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Processing incoming neural oscillatory signals in real-time and decoding from

them relevant behavioral or pathological states is often required for adaptive Deep

Brain Stimulation (aDBS) and other brain-computer interface (BCI) applications.

Most current approaches rely on first extracting a set of predefined features, such

as the power in canonical frequency bands or various time-domain features,

and then training machine learning systems that use those predefined features

as inputs and infer what the underlying brain state is at each given time point.

However, whether this algorithmic approach is best suited to extract all available

information contained within the neural waveforms remains an open question.

Here, we aim to explore different algorithmic approaches in terms of their

potential to yield improvements in decoding performance based on neural

activity such as measured through local field potentials (LFPs) recordings or

electroencephalography (EEG). In particular, we aim to explore the potential

of end-to-end convolutional neural networks, and compare this approach with

other machine learning methods that are based on extracting predefined feature

sets. To this end, we implement and train a number of machine learning

models, based either on manually constructed features or, in the case of deep

learning-based models, on features directly learnt from the data. We benchmark

these models on the task of identifying neural states using simulated data,

which incorporates waveform features previously linked to physiological and

pathological functions. We then assess the performance of these models in

decoding movements based on local field potentials recorded from the motor

thalamus of patients with essential tremor. Our findings, derived from both

simulated and real patient data, suggest that end-to-end deep learning-based

methods may surpass feature-based approaches, particularly when the relevant

patterns within the waveform data are either unknown, difficult to quantify, or

when there may be, from the point of view of the predefined feature extraction
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pipeline, unidentified features that could contribute to decoding performance.

The methodologies proposed in this study might hold potential for application

in adaptive deep brain stimulation (aDBS) and other brain-computer interface

systems.

KEYWORDS

neural decoding, adaptive deep brain stimulation, brain-computer interface,
convolutional neural networks, local field potentials, neural oscillations, signal
processing, electrophysiology

1. Introduction

1.1. Algorithmic approaches for decoding
information from neural activity

Neural activity, as measured through electrophysiological
recordings, consists of multi-channeled timeseries data containing
oscillatory patterns that reflect an underlying circuit state. This
brain state might in turn be indicative of different neural or mental
states, the detection of which can be used to drive external devices
to build an alternative communication pathway between the brain
and the external world; or indicative of pathological states that
could be altered using electrical stimulation for therapeutic gain.
Finding the patterns within the neural activity that best differentiate
neural states from one another, and developing systems that
recognize these patterns in real-time can be used as part of a
broader control system to achieve these ends. One example of
such a system is adaptive Deep Brain Simulation (aDBS) – a
therapeutic approach in which the brain stimulation parameters
are automatically adapted to the settings most appropriate for an
identified brain state (see Figure 1 below).

In practice, this neural decoding capability is achieved by
training machine learning systems that infer these brain states in
real-time. These models rely on quantifying the presence of relevant
activity patterns within the neural signals, with these patterns
often taking the form of synchronous bursts of oscillatory activity
at canonical frequencies with specific waveform characteristics
(Neumann et al., 2022). It thus becomes crucial to find the methods
that are best suited to extract relevant patterns from the neural
activity and quantify them as features. Within a paradigm where
only discrete neural states are present, algorithmic approaches that
have been used in the previous literature can be classified into one
of two types, with the methodological differences described below:

1.1.1. The classical machine learning, or
feature-based approach

When using this approach, the information of interest (termed
features) that is considered to contain information related to
the relevant neural states, is manually extracted from the raw
waveforms through filtering, smoothing, and other numerical
techniques. This often relies on spectral power estimation methods
based on periodograms and the fast Fourier transform (Ahn
et al., 2020; He et al., 2021; Bijanzadeh et al., 2022) or on digital
filtering (Shah et al., 2018). Features in the time-domain have

also been shown to contribute to decoding (Shah et al., 2018).
In addition, efforts are underway to expand the feature set to
encompass further waveform characteristics such as the waveform
sharpness, waveform asymmetry, or cross-frequency coupling.1

Once a set of predefined features has been extracted from the raw
waveforms, it is fed into a classifier that, by modeling the statistical
relationships between features and labels in the training data, learns
a function to map combinations of waveform-derived features onto
the probability of a corresponding neural state being present. At
inference time, if the relationships between features and underlying
neural states learned during training are meaningful, the classifier
can predict what neural state is most likely to be present given
the features extracted from the incoming neural waveforms. When
using this approach, significant consideration must be given to
feature design, since these features are the basis upon which the
classifier is able to learn relevant statistical relationships. This
approach has been extensively used for current movement state-
driven aDBS implementations (He et al., 2021; Merk et al., 2022b).
Within this framework, some methods derived from deep learning
can be incorporated. In Golshan et al. (2020), the neural signals
were first decomposed into 2-dimensional time-frequency images
using the wavelet transform, and then a convolutional neural
network was applied on the 2D images for decoding.

1.1.2. The end-to-end deep learning approach
Differing from the feature-based paradigm, in which raw

waveforms are first transformed into a feature set that is
subsequently fed into a classifier, within the end-to-end deep
learning approach, the feature extraction pipeline (from raw
waveforms to feature space) is not manually designed but is rather
the result of an optimization procedure. The features are extracted
by numerical operations that take place within the network and are
discovered during the optimization process. To process naturalistic
signals such as images or waveforms, the numerical operation of
choice is oftentimes a convolution. This operation is well suited
to identify activity taking place at specific frequencies, since the
convolution theorem dictates that a convolution in the time-
domain is equivalent to a product in the frequency domain:
F

{
f ∗ g

}
= F

{
f
}
· F

{
g
}

with F denoting the Fourier transform
and · the convolution operation. This approach has not only yielded
improvements over the feature-based approach in computer vision
(image processing) and speech processing (where signals also take

1 https://github.com/neuromodulation/py_neuromodulation
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FIGURE 1

Schema of a signal processing pipeline commonly needed for adaptive deep brain stimulation (aDBS) or brain computer interface (BCI) applications.

the form of waveforms), but has also been successfully applied to a
number of electrophysiology-related applications both within and
outside of the field of DBS (Golshan et al., 2020; Gao et al., 2021;
Peterson et al., 2021; Shoeibi et al., 2021; Supakar et al., 2022). The
wavelet transform, which is one of the methods that is used most
often for time-frequency decomposition of electrophysiological
signals to quantify the presence of activity at specified frequencies
in a time-resolved manner, is a parameterised convolution. We
therefore propose that a convolutional neural network (CNN)
can be thought of as a numerical operation capable of extracting
relevant features from waveforms in both the frequency and time
domain (e.g., quantifying the presence of transient activity in
relevant frequency bands). Within this end-to-end framework,
the CNNs take the raw waveforms as inputs, requiring minimal
preprocessing. The networks are parametrized with random values
at the beginning, and an optimal value for these parameters is
then iteratively found by gradually minimizing a loss objective
through gradient descent. With this approach, it is no longer
necessary to manually design and implement a feature extraction
pipeline (the function that maps raw oscillatory timeseries into
a feature vector), since these processing steps are learnt from
the data directly. This can result in more optimized processing
pipelines by avoiding the reliance on manual tuning required
when implementing one’s own feature extraction procedure (e.g.,
setting the boundaries that delimit frequency bands of interest, or
manually tuning the numerical methods used to identify harmonic
patterns). Training deep learning systems, especially end-to-end
CNNs, however, comes with its own set of challenges. Firstly,
special attention must be paid to make sure that the architecture
(i.e., the parametrized operations) is well-suited to solve the task at
hand. Secondly, in order for the CNN to be trained properly and
for the training process to appropriately converge to a point that
generalizes well to previously unseen inference-time data (avoid
under and overfitting), networks have strict requirements about
the statistical distribution of their input data and depend on the
quantity and also the quality of data available at training time.

