamics. Linear-mixed effect models were applied to predict
the peak velocity of each individual trial treating average power of
each frequency at different time windows, medication states and
their interaction as fixed effects. The results revealed that faster
movements were associated with higher power in every frequency
from 33 to 48 Hz (corrected p < 0.05 for all the 16 frequencies) in
the time window around movements (−1 to 1 s, Fig. 7a). In
addition, a significant interaction between power and medication
was observed for the frequencies 22–24 Hz. This interaction was
related to the opposite effects that high beta power had on

Fig. 4 The two normalizations revealed different information about how movement-related modulation of STN power was affected by
medication in 4 frequency bands. a Medication-related changes in averaged power for the 4 pre-defined frequency bands. Power values are
normalized against the mean value in that frequency band across the two medication states (average OFF and ON). The time points at which
the contrast between OFF and ON states is significant are indicated with a yellow bar (significant clusters). b Same as in plot (a) but with
power values normalized separately within each medication state against the mean value in each frequency band. The time points at which
the contrast between OFF and ON states is significant are indicated with a yellow bar. The solid lines and shaded areas indicate mean +/−
sem. (see text for details of the statistical tests).
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movement velocity in the two medication states (positive
estimates ON but negative OFF).
The linear-mixed effects modelling analysis were then repeated

with power averaged in the four previously defined frequency
bands (Fig. 7b). This confirmed the effects observed in the Move
window with higher gamma power around movement associated
with faster movements (see Fig. 7b for the details of the LME). This
relationship was consistent across individual STNs (14/19 STNs).
An interaction was also revealed but this time in the alpha
frequency band, followed by a positive trend in the ON
medication state (b >−0.001 ± 0.001, t(377)= 1.93, p= 0.054) that
would suggest that higher alpha power around movement onset
is associated with faster movements.
We next used the same approach to evaluate the role of the

burst parameters on movement velocity within subject. To
combine both the duration and the rate of burst in a single
predictor we used the time spent in burst, expressed as
percentage. To focus on the movement dynamic, only bursts
defined with a separate threshold were considered. In contrast to
the analysis with average power, significant associations were
identified in the pre-Move time window, with faster movements
associated with less time spent in bursts in a 27–32 Hz frequency
range, especially in the OFF medication state (Fig. 8a, corrected
p < 0.05 for all 6 frequencies). However, this was not confirmed
when considering pre-defined frequency bands (Fig. 7b) probably
due to the narrowness of the effect and its overlap with both the
high-beta and low gamma range. Note that a trend was observed
in the alpha band but did not survive the correction for multiple
comparison. Finally, around movement, the results revealed a
similar pattern as with averaged power with a positive and strong
effect observed between movement velocity and the time spent
in gamma bursts (from 31 to 48 Hz, confirmed by taking bursts in
the low gamma range, b= 0.22 ± 0.005, t(687)= 4.8, p < 0.001). In
addition, two clusters with significant interactions were revealed
from 11 to 14 Hz and 21 to 31 Hz, corresponding to the alpha and
high beta band respectively (Fig. 7a, b, alpha band: b= 0.05 ± 0.02,
t(691)= 2.7, p= 0.008, high-beta band: b= 0.05 ± 0.02, t(691)= 2.5,

p= 0.014) These interactions are explained by opposite relation-
ships observed between movement velocity and bursting activity
when OFF versus ON medication (see Fig. 8a right). Follow-up tests
showed that alpha bursts impact on movement velocity but only
in the OFF state (b=−0.007 ± 0.003, t(322)=−2.2, p= 0.03).
Interestingly this corresponds to the state where alpha power is
desynchronized and bursts duration and rate are reduced (see
above, Figs. 4–6). Note that all the above relationships were found
when using the burst rate as predictor, but not the mean burst
duration.
All together, these results showed that both averaged power

