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Abstract

The computational principles adopted by the hippocampus in associative memory (AM)

tasks have been one of the most studied topics in computational and theoretical neurosci-

ence. Recent theories suggested that AM and the predictive activities of the hippocampus

could be described within a unitary account, and that predictive coding underlies the compu-

tations supporting AM in the hippocampus. Following this theory, a computational model

based on classical hierarchical predictive networks was proposed and was shown to per-

form well in various AM tasks. However, this fully hierarchical model did not incorporate

recurrent connections, an architectural component of the CA3 region of the hippocampus

that is crucial for AM. This makes the structure of the model inconsistent with the known con-

nectivity of CA3 and classical recurrent models such as Hopfield Networks, which learn the

covariance of inputs through their recurrent connections to perform AM. Earlier PC models

that learn the covariance information of inputs explicitly via recurrent connections seem to

be a solution to these issues. Here, we show that although these models can perform AM,

they do it in an implausible and numerically unstable way. Instead, we propose alternatives

to these earlier covariance-learning predictive coding networks, which learn the covariance

information implicitly and plausibly, and can use dendritic structures to encode prediction

errors. We show analytically that our proposed models are perfectly equivalent to the earlier

predictive coding model learning covariance explicitly, and encounter no numerical issues

when performing AM tasks in practice. We further show that our models can be combined

with hierarchical predictive coding networks to model the hippocampo-neocortical interac-

tions. Our models provide a biologically plausible approach to modelling the hippocampal

network, pointing to a potential computational mechanism during hippocampal memory for-

mation and recall, which employs both predictive coding and covariance learning based on

the recurrent network structure of the hippocampus.
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Author summary

The hippocampus and adjacent cortical areas have long been considered essential for the

formation of associative memories. It has been recently suggested that the hippocampus

stores and retrieves memory by generating predictions of ongoing sensory inputs.

Computational models have thus been proposed to account for this predictive nature of

the hippocampal network during associative memory using predictive coding, a general

theory of information processing in the cortex. However, these hierarchical predictive

coding models of the hippocampus did not take into account important hippocampal

architectural components that may store statistical regularities supporting associative

memory, which also hinders a unified view with classical models learning these regulari-

ties. To address these issues, here we present a family of predictive coding models that

also learn the statistical information needed for associative memory. Our models can sta-

bly perform associative memory tasks in a biologically plausible manner, even with large

structured data such as natural scenes. Our work provides a possible mechanism of how

the recurrent hippocampal network may employ various computational principles con-

currently to perform associative memory.

Introduction

Memory systems in the brain often store information about the relationships or associations

between objects or concepts. This particular type of memory, referred to as Associative Mem-
ory (AM), is ubiquitous in our everyday lives. For example, we memorize the smell of a partic-

ular brand of perfume, the taste of a kind of coffee, or the voice of different singers we like.

After a memory is formed, AM will support its retrieval when a related cue is presented to our

senses using the learned association between the provided cues and missing components.

It has long been argued that the hippocampus and adjacent cortical areas, located in the

medial temporal lobe of the brain, are crucial for AM [1–3]. Historically, various theoretical

and computational works have been developed in an effort to model the hippocampus in AM

tasks [4–6]. In this work, we are interested in a particular approach to modelling, which

assumes that the hippocampus employs its predictive activities to perform AM. Predictive pro-

cessing is thought to be a key computational principle underlying various hippocampal activi-

ties: Experimentally, abundant evidence has suggested that the hippocampus is capable of

predicting ongoing sensory inputs [7], whereas high-level theories and computational models

have also been proposed to explain how predictive coding (PC) may support various properties

of the hippocampus, including the formation of cognitive maps [8] and memory [9]. In partic-

ular, Barron et al. [9] proposed that the hippocampus sits at the top of a hierarchical generative

model that generates predictions of neocortical activities based on past experiences, thus

enabling retrieval of activities from memory at lower neocortical levels. The ability of predic-

tive coding networks (PCNs) to complete previously learned patterns have been already dem-

onstrated in pioneering work by Rao [10], although the model in this work was not formally

introduced within the PC framework. More recently, the ability of the hierarchical PCNs intro-

duced by Rao and Ballard [11] in performing AM has been computationally analysed [12, 13].

Specifically, Salvatori et al. [12] showed that hierarchical PCNs can store training data points

as memories, and retrieve these memories given partial or noisy cues. Under this PC frame-

work, which is characterized by prediction error neurons, the memorization of a sensory input

is driven by the Hebbian learning dynamics [14] that minimize the error between the input

and a prediction generated by the network, and the retrieval of this input is performed by the
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inferential neural dynamics, also to minimize the error between the internal predictions and

the corrupted sensory input. It is worth mentioning that AM in this PC-based model is defined

as the memorization and recall of static inputs, where the associations are learned between

individual components of static patterns, and the temporal dimension is ignored. In this sce-

nario, memory retrieval is equivalent to pattern completion. On the other hand, AM can also

be defined as memorizing the association along the temporal dimension, where the associa-

tions between two (or multiple) inputs along time are memorized [10]. In this work we focus

on the first i.e., static type of AM.