1.2. Signal processing for aDBS

Adaptive deep brain stimulation (aDBS), a technique by which
the stimulation parameters or intensity of delivered through DBS
electrodes can be adapted according to some feedback signal

related to brain state or pathology, shows promise for increasing
the efficacy, reducing side effects, and expanding the therapeutic
window of DBS for a range of movement disorders (Guidetti
et al., 2021). Feedback signals used in aDBS can be extracted
directly from neural activity, for instance the local field potentials
measured through DBS electrode contacts, or neurophysiological
signals measured from additional electrodes placed in other areas
of the brain.

Local field potentials measured through DBS electrode contacts
can be used to decode movement or other pathological states
using machine learning methods, so that stimulation is only
delivered when necessary and overall current delivery is minimized.
It has been shown that this kind of aDBS can maintain
equivalent therapeutic efficacy compared to conventional DBS
while minimizing side effects affecting speech, gait or postural
stability (Little et al., 2016; Little and Brown, 2020; He et al.,
2021). Furthermore, aDBS might also safeguard patients against
developing habituation or tolerance from the therapeutic effects of
stimulation over time (Peters and Tisch, 2021).

Most current work in the field of aDBS relies on the feature-
based approach, i.e., on manually extracting a set of predefined
features from waveforms, and training classifiers to learn the
statistical relationships between the manually extracted features
and the probability of a corresponding neural state being present.
Some work uses what can be regarded as a combination of
both approaches, i.e., instead of training a deep learning system
that operates on the raw waveform directly, a deep learning
system is trained to operate on processed features or derivative
representations of the raw timeseries data, such as a time-frequency
decomposition (see Golshan et al., 2020; Thenaisie et al., 2022).

Here, we aim to explore the feasibility and compare the
performance of these two approaches for training real-time
compatible decoding systems based on LFP waveforms, and to
document advantages and drawbacks of each depending on the
characteristics of the oscillations. In particular, we aim to explore
the potential of end-to-end CNN for decoding based on neural
activities in the context of aDBS, where the signal-to-noise ratio
can be low and variable from patient to patient, and the quantity
of data available for training is limited. We motivate the use of
deep learning approaches by pointing to successful applications of
neural networks in other areas of electrophysiology. In Sun et al.
(2022), the authors were able to leverage the representational power
of deep neural networks to enable high-fidelity spatiotemporal
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source reconstruction of high-density EEGs, all the while reducing
the need to manually tune solvers. In our case, we postulate
that when using the feature-based approach, relevant information
about neural states contained within the LFP waveforms could
be unintentionally discarded during the filtering and feature
extraction process, yielding a poorer decoding performance. To test
this hypothesis, we first designed an end-to-end CNN structure
capable of extracting various features from the neural signals
that can be recorded during a short experimental session with
a patient. We then generated synthetic waveforms with different
activity patterns and trained both feature-based classifiers and deep
learning-based classifiers to distinguish between simulated states.
By simulating data and thus being able to control the input signals’
features and signal-to-noise ratios, we were able to probe the ability
of different systems to model specific patterns of activity. We
then trained these same systems on real patient LFP waveforms
recorded from externalized essential tremor patients for the task of
distinguishing movement from rest and compared their decoding
performance.

The remainder of this study is structured as follows: first
we explain how we generate synthetic data to mimic oscillatory
patterns that one might find in electrophysiological recordings.
We then implement different feature-based and deep learning-
based machine learning systems and apply them to the task of
decoding states using both synthetic and real patient data. We then
benchmark these systems against one another, document respective
benefits and drawbacks and conclude this study. The methods
developed here can be applied to both local field potential (LFP)
activity measured from DBS electrodes as well as to other types of
electrophysiological data including electrocorticography (ECoG),
which has also been explored within the context of aDBS (Merk
et al., 2022b).

2. Materials and methods

2.1. Dataset I: synthetic data

In order to benchmark the ability of different algorithmic
approaches to extract information from waveforms containing
various oscillatory patterns, we generate synthetic datasets that aim
to mimic some of the patterns found in neural time-series data that
are modulated by different brain states. The generated datasets have
a total length of 20 min, of which the first 80% (16 min) are used
as training data, and the last 20% (4 min) as validation data. The
sampling rate of the synthetic signals is 2048 Hz.

In the synthetic data, neural states are modeled as two-state,
first-order Markov process, with each state having a minimum
duration of 5 s and the probability of transitioning from that state
being randomly drawn from U[0.3, 0.4], leading to average state
duration of 10.92 +/− 7.94 s. This ensures a degree of stochasticity
in the duration of states but ensures that the states are present
in the dataset in similar proportions, avoiding imbalances. We
choose this timing because it mimics the in-clinic setting in which
decoding systems are conventionally trained in the context of DBS,
with patients being asked to perform trials of movement followed
by rest. This was the data recording paradigm used in He et al.
(2021). Each state is characterized by relative differences in the

presence of one of the waveform patterns (e.g., higher activity
vs. lower activity in a specific band) that have been previously
shown to be modulated by movements or pathology in signals
recorded from movement disorder patients. We generate a total of 7
oscillatory patterns, including the presence of oscillations at specific
frequencies, the non-linearity of waveforms, oscillatory activity
modulated by the phase of another oscillator at a different carrier
frequency (phase-amplitude coupling), the duration of transient
bursts of synchronized activity, and phase differences between
channels. The patterns are generated within a single channel except
for the cross-channel PAC case, and for the cross-channel phase
shift case, both of which require two channels. The task we pose
to the classification systems is to distinguish between the two states.

1/f-shaped pink noise (generated using the colorednoise2

python package) is added to the signals at different intensities
to modulate the noise content, where the signal-to-noise ratio is
defined as

SNR =
rms (signal)
rms (noise)

with rms being the root-mean-square, or energy, of the signal. For
each oscillatory pattern, we perform SNR sweeps ranging from 0.2
(5× the noise power relative to signal power) to 2.0 (twice more
signal power than noise power) at 0.05 increments. For each of
these noise levels (36 in total), we generate 5 datasets. This results
in a total of 180 datasets.