and bursting parameters in different frequency bands can have an
impact upon motor performance. Both the power and burst
analyses identified that the increase of low gamma band activity
(33–48 Hz) during movements predicts higher peak velocity, with
no interaction between medication and the power or time in burst
(see Figs. 7, 8). In addition, both the power and burst analyses
identified interaction between medication and the high beta band
activity (21–30 Hz) during movement in predicting peak velocity.
Therefore, we have included the trial-by-trial absolute power and
the ‘time in burst’ in the same model (details in the supplementary
material). The effect of burst properties survived with absolute
power as a covariate. However, the effect of the absolute power
had opposite directions (details in the supplementary material).
The ‘time in burst’ and ‘absolute power’ were highly correlated
especially when the absolute power was calculated over short
time windows on trial-by-trial basis, which was confirmed by the
high variance inflation factors (VIF) between time in the burst and
average power (5.18 and 6.47 for low gamma and high beta
respectively). The collinearity in the independent variables can
make the multi-variate models less reliable and more difficult to
interpret.

DISCUSSION
In this study we compared how STN average power and bursting
parameters were modulated by both anti-parkinsonian

Fig. 5 The two burst thresholds revealed different information on how movement-related modulation of the burst characteristics were
affected by the medication. a Medication-related changes in burst probability for the 4 pre-defined frequency bands. Bursts are defined with
a common threshold (OFF-ON) and the probability of bursting is defined across trials as percentage. The time points at which the contrast
between OFF and ON states is significant are indicated with a yellow bar. b Same as in plot (a) but with separate burst thresholds used within
each medication state. The solid lines and shaded areas indicate mean +/− sem. The time points at which the contrast between OFF and ON
states is significant are indicated with a yellow bar. (see text for details of the statistical tests).
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medication and the execution of self-paced movements, for
different frequencies. First, we found that both power and bursts
analyses were able to confirm the exaggerated synchrony in the
low-beta frequency band typically observed at rest in the
dopamine depleted state, but only the latter revealed a
modulation in the low gamma range. Second, we showed that
when using separate thresholds for the two medication states,
burst analysis revealed opposite directions of resting drug-related
changes between the two sub-beta bands: while the OFF state
was associated with more and longer bursts in the low-beta band
compared to the ON state (13–20 Hz), less and shorter bursts were
observed in the high-beta band (21–30 Hz). These results highlight
the distinction between the low- and high-beta bands, and also
suggest that previous analysis showing longer beta bursts in the
OFF state16,17,30 might partly be attributed by the difference in
average beta power between the two medication states. Third,
using within state normalization, both power and bursts analyses
revealed that dopamine medication was associated with increased
activities in the alpha and gamma bands around movement
execution. This might reflect a loss of frequency specific
movement-related modulation in the parkinsonian state, which
can be restored with dopaminergic medication, as suggested by a
previous study31.
Before considering our findings in greater detail, we should

stress some of the limitations of our current study. First, recordings
were performed in patients with PD in whom recently implanted
DBS electrodes had been temporarily externalised. A post-
operative stun effect might have therefore influenced the pattern

of association between STN LFP activity and motor performance.
Second, we should also acknowledge that the number of
movements performed in each experimental condition was
relatively low, so that weaker correlations may not have been
picked up as significant and thereby considered further. Third, it
should be stressed that although LFP features in different
frequency bands prior and around voluntary movements can
predict motor performance, such evidence cannot by itself be
taken to establish a causal relationship between the two
phenomena. Last but not least, even though we try to compare
power and bursting analyses and show the effect of different
thresholds in burst analyses in this study, it should be noted that
burst and absolute power of the signal are not independent
factors but interact in some complicated manner, as the burst
duration tends to correlate with amplitude16 and more time in
bursts will lead to higher average power13. Average power and
time in bursts were significantly correlated especially when these
features were quantified on trial-by-trial basis and over short time
periods. Normalising the power within condition before the burst
analysing may further differentiate the burst characteristics from
the average absolute power, which has not been implemented in
this study.
Results of this study highlight the distinction between the low-

and high-beta frequency bands. One neurophysiological hallmark
of PD is the exaggerated level of beta synchrony observed in the
dopamine depleted state, which is commonly characterized by an
increase in absolute beta power32. As shown here, this excessive
activity is also associated with increased average power and a