The aforementioned hierarchical PC-based model provides a possible network mechanism

that the hippocampo-neocortical entity employs to support AM, providing a possible imple-

mentation of the theory by Barron et al. [9]. However, this model only included feedforward

and feedback connections between layers of neurons (representing different cortical areas),

and thus failed to provide an account of how PC can also be employed within the known con-

nectivity of the hippocampal network, where the recurrent connections in subfield CA3 are

thought to play a key role in AM [5]. Furthermore, the absence of recurrent connections in the

hierarchical PC models for AM dissociates them from earlier recurrent models of AM such as

Hopfield Network [4], which assume that the recurrent connections in the hippocampal net-

work learns a covariance matrix representing the association between individual neurons acti-

vated by a memory item, thus hindering a unified understanding of the computational

principles adopted by the hippocampus to support AM. This brings us to ask: how can the

recurrent hippocampal network employ PC to perform AM, in a biologically plausible and

computationally stable manner, and can recurrent connections in such network encode

the covariance of neural activity? Here, by computationally stable, we mean the ability of the

model to steadily converge to a fixed point both during learning (memory) and inference

(retrieval), and the criteria for biological plausibility include [15]:

1. Local computation: A neuron’s computation is only dependent on its input neurons and

weights connecting itself to its input neurons.

2. Local plasticity: The plasticity rule of synapses in a model only depends on quantities

encoded by pre- and post-synaptic neurons.

3. Architectural similarity: Components of a model resembles architectures of real neurons,

such as the recurrent connections and the apical dendrites of the pyramidal neurons in the

hippocampus.

The hierarchical PC models for AM are stable and satisfy the first two criteria of plausibility

[12]. However, as we pointed out above, they fail to meet the third criterion, architectural simi-

larity, due to the missing recurrent connections. In this work, we propose a family of PCNs

with recurrent connections between neurons, which we call covariance-learning PCNs

(covPCNs), as candidate models satisfying these criteria. In particular, we first identify that an

earlier type of PCN has already incorporated recurrent synaptic connections encoding the

covariance information of inputs [16–18], and can thus be considered as a PC model meeting

the criterion of architectural similarity. We refer to it as the explicit covPCN, as it encodes the

covariance matrix explicitly into its recurrent synapses. The explicit covPCN was originally

proposed as a model for learning representations of sensory inputs, and we show in this work

that its covariance-learning nature can be utilized to perform simple AM tasks. However, we

note that the learning rule for the recurrent connections in this model is non-Hebbian, and

poses significant computational issues as well, which makes it fail to satisfy the local plasticity

and stability conditions. To address these issues, we propose in this work a novel recurrent

PCN, which also encodes the covariance matrix via its recurrent connections, but in an
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implicit manner, thus we refer to it as implicit covPCN. We show that the new implicit model

also performs AM via covariance learning, and it is equivalent to the explicit covPCN both the-

oretically and empirically in simple AM tasks, while only employing local Hebbian plasticity.

We also show that the implicit model can be further modified to achieve biological resem-

blance to the hippocampal pyramidal cells by incorporating a dendritic structure, while retain-

ing the theoretical and empirical equivalence to the explicit covPCN at convergence. We name

it the dendritic covPCN in this work. Importantly, we show that both the implicit and dendritic

models can perform more complex AM tasks in which the explicit covPCN would fail due to

its unstable dynamics. Finally, we propose a hybrid PCN that combines the implicit covPCN

with a hierarchical PCN [11, 12] to model the whole hippocampo-neocortical region, and

show that it performs challenging AM tasks efficiently.

In this work, we describe a series of more stable and more plausible implementations of

recurrent PC to model AM in the hippocampus, to shed light on how the hippocampal struc-
ture (apical dendrite and recurrent network) may support its computations (PC and covariance

learning) underlying its functions (AM). The key contribution that we bring to the table is a

reparameterization of the (weighted) prediction errors in the explicit covPCN [16], which

leads to simplified forms of a free energy. Crucially, the simplified forms of free energy that we

consider all share the same minima or fixed points with that of the explicit covPCN, thereby

leading to the same inference and learning. Practically, this allows us to drop certain terms

from the gradients, leading to more robust convergence to free energy minima and, crucially,

affording more biologically plausible implementation. To unpack the basic ideas of how PC