The oscillatory patterns that characterize the different states are:

2.1.1. Power changes in the beta and gamma
bands

Modulation in the power of the canonical beta (approx. 13 –
30 Hz) and gamma (approx. 40 – 90 Hz) frequency bands has
been widely reported during movements in the cortical-subcortical
motor network. Here, we synthetically mimic this pattern by
generating states containing oscillations of different amplitudes
at these canonical frequencies and summing them together. The
resulting frequency spectrum is characterized by the presence of
sharp peaks at each of the relevant frequencies above the noise floor,
but with different amplitudes for the two frequencies characterizing
the two states. State 0 is characterized by higher power in beta band
and lower power in the gamma band when compared with State
1 (see Figure 2, where in the frequency spectra the relative peak
heights indicate oscillatory power differences).

2.1.2. Beta waveform sharpness
The sharpness of the beta waveform has been documented as

a marker of circuit pathology in Parkinson’s disease, in particular
due to it being modulated by beta burst dynamics (Cole et al.,
2017; Yeh et al., 2020). A sharp beta waveform can be generated
as a non-sinusoidal, triangular waveform at beta frequency (see
State 1 in Figure 3A), in comparison to a sinusoidal waveform
(State 0). Power at the base beta frequency is matched for both
states. When expressing this sharp triangular waveform in the
frequency domain using a basis of pure sinusoids (such as is the case
with the Fourier transform), the symmetry between the positive
and negative phases of the oscillation (sharpness at both the peak

2 https://github.com/felixpatzelt/colorednoise
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FIGURE 2

The presence of oscillators at 25 Hz (beta oscillation) and 70 Hz (gamma oscillation) characterizes two simulated states. (A) Time-series excerpts of
the two states without any additive 1/f-noise (top), and their corresponding frequency spectra (bottom). (B) The two states, with added noise, are
simulated as a Markov process (top). As shown in the frequency spectrum, the two states are distinguished by the beta and gamma peaks (bottom).

and trough of the waveform) results in the even components of
the harmonics canceling each other out. The frequency spectrum
is thus characterized by the presence of odd harmonics, as shown
for State 1 in the frequency spectra of Figure 3, whereas there is
only one single peak at the base frequency when the waveform is a
pure sinusoid (State 0).

2.1.3. Non-linear phase
Besides waveform sharpness, other kinds of waveform non-

linearities (deviations from sinusoidality) have been reported as
relevant features of neural oscillations (Quinn et al., 2021). Here,
we implement oscillations with non-linear phase as having a
variable degree of asymmetry between the durations of the first and
second half of the oscillatory cycle. This leads to fast trough-to-
peak (rising) and slow peak-to-trough (falling) times, resulting in
waveforms with narrow peaks and wide troughs, as shown in the
waveform data of State 1 in Figure 4. The asymmetry between the
positive and negative phase of the oscillation results in the presence
of both odd and even harmonics in the Fourier-derived frequency
spectrum. The signals are scaled to equate for power in the base beta
frequency.

2.1.4. Theta-gamma phase amplitude coupling
(PAC)

There is evidence of neural oscillations at different frequencies
interacting with each other, with special interest being directed
toward patterns in which the phase of lower frequency oscillations
at a carrier frequency modulate the power of higher frequency
activity (Tort et al., 2010). For example, theta-gamma phase
amplitude coupling in the hippocampus has been shown to
support long-term spatial memory retrieval (Vivekananda et al.,
2021) and theta-gamma phase amplitude coupling has also
observed been in other brain areas during different physiological
functions (Canolty et al., 2006; Lizarazu et al., 2019). Increased
beta-gamma phase amplitude coupling in the motor cortex is
also indicative of pathological activity in Parkinson’s disease
(Meidahl et al., 2019). Here, we simulate this waveform feature
by generating transient bursts of gamma activity that are either
coupled to the positive phase of an underlying theta oscillation

(State 0) or appear at random times (State 1). Overall gamma
power is adjusted to be matched for the two states. The
gamma activity is either coupled to a theta signal in the same
channel (Figure 5A) or in a different one (cross-channel PAC,
Figure 5C). The frequency spectrum is characterized by harmonic
microstructure around the gamma peak (Figure 5 frequency
spectra).

2.1.5. Cross-channel phase shift
One potentially interesting approach to characterize

oscillations across brain regions (and across measurement
sensors) is to be able to quantify the extent to which the same
oscillations take place in different regions, but with a time-delay
(or phase-shift) between them. Here, we generate signals in two
sensor space channels that are phase-shifted by different amounts.
The frequency content of the signals is random and there is thus
no identifiable pattern in the power spectrum. The task for the
machine learning models is to be able to distinguish between these
random signals with two different degrees of phase-shift (Figure 6).

2.1.6. Beta burst length
The role of the temporal dynamics of beta burst in basal ganglia

LFPs has been identified as a relevant marker of circuit state and of
pathological activity, especially in terms of the length of the bursts
(Tinkhauser et al., 2018). To model this, we generate randomly
occurring bursts of beta activity, but with different average lengths
for each of the two different states: in State 0, episodes of increased
beta power (beta bursts) tend to be very brief in duration; whereas
in State 1, the beta bursts are longer. We adjust the amplitude of the
bursts to equalize beta power at the peak frequency (Figure 7).

2.2. Dataset II: LFP-based movement
decoding

In order to benchmark the ability of different systems to decode
states not only from synthetic data but also from real patient LFPs,
we make use of an existing dataset consisting of LFPs recorded from
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FIGURE 3

(A,B) Sinusoidal (State 0) and sharp (State 1) waveforms distinguish the two states, with matched power at the base oscillatory frequency. The sharp
waveforms have odd harmonics in the frequency spectrum, contrasting with the pure sinusoid which has a single peak at the oscillatory frequency
(bottom).

FIGURE 4

(A,B) The states are characterized by their degree of phase non-linearity, i.e., approximately sinusoidal (State 0), or with sharp peaks and wide
troughs (State 1). In the frequency spectrum, this non-linearity is represented in the form of harmonics.

the bilateral ventralis intermediate nucleus of the thalamus (Vim-
thalamus) of essential tremor (ET) patients externalized after lead
implantation surgery while they perform three self-paced upper-
limb movement tasks. This dataset was first published in He et al.
(2021).