Fig. 6 Movement-related modulation of burst duration and rate, and the interaction with medication in 4 frequency bands. a Changes in
the mean burst durations between the three time-windows and the two medication states when bursts are defined with a common threshold.
b Same as in plot (a) for burst rate. In both (a) and (b), dots and error bars indicate mean +/− sem, with black and green for OFF and ON
medication, respectively. The significant linear-mixed effects models are indicated on the figure. See text for further details.
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higher probability of bursting in the low beta band, and can be
attenuated by levodopa treatment, probably via the restoration of
the net dopaminergic activity to its normal range33. However,
while previous studies have found longer beta bursts in the
dopamine depleted state16,17,30, the present study suggest that
this effect might have been driven by the higher level of average
beta power in that state. When this difference in mean power was

removed by using separate thresholds for different medication
conditions, our results showed that medication modulates burst
rate and duration in an opposite way between the low- and high-
beta bands. In particular, the number and duration of bursts in the
high-beta frequency band increased duration the ON medication
state. This speaks in favour of the existence of two functionally
distinct beta rhythms in the STN31,34. The low-beta rhythm has

Fig. 7 Trial-to-trial relationship between movement velocity and average STN power in different frequency bands. a Linear-mixed effect
models revealed that higher power in the low gamma frequency band (33–48) around movement onset (−1:1 s) predicted higher peak
velocity (Likelihood ratio test, p < 0.05 after FDR correction, and highlighted with a blue shading). The model also identified an interaction
between medication and averaged power in the high-beta frequency band (22–24 Hz when each frequency with 1 Hz resolution were
considered separately, highlighted in grey). Follow-up LMEs are run around these frequencies to test the effect of Power within each
medication state (see right). The circles and error bars indicate the estimated effect +/− SE. b Details of LME modelling results when power are
averaged within the 4 pre-defined frequency bands (same as Figs. 4, 5). The significant models after FDR correction are highlighted in blue
(fixed effect) or grey (interaction). Models with significant interactions are followed by within-state models. Df: degree of freedom AIC: Akaike
information criterion.

Fig. 8 Trial-to-trial relationship between movement velocity and time spent in bursts for different frequency bands. a Models with time
spent in bursts as predictors showed very similar results as those for average power: most consistently, time spent in gamma bursts around
movements positively predicted higher peak velocity (Likelihood ratio test, p < 0.05, FDR corrected for multiple comparison, high-lighted in
blue). Interaction between medication and time in bursts was also observed in the high beta frequency ranges (grey shading) and were
followed by significant models OFF state (pre-move, black dots and *). The circles and error bars indicate the estimated effect +/− SE.
b Details of the LME modelling results when burst are defined in predefined frequency bands. The significant models after FDR correction are
highlighted in blue (fixed effect) or grey (interaction). Df: degree of freedom AIC: Akaike information criterion.
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been found to be more affected by dopaminergic depletion35,36,
as confirmed by our results showing an increase in power and
bursting probability between 10 and 18 Hz. Treatment related
suppression of activity in the low-beta band is also more robustly
correlated with the improvement of clinical signs of parkinson-
ism37,38, and preferentially supressed by DBS36,39. A more recent
study showed that beta oscillation frequency is strongly coupled
with dopamine tone in both monkeys and humans, with acute
dopamine up- and down-modulation resulted in clear shifts up
and down the beta frequency domain40. All together these
findings suggest that the low-beta rhythm may play a pathological
‘antikinetic’ role in the human STN41, and is more likely to reflect
sustained oscillations in the parkinsonian state. In contrast, activity
in the high-beta band is most synchronised with cortical
activity42,43 and has been suggested to be essentially physiologi-
cal, being for instance related to force generation44. Our results
are in line with this interpretation by showing that bursts in the
high-beta frequency band are, first, increased by levodopa (rate
and duration) which may indicate more effective communication
between the STN and the cortex even without changing the
average power, and second, associated with motor performance.
When it comes to the prediction of motor performance, both