can be implemented in CA3-like recurrent network to support AM, we will focus on a simple

kind of PC, in which we ignore temporal predictions (i.e., predicting into the future). Rather,

in our models, the prediction of one neuron’s activities is from all other neurons in the recur-

rent network i.e., “spatial” prediction. This particular focus enables us to derive interpretable

analytical results that enhance our understanding of what is encoded in the synaptic weights in

our models i.e., the covariance matrix and the relationship between models. Furthermore, we

will restrict our initial analyses to linear systems, under standard Gaussian parametric assump-

tions. In this setting, a memory is simply the ability of the PCN to recognize the most likely

cause of a particular pattern of inputs (e.g., an image), which is similar to the AM tasks dis-

cussed in [12]. We are not addressing episodic memory—of the sort sometimes associated

with hippocampal function—rather, we are focusing on how statistical regularities in a series

of inputs are learned and then used to predict the missing or noisy part of a input. This con-

trasts our linear recurrent PCNs with recurrent AM models such as the Hopfield Network [4],

where the memories are stored as point attractors of the network dynamics. At the end of the

Results section, we provide results of an empirical analysis of the attractor behavior of our

model, showing that adding nonlinearities to our model will enable it to store memories as

point attractors.

Models

In this section, we introduce the single-layer covariance-learning PCNs, i.e., the explicit,

implicit and dendritic covPCNs, following increasing levels of biological plausibility. To per-

form AM tasks, covPCNs first memorize a set of patterns by learning their model parameters

to minimize an objective function, or more specifically, (variational) free energy [16] via gradi-

ent descent. After memorization, the covPCNs are given a set of cues, such as corrupted mem-

ories, and they will perform retrieval by performing inference or relaxation of the neurons to

achieve minimization of the energy function again. We focus on how computations are carried

out in these models and their corresponding neural implementations, which aim to model the
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recurrent networks in the sub-field CA3 of hippocampus. We then describe a full model for

the hippocampo-neocortical region as a whole, which uses the implicit/dendritic covPCNs to

model the hippocampal recurrent network and the hierarchical PCN [12] to model the neocor-

tical hierarchy.

Explicit covariance-learning PCNs

The explicit covPCNs [16, 17] were proposed to extend the PC model for the visual system

[11] to a general model of how the brain performs representation learning. Following the

probabilistic framework of PC, it introduced the covariance matrix by encoding it explicitly

into the network’s recurrent connections. We denote the activity of neurons in a single-layer

explicit covPCN by a vector x, and throughout the paper we denote vectors with a bold font.

The model assumes that the set of patterns to memorize fxðiÞgN
i¼1

of dimension d is a set of

samples from a Gaussian distribution with true mean μtrue and covariance matrix Strue, where

i indicates the ith sample within the dataset. The dynamics of the network model, parameter-

ized by mean μ and covariance S, thus aim to maximize the following log likelihood of

observed neural activity x given this Gaussian distribution (or negative free energy):

F ¼ �
1

2
log jSj �

1

2
ðx � μÞTS� 1ðx � μÞ ð1Þ

An explicit covPCN learns its parameters by iteratively setting neural activity to training

patterns x = x(i) and then modifying parameters by directly computing the derivative of F
with respect to μ and S [17]:

μ μþ Dμ ¼ μþ a
@F
@μ

�
�
�
�
x¼xðiÞ

; S Sþ DS ¼ Sþ a
@F
@S

�
�
�
�
x¼xðiÞ

ð2Þ

where α denotes the learning rate for parameters. Notice that this learning rule is fully online

as it updates the parameters every time a single training pattern is received. This is closer to

learning by biological systems. Here, to derive subsequent analytical properties of the

covPCNs, we define the following full-batch learning rules, which can approximate the fully

online learning if α is small enough:

Dμ ¼ a
XN

i¼1

@F
@μ

�
�
�
�
x¼xðiÞ

¼ a
XN

i¼1

S� 1ðxðiÞ � μÞ ð3Þ

DS ¼ a
XN

i¼1

@F
@S

�
�
�
�
x¼xðiÞ

¼ a � NS� 1 þ
XN

i¼1

S� 1ðxðiÞ � μÞðxðiÞ � μÞTS� 1

 !

ð4Þ

The above full-batch learning rules have a property that both parameters will converge to

the maximum likelihood estimate (MLE) of μtrue and Strue based on the training data points,

i.e., μ! 1

N

PN
i¼1

xðiÞ and S! 1

N

PN
i¼1
ðxðiÞ � μÞðxðiÞ � μÞT . We denote these MLE estimates

of mean and covariance by �x and S, respectively. Therefore, the parameter matrix S will explic-
itly encode the sample covariance of the data S, thus the name explicit covPCNs. This can be

shown by noting that at convergence μ and S do not change, so setting Δμ = 0 and ΔS = 0 and

solving Eqs 3 and 4 for μ and S, respectively, gives the above MLE estimates. It is worth noting

that although we refer to these estimates MLE, in more general formulations they would corre-

spond to maximum a posteriori (MAP) estimates [16, 18]. However, because we have not
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placed any prior constraints on the generative model implied by Eq 1, the MLE and MAP

become equivalent.