The dataset comprises 8 patients during a pegboard insertion
game, a posture holding task with arms stretched out in front of
them, and a rice pouring task (pouring rice back and forth between
two cups). Patients were instructed to perform the movement for
approx. 30 s, and then to rest for another 30 s, repeating this
6–10 times. This was repeated both with bilateral 130 Hz DBS
stimulation on and off at a single preselected stimulating contact.
This results in 8.4 ± 1.8 min (mean ± std. deviation) of recording
for each task for each participant. Recordings were made 4 or 5 days
after electrode implantation with externalized leads and included
bipolar EMG measurements of the flexor carpi radialis (both arms)
as well as triaxial accelerometer measurements (accelerometers
taped to the dorsum of each hand). The signals were sampled

at 2048 Hz using a TMSi Porti amplifier (TMS International,
the Netherlands).

As a pre-processing step, signals were highpass-filtered (4th
order butterworth filter, forward mode) with a cut-off frequency
of 1 Hz. Movement labels were extracted from either the
accelerometer or EMG signals by thresholding the RMS power
of the signals of interest. All available LFP channels across both
hemispheres are used as input into the classifiers.

Due to the short duration of the datasets (6–10 trials in
each), we use a 5-fold cross-validation strategy to benchmark the
classifiers, i.e., each dataset is split into 5-folds of equal length and at
any one time, four of them are treated as training data with the fifth
being treated as validation data. In total, the data consists of 200-
folds: 8 patients× 3 tasks (some tasks were not recorded for certain
patients) × 2 stimulation conditions. The training set duration
is 6.7 ± 1.9 min (mean ± std. deviation), and the validation set
duration is 1.7± 0.5 min (mean± std. deviation).
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FIGURE 5

Gamma appears at random times (State 0), or phase-coupled to a lower-frequency oscillation (State 1) either in the same channel (A,B) or a different
one (C).

2.3. Decoding systems

We classify the decoding systems used in this work into one of
two categories: feature-based and deep learning-based. Both make
use of data to learn the mapping function:

f : waveforms→ p (state | waveforms),

The two approaches, however, achieve this in different ways,
with the feature-based approach requiring one to first derive a
feature vector manually from the waveforms, and subsequently
using classical machine learning techniques to estimate a mapping
function from feature space to the probability of a state being
present.

ffeatures : features→ p (state | features)

By contrast, the deep learning approach learns a direct, end-to-end
mapping from the waveforms to the state of interest by directly
optimizing the parameter set θ

fDL : waveforms, θ→ p (state | waveforms, θ).

We implement two feature-based models [implemented using
python’s scikit-learn package (Pedregosa et al., 2011)] and three
deep learning-based models [implemented using PyTorch’s python
API (Paszke et al., 2019)]. For all these systems, waveforms are
split into 500 ms moving window epochs with 100 ms overlap (one
output every 400 ms, or at 2.5 Hz).

2.3.1. Feature-based model I: spectral SVM
This first feature-based method, adapted from He et al. (2021),

computes a periodogram from epoched multichannel waveforms to
estimate power in the following frequency bands: θ (2–7 Hz), α (8 –
12 Hz), βlow (13 – 20 Hz), βhigh (21–30 Hz), γ1 (31–45 Hz), γ2 (46 –
55 Hz), γ3 (56 – 75 Hz), γ4 (76 – 95 Hz), γ5 (96 – 105 Hz), γ6 (106 –
145 Hz), γ7 (146 – 155 Hz), γ8 (156 – 195 Hz). Each of these features
is z-scored with mean and standard deviation values computed
from the training feature set, and a support vector machine (SVM)
with radial basis functions is trained on the two-class classification
problem (see Figure 8). An inner cross-validation loop is used to
determine the optimal degree of regularization.

2.3.2. Feature-based model II: autoregressive
spectral SVM (AR-SVM)

This system operates with the same feature set and classifier
specification as the Spectral SVM, but features are concatenated
from the preceding 10 epochs, giving the classifier access to the
dynamics from the preceding 4 s as opposed to solely the last
500 ms, thereby increasing its receptive field (Figure 8).

2.3.3. Deep learning-based model I: 1D-CNN
With this model, the multichannel waveforms are

sequentially processed through 7 layers. Each layer consists
of a custom-made non-linear compression operation, a 1D
convolutional layer with a 35-element kernel, a Swish nonlinearity
(Ramachandran et al., 2017), an average pooling layer with kernel
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FIGURE 6

Each state contains two randomly generated signals that are phase-shifted, with the defining feature being the degree of phase-shift. Since the
signals are random, so is their power spectrum, and there is no distinguishable spectral pattern between the two states.

FIGURE 7

(A,B) State 0 is characterized by short beta bursts, and State 1 by long bursts. Waveform amplitudes are adjusted to match average power at the peak
beta frequency.

size 3, and a batch normalization layer (Ioffe and Szegedy, 2015).
After the sequence of convolutional layers, an adaptive mean
pooling layer is used to reduce each convolutional output to a
single scalar value (i.e., feature), which is in turn fed to a linear
layer that maps a linear combination of the features onto a final
logit.

2.3.4. Deep learning-based model II:
autoregressive 1D-CNN (AR-1D-CNN)

In order to also give our deep learning-based classification
systems access to a longer time history (analogously to the AR-
SVM), we implement a deep learning-based autoregressive system

that has access to the same time course as the AR-SVM. We
further augment this system by not only providing it with the
features extracted by the learned convolutional filters, but also
with the manually extracted features used by the feature-based
implementations. To achieve this, the scalar outputs of the 1D-
convolutional network (as introduced above) are concatenated with
the spectral features used by the SVMs, and this extended feature set
is then fed into a recurrent neural network (LSTM with 2 hidden
neurons). The output of the last LSTM cell, which incorporates
the relevant time-course information, is fed into a linear layer
that computes the final logits (Figure 9). At inference time, this
system works recursively, i.e., with the LSTM layer keeping track of
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FIGURE 8

Feature-based models SVM and AR-SVM. In the SVM approach (left), pre-processed waveforms are turned into spectral features through FFT-based
power estimation in predefined frequency bands. This feature vector is the input to a support vector machine (SVM) classifier. The AR-SVM approach
(right) concatenates feature vectors from previous epochs (we use 10 epochs) to provide the classifier with a larger receptive field, i.e., broader
access to information from the preceding neural dynamics.

FIGURE 9

Deep learning-based models 1D-CNN, 2D-CNN, and AR-1D-CNN. When using the 1D-CNN approach (top left), the pre-processed multichannel
neural time-series are processed by a filterbank of convolutional filters interleaved by non-linearities prior to pooling and a linear projection onto a
logit. The 2D-CNN (bottom left) works similarly, but the multichannel input time-series are time-frequency decomposed into 2D-signals that
resemble images using wavelets. The network consists of 2D kernels that operate simultaneously in the time and frequency dimensions. The
AR-1D-CNN (right) works similarly to the 1D-CNN in terms of the way in which it treats individual epochs, but this convolutional feature extraction
process is encapsulated within an autoregressive model. This autoregressive model learns relationships contained within sequences of feature
vectors. At inference time, the current model output depends not only on the features extracted from the current epoch, but also from the
information extracted from previous epochs. The receptive field of the model in the time dimension is thereby augmented. The classifier in this
model is given access to, besides the features extracted by the convolutional layers, the spectral features that are manually extracted.

an internal state within which the relevant historical information
is stored and updated. As each new epoch of data is passed
through the network, the historical data encoded in the LSTM state
influences the current prediction, and this internal LSTM state is
updated.