power and bursts analyses revealed a robust and positive
relationship between low gamma activity (power and burst rate)
around movement onset and movement velocity. This is in
keeping with a large body of the literature showing that
subcortical gamma activity is involved in the coding of motor
parameters, such as the gripping force6,45, or the velocity and
vigour of voluntary movements8,10,46. Using the burst rate as
predictor provided complementary information by showing that
more high-beta bursts during the preparation period was
associated with slower movements in the OFF state. As suggested
by previous work, the different features expressed by neural time
series (such as the power and bursting activity studied here) might
capture different mechanisms or neural functions29,47.
Together our results confirmed previous observations that

levodopa treatment impacts the oscillatory activity of the basal
ganglia circuit beyond the beta range in patients with PD.
Methods designed to detect fast changing, transient states such as
the Hidden Markov Modelling have for instance shown reduced
activities in the theta and low gamma oscillations35 in parkinso-
nian state. Gamma bursts were also modulated by dopaminergic
medication with increased duration and bursting rate when ON
medication10. More generally, it has been suggested that the lack
of dopamine determines a loss of segregation between rhythms
operating at different frequencies, leading to a pathophysiological
information processing in the human basal ganglia31. Our results
could be interpreted in such a framework. We found that in the
OFF state, all frequency ranges showed similar movement-related
desynchronization with the power and bursts gradually reducing
from rest to movement execution. In contrast, the ON state was
characterized by a desynchronization specifically tuned to the
beta band and a clear event related synchronization (ERS) in the
gamma band. As the gamma ERS seem to be positively associated
with motor performance, these results suggest that a clear
segregation between the different rhythms might be a critical
factor for physiological motor processing.
The ‘burst’ interpretation has far-reaching implications about

the nature of neural oscillations. Do the oscillations happen as
isolated burst-events or are they sustained phenomena with
dynamic amplitude variations, with high power bursting events
defined as bursts on top of background tonic oscillations? This
may be different for different frequency bands, and even different
for different brain states for the same frequency band. For the
case of beta oscillation in the healthy sensorimotor cortical-basal
ganglia network, single trial analysis of LFPs recorded from
striatum and motor-premotor cortex in healthy monkeys showed
that brief bursts of oscillation with the duration of 50–150ms are

responsible for virtually all beta-band activity, and that most of the
modulations in trial-averaged beta power primarily reflect
modulations of burst density13. This is consistent with results
from healthy human participants showing that high-power beta
events from somatosensory and frontal cortex typically lasted
< 150ms and had a stereotypical non-sinusoidal waveform
shape24. These observations support the hypothesis that physio-
logical beta oscillations in the sensorimotor cortical-basal ganglia
network happen as transient, isolated burst-events in healthy
normal function, which is better described by their rate, timing,
duration, and shape. However, Parkinson’s patients off medication
have been shown to exhibit an abnormally large proportion of
“long” beta bursts ( > 400 ms)16. The averaged beta burst duration,
especially in the low beta frequency band, correlated significantly
with motor impairment in a large cohort of patients48. In addition,
Little et al.47 reported negative correlation between the temporal
variation of beta power and motor impairments, with patients
with the most severe motor symptoms showing high average
power but low variation in power in the beta band. Therefore,
pathological beta oscillations in the parkinsonian state are
characterised by higher long-term average power, reduced
temporal variation and prolonged beta bursts, indicating that
there is component of tonic sustained oscillation, apart from
transient high-power events. If the bursts are defined using a
single threshold from the pooled data across conditions,
difference in the burst characteristics between conditions may
be exaggerated49, and mainly contributed by the average power
difference across conditions. In this case, if bursts are defined
using threshold for ON and OFF medication separately, burst
analysis will remove the effect of the difference in the tonic
activity quantified by average power. Therefore, the power
analyses (which takes into account the tonic oscillation) and burst
analyses (more suitable for transient burst events) reveal
complimentary information on how beta activities are modulated
by medication, movements, and how characteristics in beta
oscillations predict motor behaviour, as shown in this study.
The nature of the oscillations can also be different for different