After learning, we fix the parameters μ and S and provide a single cue ~x to the network, i.e.,

we initialize the neural activity to x ¼ ~x, and the explicit covPCN performs inference on the

cue by updating it according to the derivative of the log likelihood:

Dx ¼ b
@F
@x
¼ b � S� 1ðx � μÞ

� �
ð5Þ

where β defines step size along the gradient direction, which we refer to as “integration step”.

For example, if ~x is a corrupted or noisy data point, the equation above will drive it towards

the mean in proportion to the precision or inverse variance.

To see how the above equations could be implemented in a neural circuit, it is useful to

note that they greatly simplify if we define a vector of prediction errors:

ε ¼ S� 1ðx � μÞ ð6Þ

Then, the dynamics of neurons (Eq 5) becomes:

Dx ¼ � bε ð7Þ

Moreover, the learning rules for this model (Eqs 3 and 4) become:

Dμ ¼ a
XN

i¼1

εðiÞ ð8Þ

DS ¼ a � NS� 1 þ
XN

i¼1

εðiÞεðiÞT
 !

ð9Þ

The above neural dynamics (Eqs 6–9) can be implemented within the network shown in

Fig 1A. In this network, ε and x are encoded in activities of neurons, and parameters μ and S

Fig 1. Neural implementations of the single-layer covPCNs using error neurons. xa and εa denotes the a-th value/error neuron in the networks.

For simplicity we show the case where the input patterns have only 2 dimensions, corresponding to 2 value and error neurons. A: explicit covPCN

originally proposed in [16]. B: Implicit covPCN. C: Dendritic covPCN with direct structural mapping to a pyramidal cell. Unlabeled connections

have strengths 1.

https://doi.org/10.1371/journal.pcbi.1010719.g001
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in synaptic weights. The neurons x, called the value neurons, receive inhibition from predic-

tion error neurons (cf. Eq 7), while the neurons ε receive excitatory inputs from the value neu-

rons, and top-down inhibitory inputs encoding the prior expectation, as well as lateral

inhibitory inputs encoding the weight S, to compute the weighted prediction error of Eq 6 (for

details of how this computation arises see [18]).

Notice that the learning for the top-down connections encoding the predictions μ (Eq 8)

follows the Hebbian rule, as it is simply the product of the pre-synaptic activity (1) and post-

synaptic error activity (ε). However, the learning rule for the lateral connections S (Eq 9) is

biologically implausible, since to compute S� 1

ab that is needed for the update ΔSab of the syn-

apse connecting neuron a and b, non-local information from all other entries in S is needed,

due to the nature of the inverse operation. That is, to compute the synaptic update between

neuron a and b, synaptic weights from all over the neural circuit are needed. Moreover, as we

will show in the Results section, this numerically unstable inverse term poses significant

computational problems that make this model inapplicable to complex patterns, such as the

image datasets MNIST [19] and CIFAR10 [20], which are not generated by sampling from a

Gaussian distribution.

Implicit covariance-learning PCNs

The biological implausibility of the explicit covPCNs raises the question whether there exists

an alternative and more realistic PC model that performs AM via covariance learning. Notice

that another way of encoding interactions between neurons, while preserving the predictive

nature of the network, is to let the neurons predict each other. With this intuition, we propose

the implicit covPCN, which is also a recurrently connected, single-layer network with weight

matrix W, with error neurons encoding the prediction errors. The implicit model aims to max-

imize the following negative energy function:

F ¼ �
1

2
kx � Wx � nk2

2
ð10Þ

where x and ν are both d-dimensional vectors and W is a d × d 0-diagonal matrix, where Wab

will be encoded in the synapse connecting the a-th and b-th neurons in the recurrent network.