2.3.5. Deep learning-based model III: 2D-CNN
Most well-known convolutional networks were developed for

computer vision applications, and thus take in 2D signals (i.e.,
images) as inputs. To use these architectures with 1D signals, it
is necessary to make use of mappings that project 1D waveforms
to 2D space. This can be achieved through timeseries encoding

techniques such as time-frequency decompositions or Gramian
angular fields (Wang and Oates, 2015). Here, we use a wavelet-
based time-frequency decomposition to extract instantaneous
spectral power estimates between 8 and 200 Hz. The number of
cycles of the Morlet wavelets are set to one sixth of the wavelet
frequency in Hz (e.g., a 42 Hz wavelet will have 7 cycles). These
time-frequency decomposed signals, now with two dimensions per
channel, are then fed into a ResNet-based convolutional neural
network (please see code implementation for further architectural
details) (Figure 9).

The deep learning systems, initialized with random weights
for each fold, are trained to minimize the binary cross-entropy
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FIGURE 10

Out-of-sample performance for all 5 models across tasks and SNRs. For each of the 7 tasks, the average performance of each model and the
standard deviation (shaded region) across 5 independent runs is shown at each SNR level.

loss between the model estimates and the true targets using an
Adam optimizer with a learning rate of 0.001 that is annealed
every 50 epochs by a multiplicative factor of 0.1, and weight
decay (l2-regularization) of 1e-5. Training runs for a total of 150
epochs, with the model parameters being checkpointed at the end
of every epoch and, at the end of training, the checkpoint with
the best validation performance is chosen as the final state. Data
augmentation is implemented in two ways: once in logit-space by
using manifold mixup (Zhang et al., 2018), and also directly on the
input waveforms in the form of random additive 1/f-noise with an
RMS power drawn from the distribution U [0.0, 0.2] · rms(signal).

The performance metric used to evaluate all models is the
balanced accuracy score (Brodersen et al., 2010), which is defined
as the arithmetic mean of sensitivity and specificity, and, in terms
of the number of samples found in each quadrant of a confusion
matrix (TP = # true positives, TN = # true negatives, FP = # false
positives, FN= # false negatives) can be described as

balanced−accuracy =
1
2

(
TP

TP + FN
+

TN
TN + FP

)

2.4. Data and code availability

All code (written in python) used to generate the data,
train the models and generate the figures is available at
https://github.com/fer-rplazas/feature-extraction-methods,
and the data is available at https://data.mrc.ox.ac.uk/lfp-et-dbs
(DOI:10.5287/bodleian:ZVNyvrw7).

3. Results

3.1. Dataset I: synthetic data

For each of the 7 oscillatory patterns, we generated 5 datasets
at each of 36 signal-to-noise ratios ranging from 0.2 to 2. This
results in 180 datasets per oscillatory pattern. The out-of-sample

performances (measured using the balanced accuracy score) for
these SNR sweeps are depicted in Figure 10.

As expected, higher SNRs generally result in better decoding
performance. When the different states are distinct in terms
of the relative power of oscillators in the beta and gamma
bands, all 3 non-autoregressive models perform similarly well.
Increasing the receptive fields of models by providing them with
access to a longer time-course through autoregressive modeling
also increases performance. Importantly, the 1D-CNN-based
approaches, which take raw waveform data as input (rather than
processed features), perform equally well as the feature-based
methods – which explicitly use estimates of power in the beta
and gamma bands as inputs. This suggests that, even under
noisy conditions and with limited quantity of training data,
the 1D-CNNs can make use of the features in the frequency
domain for decoding.

For the states distinguished by the sharpness of the beta
waveform, the 1D-CNN models perform better (both in their
autoregressive and non-autoregressive form) than their feature-
based counterparts. The 2D-CNN’s performance here lies in the
middle. For the non-linear phase case, the models based on
1D-CNNs slightly outperform their feature-based counterparts,
with autoregressive models again boosting performance in both
cases. The 2D-CNN performs in line with the base, non-
autoregressive SVM. For distinguishing states characterized by
features that are not explicitly estimated in the feature set
used by the SVMs, including degree of phase shift, phase
amplitude coupling (PAC), and burst duration, the CNN-
based models perform better than feature-based methods. For
distinguishing between degrees of phase-shift, the 1D-CNNs
are able to achieve 100% performance starting at a SNR of
approximately 0.5, while the feature-based methods and the
2D-CNN perform at around chance level, failing to learn
any meaningful relationships between inputs and labels. For
distinguishing between PAC levels, all CNNs (including the
2D version) perform better than feature-based methods. This
difference is larger when PAC occurs within a single channel than
across channels.
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FIGURE 11

Pairwise model comparison for individual fold (scatter plots, line indicates equal performance), together with the distribution of performances
(right-most column). The AR-1D-CNN distribution is most skewed toward higher performance.

To distinguish long and short bursts, the models based on
CNNs perform better than the feature-based methods. As in
all cases, autoregressivity yields an increase in out-of-sample
performance also here, with the AR-SVM being, in terms of
classification performance, approximately in line with the non-
autoregressive 1D and 2D-CNNs.

Average model performances across the range of observed
SNRs can be found in Table 1. Paired t-statistics across
model performances allow us to quantify the performance
differential in a pairwise fashion, avoiding the need to use
mean values over parameter ranges (such as the SNR).
In the table below we report on the t-statistics compared
with the spectral SVM model. Overall, AR-1D-CNN

provided the best decoding accuracy for all scenarios we
simulated, this was followed by the 1D-CNN and then the
2D-CNN.

3.2. Dataset II: LFP-based movement
decoding

We trained 40 datasets recorded from 8 participants with each
of them performing 2 to 3 different tasks. Utilizing a 5-fold cross-
validation strategy, this results in a total of 200 folds. The pairwise
out-of-sample performance for each model pair at each fold is
depicted in Figure 11.
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FIGURE 12

Relative contribution to decoding performance of features extracted by the convolutional network’s layers vs. of predefined features extracted
manually. In panel (A), the same network is trained on the same data with and without the predefined spectral features. The average performance is
equivalent in both scenarios (paired t-test p = 0.385). In panel (B), after network training, the inputs corresponding to manually extracted spectral
features cause, upon upregulation, a smaller response in network activation than the upregulation of inputs corresponding to features extracted by
the convolutional layers of the network. This shows that the network assigns higher weight to the information contained within the learned
convolutional features (activation difference paired t-test p < 0.0001).