frequency bands. In this study, we showed that for low gamma
activities, bursts analysis revealed the modulation effect of
dopamine during rest (30–45 Hz, Figs. 2, 3) that was not observed
in the averaged power, and the results of the burst analyses are
similar for different threshold methods (either separate thresholds
for different conditions as shown in Fig. 2f or common threshold
across conditions as shown in Fig. 3c). These results suggest that
low gamma oscillations are mainly composed of bursting event,
with no difference in the tonic activity across medication
conditions.
With increasing interest in the ‘bursting’ properties of the beta

oscillation, different algorithms have been proposed to identify
and quantify bursts48. Apart from the threshold-based method, in
which a certain percentile of a population of measured power is
used to define the bursts, other studies20,50 propose to determine
beta bursts using a power baseline based on spectral activity that
overlapped a simulated 1/f spectrum. However, our recent study
show that both high frequency STN stimulation and dopaminergic
medication change the 1/f component in the power spectra of the
LFPs51. Therefore, the baseline method doesn’t get around the
question of how to define the ‘baseline power’: either for separate
conditions separately, or across pooled conditions. How to define
bursts also has practical implications in the threshold-based
adaptive deep brain stimulation (aDBS) which uses the beta power
as a feedback signal – how shall we define the ‘threshold’ to
trigger the DBS? Can we use a fixed threshold pre-defined in a
specific medication condition, or shall we consider changing the
threshold over time depending on the different medication
states? This might have further implication in the optimization of
beta-driven DBS algorithms in which both the definition of a burst
threshold and the selection of a beta frequency are key steps52.
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Further studies would be required to investigate the clinical
implications on therapeutic effect.

METHODS
Subjects
Ten patients (2 females) with PD gave their written informed
consent to participate in the experiment, which was approved by
the joint ethics committee of the National Hospital for Neurology
and Neurosurgery and the Institute of Neurology, London, and the
ethics committee of the Charite ́, Berlin, in accordance with The
Code of Ethics of the World Medical Association (Declaration of
Helsinki 1967). Their mean age of the participants at the time of
the recording was 60.8 years (range 42 to 70 years) with average
disease duration of 12.3 years (range 6–18 years). Handedness was
assessed using the Edinburgh Handedness Inventory (Oldfield,
1971) and all patients had normal or corrected-to-normal vision.
Clinical severity was measured by using the Unified Parkinson’s

Disease Rating Scale and the mean score was 48.9 (standard
deviation 15.9; range 24–70) when OFF dopaminergic medication
and 20.6 (standard deviation 10.8; range 8–42) in the ON
medication state. Patients were implanted with deep brain
stimulation (DBS) electrodes simultaneously in the left and right
subthalamic nucleus. The DBS electrodes used were model 3389
(Medtronic Neurological Division, Minnesota, USA) with four
platinum-iridium cylindrical contacts of 1.27 mm diameter,
1.5 mm length, and 2mm center-to-center separation. The
contacts were numbered 0 (lowermost) to 3 (uppermost). Correct
placement of the DBS electrodes was confirmed by intraoperative
microelectrode recordings in 8 patients and by postoperative
imaging in all patients. Seven cases have been previously
published (five as cases 2, 5, 6, 7, and 14 in Doyle et al. 2005
and two as cases 5 and 9 in Fogelson et al. 2005).