In the implicit model, we define the errors as ε = x − W x − ν. The 0-diagonal property of W
implies that the predictions W x come from all value neurons in the vector of neurons x except

each neuron itself. Like the explicit model, the implicit covPCN first updates its parameters W
and ν by computing the derivative of F given the dataset fxðiÞgN

i¼1
(again, we present the full-

batch learning rules here for subsequent analytical derivations):

Dν ¼ a
XN

i¼1

@F
@ν

�
�
�
�
x¼xðiÞ

¼ a
XN

i¼1

εðiÞ ð11Þ

DW ¼ a
XN

i¼1

@F
@W

�
�
�
�
x¼xðiÞ

¼ a
XN

i¼1

εðiÞxðiÞT
 !

diag¼0

ð12Þ

where the ()diag=0 notation means “enforcing the diagonal elements to be 0” as we want to keep

the 0 diagonal elements of W unchanged. Notice that by setting Δν and ΔW to 0, we obtain the
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following relationships at the convergence of learning:

ν ¼ ðI � WÞ�x ð13Þ

½ðI � WÞS�diag¼0
¼ 0 ð14Þ

Recall that �x and S denote the MLEs of the mean μtrue and covariance matrix Strue, and that

the parameters of the explicit covPCN, μ and S, converge to �x and S. Therefore, the implicit

covPCN also learns the mean and the elements of the covariance matrix, without encoding

them explicitly in individual connections.

Like the explicit model, after learning, the implicit model performs inference after initializ-

ing the activity to a cue input ~x following the derivative of the objective function with respect

to x:

Dx ¼ b
@F
@x
¼ b � εþWTεð Þ ð15Þ

The above dynamics can be implemented in the network model in Fig 1B, by replacing the

lateral connections S with W that projects the predictions from all other value neurons into

each error neuron. Notice that the learning rule for the bias term ν is Hebbian, and more

importantly, the learning rule for the connections W is also Hebbian, as it is simply a product

ε xT of the pre- and post-synaptic activities. We show in the Results section, that this biologi-

cally more plausible implicit model will converge to exactly the same retrieval of a memory as

the explicit model, making it a perfect alternative to the implausible explicit model.

Dendritic covariance-learning PCNs

Inspired by the dendritic model in [21, 22], we push the biological plausibility of the implicit

model further by imposing a “stop gradient” (sg) operation on the objective function Eq 10:

F ¼ �
1

2
kx � WsgðxÞ � ν k2

2
ð16Þ

where

sgðxÞ ¼ x;
@sgðxÞ
@x

¼ 0 ð17Þ

Notice that the parameter learning rules in this model is exactly the same as Eqs 13 and 14.

Only the dynamics of the value nodes during inference becomes:

Dx ¼ � bε ð18Þ

The above dynamics differs from the implicit model (Eq 15) that it no longer includes WTε
term that corresponded to the backward excitatory connections from the error neurons to the

value neurons in Fig 1B. This results in the neural network implementation shown in Fig 1C.

This implementation is simpler, as the error neurons in this model only receive predictions

from external sources, so they can thus be absorbed into the dendrites of the value neurons x,

as shown in the soma-dendrite demonstration in Fig 1C. This architecture could be viewed as

more biologically plausible because it does not include the special one-to-one connections of

strength 1 between value and corresponding error neurons present in Fig 1A and 1B, for

which there is no evidence in cortical circuits. Such an error-encoding dendritic model relates

to the model proposed in [21, 22]. As we show in the Results section, since this stop gradient

operation does not affect the learning of parameters in the implicit covPCN, and the fixed
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points of dynamics for the implicit and dendritic models are the same, the equivalence to the

explicit model in converged memory retrieval is retained.

Hybrid PCNs

We now use the obtained results to propose an architecture that mimics the behavior of the

hippocampus as a memory index and generative model. The recurrent, single-layer network

models introduced above provide a model for the recurrent dynamics in the hippocampus.

However, raw sensory inputs are first processed via a hierarchy of sensory and neocortical lay-

ers, allowing the hippocampus to memorize representations of raw signals, instead of the sig-

nal itself. Moreover, according to a recent theory, the hippocampus functions as a generative

model that accumulates prediction errors from sensory and neocortical neurons lower in the

hierarchy, and sends descending predictions to the neocortex, to correct the prediction errors

in the neocortical neurons. The generative model of the hippocampus is updated until the hip-

pocampal predictions correct the prediction errors by suppressing neocortical activity [9].

Hierarchical PCNs have already been proposed as a generative model that learn representa-

tions of the sensory inputs [17]. Particularly, it has been shown that a purely hierarchical PCN,

without any recurrent structure, is able to perform associative memory tasks on highly com-

plex datasets [12]. Here, we combine the hierarchical PCN with our proposed recurrent archi-

tecture, obtaining an hierarchical model with recurrent dynamics at the topmost layer. What

results is an hybrid network that models the whole pathway from sensory neurons to hippo-

campal neurons.

Consider an hierarchical PCN with L layers, with a recurrent implicit or dendritic network

connected to the last layer. The first layer corresponds to the sensory layer, where sensory sig-

nals are presented to be processed, and the last layer corresponds to the hippocampal layer.