FIGURE 13

1D-CNN filters and activations. (A) Two convolutional filters, along with their frequency responses, before and after network training (top). Change in
individual kernel elements as well as frequency responses after training (bottom). During training, these early filters are modified to increase their
response to oscillatory activity taking place at lower frequencies. This is expected if the relevant activity is taking place in the beta band. (B) Output
of the CNN after the last convolutional layer prior to classification. Through a sequence of convolutional operations with filters akin to those seen in
panel (A) interleaved by non-linearities, two features have been learned (green and pink lines). These two learned convolutional activate
preferentially during the two different states, and a linear combination of them yields the ultimate classifier output (red line, top). The learned
features do not exhibit linear behavior and are activated by states distinguished by an underlying signal characteristic that is also non-linear (bottom).

Average model performances on an individual fold basis (and
corresponding paired t-tests against the spectral SVM, which we
utilize as a baseline model against which to compare the others)
and for fold-averages are outlined in Table 2. We observe that
performance metrics at the individual fold level as well as at the
fold-average level yield equivalent results.

The AR-1D-CNN, with an average balanced accuracy of
0.87 (for individual folds), performs best out of the 5 models,
while the baseline spectral SVM yields the poorest performance
(average balanced accuracy of 0.74). The AR-SVM, 1D-CNN

and 2D-CNN perform similarly well in terms of average
performance (0.80, 0.79, and 0.78, respectively) and utilizing a
per-fold, pairwise comparison the 1D-CNN slightly outperforms
both the AR-SVM (t = 2.24, p = 0.026) and the 2D-CNN
(t = 2.89, p = 0.004). Consistent with the results seen in
the synthetic data, autoregressive models outperform their non-
autoregressive counterparts, and the end-to-end deep learning-
based models outperform the feature-based models when the
enhanced receptive field due to the autoregressive modeling
is accounted for.
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TABLE 1 Average model performance (balanced accuracy score) across SNRs.

Pattern (mean balanced
accuracy ± mean of std.
deviations at each SNR level)

SVM AR-SVM 1D-CNN 2D-CNN AR-1D-CNN

Beta/Gamma ERD/ERS 0.84 ± 0.020 0.89± 0.018 0.86± 0.017 0.85± 0.016 0.91±0.017

Beta waveform sharpness 0.68± 0.032 0.76± 0.034 0.84± 0.026 0.78± 0.018 0.87±0.019

Non-linear phase 0.78± 0.022 0.84± 0.026 0.84± 0.022 0.80± 0.018 0.88±0.022

Phase-amplitude coupling (PAC) 0.52± 0.026 0.54± 0.036 0.73± 0.043 0.66± 0.035 0.79±0.033

Cross-channel PAC 0.68± 0.026 0.75± 0.034 0.87± 0.035 0.88± 0.018 0.93±0.021

Phase-shift 0.50± 0.01 0.50± 0.016 0.96±0.024 0.58± 0.038 0.96±0.016

Burst length 0.71± 0.025 0.81± 0.036 0.84± 0.021 0.81± 0.024 0.91±0.019

Average cross-pattern performance (paired
t-test vs. SVM)

0.66± 0.023 (n/a) 0.72± 0.028 (34.55) 0.84± 0.027 (41.42) 0.76± 0.024 (44.72) 0.89± 0.021 (56.64)

Bold values represent highest average performance.

FIGURE 14

Effect of time windows on decoding performance. (A) Overlapped, long time-windows allow for more stable feature estimation, increasing
decoding performance without compromising classifier output rate. (B) 5 s epochs are subdivided into overlapping and non-overlapping frames that
are treated as sequence elements in autoregressive models. Without frame overlap, subdivision of long frames degrades performance, which might
be attributable to decreased feature stability due to the shorter feature computation epochs. By overlapping the frames this performance
degradation can be avoided.

4. Discussion

4.1. Understanding performance
differences between the feature-based
and deep learning-based approaches

For adaptive DBS and other BCI systems, it could be tempting
to try to ascertain whether there is an absolute advantage to
either the feature-based or deep learning-based approach—i.e.,
whether one approach is superior to the other. We, however, do
not advocate this view. This is despite the fact that, for all of our
experiments, the AR-1D-CNN outperforms all other models. We
rather consider that differentials in performance can be explained
by concrete factors, such as the individual model’s ability to capture,
in its feature space, the signal characteristics that are relevant for
a given task. In this respect, both the feature-based and deep
learning-based approaches come with respective advantages and

drawbacks. These should be taken into account when designing
BCI or adaptive DBS systems.

To illustrate this, we point to the performance differentials
between feature-based and convolution-based models attempting
to distinguish between degrees of phase shift and of beta/gamma
power changes (two of the synthetic signals studied in this work):

• Phase shift: the spectral SVM, by estimating power in
canonical frequency bands using a periodogram, discards all
phase-related information. It is thus reasonable to expect
that, since the extracted feature space doesn’t encode any
information related to phase, the performance of these models
won’t surpass chance-level if the modulatory pattern of
interest is purely phase-related. The 1D-CNNs, by contrast,
implements a cascade of FIR filters that are capable of
encoding and modeling phase information, and thus perform
very well on this task.
• Beta/gamma power changes: For this task, all of the relevant

activity takes place in two frequency bands that are captured
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TABLE 2 Average model performances.

SVM AR-SVM 1D-CNN 2D-CNN AR-1D-CNN

Model performance using individual folds:
mean± std. deviation
(paired t-test vs. SVM)

0.74 ± 0.13 (n/a) 0.79 ± 0.14 (t = 8.13,
p < 1e−10)

0.80 ± 0.13 (t = 8.33,
p < 1e−10)

0.78 ± 0.16 (t = 8.24,
p < 1e−10)

0.87± 0.10
(t = 16.7, p < 1e−10)

Cross-fold metrics (mean± std) for each
model (paired t-test for cross-fold average
vs. SVM)

0.75± 0.064 (n/a) 0.79± 0.08 (t = 4.96,
p < 1.38e−5)

0.81± 0.062 (t = 5.46,
p < 2.85e−6)

0.79± 0.054 (t = 5.42,
p < 3.3e−6)

0.87 0.065 (t = 11.17,
p < 1e−13)

Bold values represent highest average model performance.

well by the manual feature extraction process (namely beta and
gamma). In such cases, when the information related to the
states of interest is captured well in the feature-space that the
classifiers have access to, there is no additional benefit to using
deep learning methods that are computationally more costly.

In terms of the manually extracted feature set used by
the spectral SVM, the two waveform patterns mentioned above
correspond to two extremes of the feature space’s ability to model
the signal characteristics of interest. In one of the cases, changes
in the relevant signal characteristics do not cause any change
in the spectral features, and the classifier thus remains agnostic
about this change. In the other case, changes to the relevant
signal characteristics are entirely reflected in feature space, so that
the classifier can easily capture this information. Other scenarios
including waveform sharpness, non-linear phase, phase-amplitude
coupling and burst length lie somewhere along this spectrum.
These features will also lead to changes in the power spectra and will
therefore be partially captured by linear transformation methods
such as the FFT (see Figures 3–7), even if the predetermined
frequency bands have not been specifically tailored to capture these
signal characteristics. In these cases, the spectral SVM shows a
limited ability to capture the states of interest, but the convolution-
based systems, due to their ability to extract arbitrary features from
timeseries with fewer constraints, will tend to outperform.