Experimental protocol and data recording
While seated comfortably, subjects were instructed to make rapid
stereotyped self-paced movements of a hand-held joystick forward
and then immediately backward, repeated approximately every
10–20 s (see Fig. 1a). This action was performed with each hand
separately and both in the OFF and ON medication states. Patients
were asked to try to keep movements as similar as possible
throughout the trials and drug states. The average number of trials
performed was 24.1 (range 16–42) per condition with an average
inter-movement interval of 15.6 ± 0.74 s (similar delay across condi-
tions, as no significant effect of hand laterality (b=−2.82 ± 2.42,
t(34)=−1.16, p= 0.25), medication (b=−2.98 ± 2.38, t(34)=−1.25,
p= 0.22), or their interaction (b= 2.29 ± 1.5, t(34)= 1.49, p= 0.14)
were observed when using LME as described in the section
‘statistics’).
Electrophysiological activities in the two STNs were recorded

between 1 and 6 days postoperatively, while electrode leads were
still externalized and before implantation of the pulse generator.
The recordings were made after patients had been off antiparkin-
sonian medication overnight and again about 1 h after they had
taken a minimum of 200mg levodopa, when the effect of the drug
was clinically apparent. Local field potentials (LFPs) were recorded
in bipolar differential mode from the adjacent contacts of each DBS
electrode (0–1, 1–2, 2–3) to limit volume conduction53. An
electrode on the forehead was used as ground. Amplification,
filtering and recording of LFPs (1–250 or 300 Hz) were performed
using a custom-made, high-impedance amplifier (which had at its
front end input stage the INA 128 instrumentation amplifier, Texas
Instruments) in cases 3 and 7–10, or a D150 amplifier (Digitimer,
Welwyn Garden City, Hertfordshire, UK) in cases 1, 4 and 5, before
data capture through a 1401 AD converter (Cambridge Electronic
Design, Cambridge, UK) onto a portable computer using
Spike2 software (Cambridge Electronic Design). In cases 2 and 6,

a Schwartzer 34 amplifier system (Schwartzer GmbH, Medical
Diagnostic Equipment, Munich, Germany) and Brainlab software
(OSG bvba, Rumst, Belgium) were used. Signals were sampled at
either 625 Hz or 2 kHz. Joystick movements were simultaneously
recorded (DC to 250 Hz) using the same systems and
sampling rates.

Behavioural analysis
Behavioural data were exported and analysed using custom-
written MATLAB scripts (version R2019b; MathWorks). Data of the
joystick position were band pass filtered between 1 and 100 Hz
and interpolated to a common sampling rate of 625 Hz, the lowest
original sampling rate used across all patients. The position of the
joystick was differentiated to calculate velocity, which was
subsequently filtered through a Gaussian kernel with a window
duration of 10ms. As illustrated in Fig. 1b, the joystick velocity
profiles were characterized by two distinct peaks corresponding to
the forward and backward movements, respectively. Based on the
velocity profiles, the movement onset (MO) was defined for each
single movement as the first time when the joystick velocity
crossed the threshold of three times the standard deviation of the
signal (and its noise) at rest, and sustained this speed for at least
100ms. Continuous signals were then segmented into 9 s trials,
from −6 s to +3 s around the MO. The velocity peak of the
forward movement was defined for each trial as the maximum in
the 700ms following the MO, and both its amplitude and latency
were extracted for each individual trial (VPa and VPt, respectively).
Due to the high kinematic variability between and within subjects,
the velocity profiles of all individual trials were visually inspected
to manually correct movement onset and peak velocity when
necessary. For further analyses, trials with less than 6 s after the
previous movement were disregarded. Similarly, trials with
abnormal hand path trajectories or in which the hand was not
maintained stable enough during the inter-trial interval were
visually identified and excluded. Finally, the averaged VPa and VPt,
i.e. the amplitude and time to reach peak velocity, were computed
for each patient and condition.

STN-LFP pre-processing
All LFP data pre-processing was performed off-line using custom-
written MATLAB scripts (version R2019b; MathWorks) and the free
and open-source Fieldtrip toolbox54. LFP recordings were also
band pass filtered between 1 and 100 Hz, interpolated to a
common sampling rate of 625 Hz, and segmented into 7 s epochs,
from −5 s until 2 s after the MO. Individual trials were visually
inspected, and those with channels containing obvious artefacts
were excluded from additional processing. After behavioural and
electrophysiological artefact removal, analyses were based on
averages of 19.3 trials (range 12–31) per subject and condition (4
conditions: OFF-left hand, OFF-right hand, ON-left hand, and ON-
right hand). For the rest of the analysis pre-movement period was
defined as the 5 s preceding movement onset, in order to avoid
any contamination from the execution of the preceding
movement.