Then, the intermediate layers 1< l< L represent the hierarchical structure present in the neo-

cortex that connects the sensory neurons to the hippocampus. We denote the synaptic weight

matrix connecting the neurons in the lth layer and the neurons in the (l + 1)th layer as Θ(l).

Within the hippocampal layer L, we use W to denote the recurrent synaptic weight matrix.

The vector of value nodes in each layer, denoted as x(l), is coupled with the error node vector

ε(l), computed as the following prediction error:

εðlÞ ¼ xðlÞ � ρðlÞ ð19Þ

where ρ(l) denotes the descending prediction signals into the neurons, computed as:

ρðlÞ ¼

WxðlÞ; if l ¼ L and implicit

WsgðxðlÞÞ; if l ¼ L and dendritic

Y
ðlÞf ðxðlþ1ÞÞ; otherwise

8
>>><

>>>:

ð20Þ

where f(�) is a nonlinear function. For simplicity of illustration, we ignore the top-down con-

nections ν in the recurrent covPCNs. The aim of the learning dynamics of this hybrid network

is to maximize the negative sum of squared errors:

F ¼ �
1

2

XL

l¼1

kεðlÞ k2

2 ð21Þ

Like purely hierarchical PCNs, the learning of the hybrid PCN consists of two stages: infer-
ence and weight update. During inference, the value neurons relax to maximize F following
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the gradient ascent rule:

DxðlÞ ¼

bð� εðlÞ þ f 0ðxðlÞÞ � ðYðl� 1Þ
Þ
Tεðl� 1Þ þ gWTεðlÞÞ; if l ¼ L

bð� εðlÞ þ f 0ðxðlÞÞ � ðYðl� 1Þ
Þ
Tεðl� 1ÞÞ; if 1 < l < L

0; if l¼ 1

8
>>><

>>>:

ð22Þ

where� denotes the element-wise product between two vectors, and γ = 1 if the topmost layer

is an implicit covPCN, or 0 if it is a dendritic covPCN. The update at the sensory layer (l = 1) is

0 because during learning, the sensory neurons are fixed at the raw sensory inputs. The infer-

ence dynamics are carried out for a certain number of iterations until the value nodes reach an

equilibrium. The weight update is then performed, also to maximize F using gradient ascent:

DY
ðlÞ
¼ aεðlÞf ðxðlþ1ÞÞ

T and DW ¼ aεðLÞðxðLÞÞT ð23Þ

In each iteration of learning, the inference will be performed for multiple iterations and

then the weight update will take place for one step. The whole learning process will be iterated

multiple times until F reaches the minimum.

The proposed architecture also models the reconstructions of past memories: as a memory

index, the hippocampus sends top-down information to the neocortical neurons to reinstate

activity patterns that replicate previous sensory experience [9]. In the reconstruction phase of

our generative model, the hippocampal layer provides descending inputs to the sensory neu-

rons to generate stored data points. Assume we have a hybrid PCN already trained on a dataset

of memories. To retrieve a stored datapoint, the synaptic weights Θ and W are fixed, and the

retrieval process is triggered by providing a partly corrupted version of a memorized pattern

to a subset sensory neurons. During retrieval all other value nodes will relax following the

same rule specified in Eq 22. The only difference is that, the value nodes in the sensory layer

will also experience relaxation:

Dxð1Þc ¼ � bεð1Þc ð24Þ

where the subscript c denote the corrupted dimensions of the input pattern, as we keep the

intact part of the patterns unchanged during retrieval. Notice that all the dynamics above

requires only local computations. Fig 2 shows the general structure of the hybrid PCN, as well

as detailed implementations of neural computations.

Results

In this section we present key findings with the aforementioned models. We first show that the

explicit covPCN performs AM in practice with randomly generated patterns, a property never

previously demonstrated for this model. We then derive an expression for retrieved pattern in

this model, providing a deeper understanding of its performance in AM tasks. We then show

analytically that the retrieved pattern in the implicit/dendritic covPCNs is exactly the same as

that of the explicit model when the inferential dynamics have converged, suggesting that these

models serve as perfect substitutes for the explicit model, while being biologically more plausi-

ble. Moreover, we show that these more plausible models are also more stable with structured

image data: they perform AM well on images of handwritten digits and natural objects,

whereas the explicit model fails on these datasets due to the inverse term discussed above. We

next show that the hybrid model taking into account the hippocampo-neocortical interactions

successfully performs AM in a parameter-efficient manner. Finally, we investigate a nonlinear
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version of our implicit model and show that they learn individual point attractors of memory.

The implementation details of these experiments are provided in S1 and S2 Tables.