We furthermore point out that dichotomous thinking about
feature-based and deep learning-based systems can be misleading
in the following way: once a convolutional system has been
trained, the learned features can be used (computed through
convolutions or otherwise approximated) as part of a feature-
based method that uses a SVM as a classification system, and
this should yield equivalent results. This has the implication that,
when a performance differential between feature-based and deep
learning-based methods is observed, a feature set that would bring
the feature-based performance up to par with the deep learning-
based methods always exists – although this does not negate the
difficulty of finding and efficiently constructing such a feature
space. The relevant consideration is therefore, in our view, not
the machine learning approach that one chooses (whether feature-
based or deep learning-based), but the design of the features
space. Deep learning-based methods (sometimes called feature or
representation learning) should thus be thought of as automated
feature-learning procedures—this is sometimes referred to as
representation learning (Goodfellow et al., 2016).

In this work, we are interested in studying the differences
between manually extracted feature sets and learned feature sets
extracted through convolutions. We were able to show that CNNs
are capable of making use of various features that have been

previously observed in neural activities. In our implementation of
the AR-1D-CNN, we provide the classifier with access to both the
manually extracted spectral features, and the convolutional features
learned during the training process. This raises the question of
which feature set is more relevant to perform the classification, and
investigating this could provide insights into the relative usefulness
of the two feature sets.

We investigate this by, first, training the same network on
the same data twice, once with and once without the manually
extracted spectral features. We then take networks that have been
trained with the spectral features and upregulate and downregulate
the activations that correspond to spectral and convolutional
features, while we measure the response in the subsequent
activations within the network. Using this procedure, we ascertain
whether the network has learned to preferentially “attend” to either
manually extracted features or learned convolutional features, and
which feature set contributes more to the decision-making process
within the network.

We illustrate this in Figure 12 with AR-1D-CNN models that
have been trained to distinguish between states of short vs. long
beta bursts in synthetically generated data. No degradation in
performance is observed when the model is not given access to
the manually extracted features (Figure 12), indicating that access
to the manual feature set it not necessary for the AR-1D-CNN to
solve this task, nor to increase performance. Activations in response
to an upregulation of convolutional feature inputs are also higher
than in response to an upregulation of manually extracted features,
indicating that the network has learned to weigh the convolutional
features higher in terms of contribution to network output.

In practice, our findings from this study have the following
implications: for tasks in which a good understanding of the
modulatory patterns of interest is available (and if these patterns
can be quantified well in real time), manually extracting features
and combining them with simple machine learning methods
should provide adequate performance. In these scenarios, it is
unlikely for there to be substantial benefit to using deep learning-
based methods. This is in contrast with tasks in which the
modulatory patterns of interest are not well known. In such cases,
and as we have shown in this study, deep learning-based methods
can make use of different idiosyncratic features contained within
the oscillatory activities to yield performance increases.

In brief, deep learning-based methods excel at feature
discovery. They do not yield any additional benefits when the
features of interest are known and can be appropriately captured by
a manually designed feature-extraction process. However, when the
patterns within the data are unknown or not readily quantifiable,
or there are too many potential features which might contribute
to decoding, thereby making it challenging to extract all potential
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features, deep learning-based methods may outperform feature-
based methods.

4.2. Exploring the learned
representations within convolutional
layers

In this project, we have reported that convolutional neural
networks can extract features that have previously been shown
to be important in electrophysiology, such as power increase in
specific frequency bands, phase shifts or phase amplitude coupling
in different neural oscillations. We also reported that features
learned by convolutional neural networks can lead to higher
decoding performance when compared to a baseline method that
uses a rudimentary set of manually extracted spectral features.
We have, however, not reported on the potentially novel features
that convolutions can learn from data to enable the observed
increase in decoding performance shown in Figure 11 and Table 2.
This question is relevant for two reasons. First and foremost,
because of the necessity to understand the signal characteristics that
autonomous systems depend on and react to in the context of BCI
systems, adaptive DBS, and clinical neurosciences more broadly.
Without this knowledge, it becomes difficult to understand and
prevent the failure modes of these autonomous systems as well
as the robustness and risks that these systems pose in real-world
settings. Secondly, understanding the features learned by learning
algorithms might offer new insights into the functional physiology
and the pathophysiology of neural circuits in healthy and diseased
states, providing a novel and valuable data-driven research tool.

In spite of this, we find a distinct dearth of well-established
methodological tools to systematically address this question. This
makes us, in agreement with other researchers in the field of
electrophysiology (Merk et al., 2022a), at this stage consider neural
networks to be systems that, despite their usefulness, have poor
interpretability. This is in spite of our knowledge that much
research has been conducted to alleviate this, particularly in the
field of computer vision (Chattopadhyay et al., 2018; Desai and
Ramaswamy, 2020; Selvaraju et al., 2020; Wang et al., 2020).

In Figure 13 we aim to illustrate some of the difficulty of
interpreting the features learned by convolutional neural networks.
We first train a 1D-CNN to distinguish between periods of
synthetically generated short vs. long beta bursts. Figure 13A
shows the individual kernel elements, as well as the corresponding
frequency responses (1D-CNN kernels can be interpreted as FIR
filters), before and after training. Figure 13B shows two learned
convolutional features, and how a linear combination of them
approximates the ground-truth label. The features, in spite of
being composed of linear convolutional filters, exhibit non-linear
behavior due to the interleaved non-linear Swish operations.

4.3. Choosing time-windows and
autoregressive parameters

When training classification systems, a relevant
hyperparameter to consider is the length of each epoch. Longer
epochs allow for more stable feature estimation due to decreased
statistical noise, but come at the cost of decreasing the system’s

output rate as well introducing of inertia, thereby rendering the
classifier’s response to changes in the underlying signals slower.
A target output rate (e.g., 10 classification outputs per seconds,
or 10 Hz classification rate) can be maintained by overlapping
epochs. Unwanted inertia or reduced decoding accuracy may still
be introduced if the epochs are longer than the brain state of
interest, even if the epochs are overlapped.

In this work, the autoregressive models introduce a third
hyperparameter: the sequence length, i.e., the number of trailing
epochs that are used to, at each classification sample in the training
data, train the AR-SVM and AR-1D-CNN. When comparing
autoregressive and non-autoregressive models, these parameters
can also be thought of as determining whether a single epoch is best
subdivided into frames, with each frame treated as an element in a
sequence within an autoregressive schema, or whether epochs are
best kept as a single frame without any subdivisions.