STN-LFP analysis: Contact selection
Single-trial LFP signals were transformed in the time-frequency
domain by convolution with the complex Morlet’s wavelets
characterized by the ratio f0/σf= 7, with f0 ranging from 1 to
50 Hz by steps of 0.25 Hz. For the contact selection, event-related
changes in power were calculated by normalizing for each
frequency band, the value of each time point against the mean
power calculated across all trials. Normalisation limited the effects
of different recording systems and of any small variance in
targeting. The subject-normalized power was separately averaged
over all trials for each of the three bipolar contacts for each STN
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side. The bipolar contact with the largest power change
associated with the contralateral hand movement across both
medication states in the whole beta band (13–30 Hz), i.e., the
largest difference between the trough of the event-related
desynchronization (ERD) during movement and the peak post-
movement event-related synchronization (ERS) in the beta band,
was then selected for additional analysis. This was motivated by
evidence linking maximal beta band activity to the dorsal (motor)
region of the STN and to the site that offers the most effective
DBS55. The contact selection was done for the STN contralateral to
the moving hand. Note that only the STN contralateral to
movement was considered in the current study. Time-frequency
maps and normalized beta power time-courses were also visually
inspected to confirm the contact selection.

LFP analysis: Power spectral analysis
Spectral power were first analysed at rest by computing PSDs
using the Welch’s method with a 1 s Hanning window and 50%
overlap. The resting period was defined from 5 until 3 s before MO
in order to avoid any contamination from LFP activity related to
the previous or the following movements, both occurring at least
3 s before or after this period. Power spectra were normalized to
the percentage of total power of 4–48 Hz and 52–98 Hz to allow
averaging across patients. The 48–52 Hz range was omitted to
avoid any contamination from line noise.
Movement-related changes in oscillatory power were evaluated

in pre-defined frequency bands for each STN separately (alpha
8–12 Hz, low beta 13–20 Hz, high beta 21–30 Hz, and low gamma
31–48 Hz), averaged across them and then contrasted between
the two medication states. To this end, two different normalization
were tested (see Fig. 4). First, power time courses were normalized
at each time point against the average power across the whole
recording sessions of both medication states (OFF and ON). This
across-states normalization was used to be able to average all
STNs together while keeping the effect of medication, and allow
comparison with the common threshold used to define bursts (see
below). Second, power time courses were normalized separately
within each medication state, to remove the effect of medication
and focus on the movement-related modulation. This will be
compared with the use of separate burst thresholds.

LFP analysis: burst detection and features
To determine when a burst occurred, the following steps were
applied using custom-written MATLAB scripts (version R2019b;
MathWorks). First, power time courses were computed for each
single trial and each frequency from 4 to 48 Hz. Two different
thresholds were applied to detect burst. In both approaches,
thresholds were set at the 75th percentile of the mean beta power
calculated for each subject and each STN side over the
corresponding frequency across the selected recording condition.
In the first approach, a common threshold defined across drug
states was applied to data from both drug states as in the previous
study16. In this case, the 75th percentile of data from both
conditions pooled together was used as the threshold for a given
hemisphere. The second burst detection threshold was defined for
each drug state separately in order to study burst dynamics within
drug state and so as to allow direct comparison with previous
results where only one drug state has been assessed21,22. To this
end we separately determined the 75th percentile thresholds from
the data recorded ON and OFF medication. In both approaches, all
time points surpassing the thresholds were labelled as “potential
bursts” and only those lasting more than two oscillatory cycles
were definitively defined as “bursts”. Several different approaches
have been proposed for the definition of bursts, especially in the
beta band16,17,50. We opted for the 75th percentile threshold
definition so as to allow direct comparison of our results with
those of other studies examining medication effect in PD patient16

and trial-by-trial effects21,22. The burst probability was then
defined as the probability of a burst to occur at each time point
across all trials.
To better characterize how resting and pre-movement bursting