The explicit covPCN performs associative memory

The explicit covPCN was originally proposed as a generative model of how the cortical

responses are evoked given observations [16, 17]. To our knowledge, it has never been

employed to perform AM tasks. To verify our hypothesis that after training, the explicit

covPCN can perform AM using its inferential dynamics and learned covariance, we designed

a simple task where multiple 5 × 5 random Gaussian patterns are memorized. We then covered

the bottom two rows of the 5 × 5 patterns with 0s and run inference on these corrupted entries

only. Examples of the original patterns, along with the corrupted and retrieved patterns, can

be found in Fig 3A. In this task, the models can be considered as memorizing the association

between the top 3 rows and bottom 2 rows of the random patterns. As can be seen in the third

column of panel A, the single-layered explicit covPCN can retrieve the covered part of the orig-

inal pattern well: it performs AM. We then measured the MSEs between the retrieved and

original 5 × 5 random patterns by these models, and plotted them as a function of corrupted/

masked pixels in Fig 3B (Fig 3A shows examples when there are 10 masked pixels). As can be

seen, the explicit covPCN has slightly higher retrieval MSEs on average, although this perfor-

mance gap is not visually observable from the retrieved patterns (e.g., Fig 3A). As we will show

in the following sections, this performance gap will be exacerbated when these models are

trained to memorize structured and more complex datasets.

We now show that a theoretical result can be derived to analytically describe the pattern

retrieved by an explicit covPCN. We will use this result later to establish equivalence between

Fig 2. Multilayer hybrid PCN. We use the single-layer implicit/dendritic covPCN to model the hippocampus, and a hierarchical PCN from

[12] to model the sensory cortex and neocortex. Neurons and synapses in the hierarchical layers follow the dynamic rules in [12]. For clarity of

demonstration, only one layer of our neocortex model is shown. Expanded boxes show the detailed computations within individual neurons

and related synapses specified in Eqs 20 and 22, where xðlÞa denotes the a-th neuron in the lth layer, and Θab and Wab denote the individual

weights from the ath to the bth neurons. Dog image in this figure is obtained from Wikimedia Commons under a CC BY 4.0 license.

https://doi.org/10.1371/journal.pcbi.1010719.g002
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explicit and implicit covPCNs. Consider a corrupted pattern x 2 Rd
, which can be divided

into the corrupted part xk 2 R
k

and “intact” part xm 2 R
m

, where k + m = d:

x ¼
xk

xm

" #

ð25Þ

At the time of retrieval, the training of the covPCN has already finished, during which the

network has memorized the association between xk and xm. We assume that the training has

converged, so that the connections μ and S explicitly encode the MLE, �x and S, of the mean

and covariance respectively. In this case, the inference dynamics of the explicit model follows

Dx ¼ bS� 1ðx � �xÞ (Eq 5). To correspond to the division of the corrupted and intact parts of x,

we also divide S and �x into blocks and set Δx = 0 to study the convergence of the inference

stage:

S ¼
Skk Skm

Smk Smm

" #

; �x ¼
�xk

�xm

" #

ð26Þ

where Spq, p, q 2 {k, m} denotes the p × q submatrices of the covariance matrix S. Using Eq 26

above, we can have the following theorem:

Fig 3. Performance of covPCNs in AM of random patterns, and the equivalence between them. A: A subset of 5 × 5 random patterns memorized by

all 3 models. After training, we corrupted the bottom 2 rows (10 pixels) and let the networks run inference on the corrupted parts for retrieval. B:

Retrieval MSEs of the models when corrupted with different mask sizes. Experiments in A and B are performed with networks with d = 25 neurons. C:

Sample covariance of a random 2-dimensional dataset and the learned weight matrices of an explicit model and an implicit/dendritic model on this

dataset. D: The random 2-dimensional dataset to memorize, and the linear retrieval obtained by masking the second dimension x2 by all 3 models, as

well as the theoretical retrieval line. All the lines overlap as they are equivalent in theory. Experiments in C and D are performed with networks with

d = 2 neurons.

https://doi.org/10.1371/journal.pcbi.1010719.g003
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Theorem 1 After training, an explicit covPCN retrieves the corrupted xk using the intact xm

following the dynamics Dx ¼ bS� 1ðx � �xÞ, and the retrieval dynamics on xk converge to:

x̂k ¼ SkmS� 1
mmðxm � �xmÞ þ �xk ð27Þ

where x̂ denotes the retrieval of the corrupted part. This theorem describes the activities in the

network after retrieval given by the explicit covPCN, using the learned parameters and the

intact xm. Details of the derivation can be found in S1 Appendix.