Here we explore the effect of these design parameters on
decoding performance. To this end, we train SVMs, 1D-CNNs, AR-
SVMs, and AR-1D-CNNs on the task of distinguishing between
periods of synthetically generated short vs. long beta bursts. In
Figure 14A, we illustrate that longer time-windows are associated
with improved decoding performance for both the SVM and 1D-
CNN. We attribute this to more stable feature estimation due to
reduced noise and improved sampling to compute each estimate.
In our experiments, performance degradation is particularly strong
in the sub-500 ms range. This might be attributable to the fact
that these very short time windows cannot effectively capture the
bursting dynamics of oscillations, which requires having access
to enough oscillation cycles to constitute a full long burst (each
oscillation at a beta frequency of 20 Hz is 50 ms long).

In Figure 14B, we show the effect on decoding performance
of subdividing a 5-s epoch into frames for the AR-SVM and
AR-1D-CNN. We use two subdivision strategies: overlapping and
non-overlapping frames. When using non-overlapping frames,
performance degrades rapidly with subdivisions for both the CNN
and SVM. This indicates, analogously to the results shown in
Figure 14A, that the model displays a preference for longer time
windows. Furthermore, this shows that autoregressive schemas are
not able to seamlessly fuse the information contained in feature
vectors from two adjacent frames into the equivalent feature vector
that would be extracted from the single, unitary frame. This holds
for both the AR-SVM and AR-1D-CNN. We attribute this, again
here, to improved stability of feature estimation if the frame used
to compute each feature is longer. Further research is needed
to develop a more thorough understanding of the capabilities of
autoregressive models in this context and their relationship with
the stability of features. When adjacent frames are overlapped, this
allows for longer individual frames from which to extract features
and, correspondingly, more stable feature estimation. With this
strategy, the performance degradation associated to sub-dividing
epochs into frames can be avoided. In our experiments we, however,
do not observe any performance benefits to sub-division strategies,
whether with overlapping or without, when compared to using
whole epochs.

Although we here show the benefits of using longer time
windows experimentally and attribute this improvement in
performance to more stable feature sets, we do not show the
detrimental effect of using epochs that are too long. The synthetic
data used here, modeled as a first-order Markov process, has
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FIGURE 15

Estimated inference-time computational cost (in number of floating
point operations per decoding output, log scale) for each of the
methods implemented in this paper. The 2D-CNN, due to its
wavelet-based time-frequency decomposition prior to entering the
network, and the required network depth in order to achieve
sufficient receptive field due to the small kernels used by computer
vision models, is the most expensive.

stochastic yet stable state dynamics that are known, with each stable
state lasting 10.92 +/- 7.94 s. This might not be the case in arbitrary
real-world data. If the changes in underlying brain state dynamics
are complex (Vidaurre et al., 2017), long epochs might average
out relevant state transitions. The balance between sufficiently long
time windows to enable stable feature estimation, but short enough
to allow to model state transitions in the neural activities at the
appropriate time scale, must be explored on a case-by-case basis.

4.4. Inference-time computational cost

We acknowledge that one key consideration for the real-
world implementation of aDBS systems is that the proposed
algorithms must remain compatible with the constraints imposed
by implantable hardware, such as limited computational resources
and restricted power consumption. This can pose a challenge
for deep learning (DL) methods, which consist of layers of
parametrized matrix operations that well-known to be intensive
in terms of compute—and the models described here are no
exception. In this work we set out to better understand and compare
the modeling capabilities of different methods, rather than to
optimize performance-to-compute ratios. For the purposes of the
work described here, we don’t directly design systems that operate
at very low computational cost. With the current configuration
of the models, as shown in Figure 15, 1D-CNNs require
approximately one order or magnitude higher of inference-time
compute than their SVM counterparts (given the fixed number of
features we considered here), and the 2D-CNN in turn requires
another order of magnitude above the 1D-CNNs. This is due to
both the initial wavelet-based time-frequency decomposition, as
well as the short kernels used in 2D convolutional networks that
are required to achieve a sufficiently large receptive field.

In future work, the trade-offs between compute and
performance should be explored and the question of reconciling
the computational requirements of well-performing algorithms
with the limited computational resources available in an aDBS

context should be explicitly addressed. We point out that
model compression methods, including model distillation or
the use of streamlined architectures, are able to reduce the
inference-time computational footprint of models while minimally
compromising on decoding performance. In this study, we have
made no attempt to reduce the size of the models or to explore
compute/performance trade-offs, but point to this as a worthwhile
avenue of research to explore.

4.5. Limitations and future work

Once a CNN is trained, it is not trivial to understand the precise
computation that it is performing to map input (timeseries signals,
in the case of our 1D-CNNs) to output (labels). Although numerous
so-called “feature attribution techniques” have been developed for
CNNs, mostly in the context of computer vision (2D-CNNs), the
fact that these feature-attribution procedures are not designed to
be applied systematically across a whole dataset, and furthermore
provide insights that are non-trivial to interpret, makes many
researchers still consider CNNs to be, at least in part, “black-
box” algorithms. These attribution methods are what is generally
referred to as “investigating (or visualizing) the activations with
CNN layers.” But these tools don’t yet offer a systematic approach
to understand features learned by convolutional architectures,
especially across a time-series dataset. We view this lack of insight
as a current limitation of using CNNs in research and clinical
practice. For the type of research that the machine learning
community is interested in pursuing, where the existence of a
mapping function factual : input→ output is assumed to exist,
and the role of the algorithm is simply to find the technique
that minimizes the error E{factual

(
input

)
, fapprox

(
input

)
}, (where

approx. refers to the mapping function learned by the SVM,
CNN, or algorithm in question), this might be appropriate. Within
this machine learning paradigm, developing understanding about
how different algorithms process information internally comes
only secondary to improving performance. We do, however, not
advocate this view in neuroscience, and especially in translational
neuroscience, where thoroughly understanding the signals that
our systems rely on to operate becomes crucial to ensure the
robustness and generalization of these systems beyond controlled
clinical settings. Further research is needed to develop the
methodological tools that will enable a better understanding of
these algorithms’ decision making, and the corresponding failure
modes that clinicians and researchers can expect from these systems
during real-world use.

5. Conclusion

In this work, we explored different decoding methods in terms
of their ability to identify states from neural oscillations and
benchmarked their performance on both simulated data and LFP
data recorded from externalized essential tremor patients. We
were able to show that end-to-end convolutional neural networks
can make use of different spectral and time-domain features
in the oscillatory activities, including power changes, waveform
sharpness, phase-amplitude coupling, burst duration, phase shifts,
and non-linear phase characteristics. 1D-CNNs trained end-to-end
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can yield superior performance, especially in cases where the
underlying features of interest are not well-known or not easily
captured by standardized feature extraction pipelines.
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