activity relates to motor performance within trial, two additional
burst features were extracted in three consecutive time windows;
Rest (see above), Pre-Move and Move. The Pre-Move window,
defined from 3 to 1 s before MO, was considered to reflect
movement preparation, while the Move window was defined
around movement execution (from – to +1 around MO). For each
time window, the burst rate and duration were extracted. The
selection of these two features was based on previous results
showing that both might be critical features of the bursting
dynamic16,17,56,57. Burst duration was defined as the time over
which the amplitude remained above threshold, and was
averaged between all the bursts detected in the given time
window. The burst rate was defined as the number of burst
per second. The combined effect of burst rate and duration was
also evaluated by computing the time spent in burst, expressed as
a percentage.

Statistical analysis
Statistical analyses were performed using custom-written scripts in
MATLAB (R2019b). The modulation of movement velocity across
the four conditions was tested by using linear mixed-effect (LME)
models with the averaged Velocity Peak amplitude (VPa) and time
(VPt) set as dependent variable, and the medication state and
hand laterality and their interaction as fixed effects (fitlme
function, Fig. 1c). Based on the lack of effect of hand laterality,
we treated each hand and contralateral STN as an independent
sample in the following analysis. The averaged VPa and VPt were
then compared between the two medication states using paired
samples t-tests (Fig. 1c).
PSDs were compared between the two medication states along

the frequency axis (from 4 to 48 Hz) by using cluster-based
permutation tests to correct for the multiple tests along the
frequency axis using custom-written MATLAB script based on
Maris & Oostenveld, 200758 (Figs. 2b, d and 3b). Cluster-based
permutation tests were also used to evaluate whether medication
significantly affects the burst features (burst duration and rate)
from 4 to 48 Hz (correction along the frequency axis, Figs. 2e and
3c), and the level of normalized power (Fig. 4) and burst
probability (Fig. 5) over time.
Linear mixed effect models were used to test how averaged

burst rate and duration were modulated by medication when
approaching movement (Fig. 6). To this end, averaged burst rate
and duration were calculated for each pre-defined frequency
bands and were entered as dependant variables in the model (one
model tested per frequency band). The time windows (rest, pre-
move, move) and medication states (ON, OFF) were entered as
fixed-effects and their interaction were tested. Nested models
were compared with likelihood ratio tests, to assess whether the
model’s improved fit to the data merited the added complexity
associated with the inclusion of the interaction component. If the
interaction was not significant, a model without interaction was
considered. If the interaction was significant (reported as Time *
Med in Fig. 6), follow-up LME models were run separately within
each medication state, with only the burst feature as fixed effect.
The single-trial relationship between pre-movement LFP activity

and behavioural performances was assessed through linear
mixed-effect (LME) models applied to single trials. The velocity
peak of each single trial was set as dependent variable. To correct
for the non-normality of the dependent variable, the peak
velocities were raised by the λ exponents identified by a Box-
Cox procedure (power transformation). Then LME models were
tested for each frequency (from 8 to 48 Hz) and each time-
windows separately. Medication state (OFF or ON) and average
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power or time spent in burst at the specific frequency were
entered into the model as fixed-effects and their interaction were
tested. All models were estimated by the method of maximum
likelihood and included random intercept grouped by subjects to
capture individual differences. Residuals plots of every model were
visually inspected to control for any obvious deviation from
homoscedasticity or normality. Finally, the p-values of the LME
models were corrected for the multiple comparisons along the
frequency axis using the false discovery rate procedure.

Reporting Summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The electrophysiology dataset is not yet openly available, as participants only agreed
for the data to be used in specified studies at the time of recording. We welcome
enquires for sharing this as part of a collaboration, please contact andrea.kuehn@ch-
arite.de or huiling.tan@ndcn.ox.ac.uk

CODE AVAILABILITY
Custom-written Matlab scripts for cluster-based permutation tests have been used in
previous studies, and can be find in the following link: 10.5287/bodleian:M81wpxae8.
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