The equivalence between explicit and implicit covPCNs

Having established the theoretical foundation of the retrieval dynamics in the explicit covPCN,

we next consider the theoretical aspects of the implicit and dendritic models: what is the

retrieval of memorized patterns given by these models, based on learned associations? Again

consider the case of a vector x consisting of the top k corrupted entries xk and bottom m intact

entries xm, and assume that the learning has converged when the corrupted x is presented to

the network, which gives the conditions in Eqs 13 and 14 for both implicit and dendritic mod-

els (notice that these two models do not differ in parameter learning). We now write the

model parameters ν and W into block matrices:

ν ¼
νk

νm

" #

; W ¼
Wkk Wkm

Wmk Wmm

" #

ð28Þ

where Wpq, p, q 2 {k, m} denotes the p × q submatrices of the weight matrix W. Notice that for

both implicit and dendritic models, the retrieval dynamics converge if and only if all error

nodes become zero, that is, ε = x − W x − ν = 0. For the dendritic model this is obvious (Eq

18), whereas for the implicit model this comes from the fact that W has all its diagonal entries

equal to 0 and thus cannot be an identity matrix (Eq 15). We can thus derive the following the-

orem on the converged retrieval dynamics of the implicit and dendritic covPCNs:

Theorem 2 After training, both the implicit and dendritic models retrieve the corrupted xk

given intact xm following the dynamics specified in Eqs 15 and 18, which converge to the follow-
ing equilibrium:

Wkmðxm � �xmÞ ¼ ðIkk � WkkÞðxk � �xkÞ ð29Þ

where Ikk is the k × k identity matrix. Using Eq 14, this equation is equivalent to:

x̂k ¼ SkmS� 1
mmðxm � �xmÞ þ �xk ð30Þ

The details of the derivations can be found in S1 Appendix. Notice that the equilibrium

condition for implicit and dendritic covPCNs is exactly the same as that for the explicit

covPCN, specified in Eq 27. This equivalence was also verified empirically in a simple

2-dimensional example shown in Fig 3D. In this example both xk and xm are single-dimen-

sional scalars, and all three models retrieved the corrupted x2 following the same linear equa-

tion (Eq 27). Notice that this line is also the least squares regression line, where x2 is the

dependent variable. It is also worth noting that this line implies that the memory “attractors”

learned by the model is a line, instead of individual points, in the 2-dimensional case, which is

different from the attractors learned by classical models such as Hopfield Networks [4]. In the

final section of the Results, we provide an empirical investigation into this difference. Fig 3C

also shows that the weight matrix S of the explicit covPCN directly encodes the sample covari-

ance matrix, whereas the other two models encode it implicitly. Due to their equivalence, the

implicit and dendritic models also perform AM on the random Gaussian patterns in Fig 3A.
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At this point, we have established the complete equivalence between the explicit and

implicit/dendritic covPCNs, showing that the latter models can serve as perfect substitutes for

the explicit model. However, in contrast to the explicit covPCN, where the learning rule (Eq 4)

for the connections S employs non-local information, the plasticity rules (Eq 12) for the

implicit and dendritic models are entirely Hebbian. Moreover, as was shown above, the neural

implementation of a dendritic covPCN can be mapped to the structure of hippocampal pyra-

midal cells. Therefore, our proposed models are equivalent to but biologically more plausible

than the explicit covPCNs.

Model performance in AM with structured image data

In each learning iteration, the explicit covPCN needs to compute the inverse of the current

weight matrix. In practice, this works well when the underlying dataset has some specific regu-

larities, but becomes problematic when dealing with structured data, such as images of hand-

written digits and natural objects. In this section, we show that the explicit model can no

longer perform stable memorization and retrieval of more complex and structured data,

whereas the implicit and dendritic models are able to perform AM on such data with a high

level of precision, and are hence interesting from an application perspective. To do that, we

replicate the pattern completion experiment performed in Fig 3, but using images sampled

from the MNIST [19] and grayscale CIFAR10 [20] datasets. Fig 4A shows some retrieved

examples from both datasets by all three types of single-layer covPCNs, which were trained to

memorize 64 images. The visual results suggest that the explicit covPCN can no longer retrieve

clear images, whereas both implicit and dendritic models can obtain visually perfect retrievals

of the memories. The failure of the explicit covPCN with these structured images is due to the

need to compute the inverse of S in each iteration (Eq 4): for low-dimensional patterns with

Fig 4. Performance of the single-layer covPCNs in AM of structured images. A: Examples of retrieved MNIST (top) [19] and grayscale CIFAR10

(bottom)[20] images by explicit, implicit and dendritic models. All models here are trained to memorize 64 images. For MNIST, the networks have

d = 784 neurons; for grayscale CIFAR10, d = 1024. B: Retrieval mean squared errors (MSEs) of the single-layer models across multiple numbers of

training memories (N). C: Evolution of the retrieval MSEs of the implicit and dendritic models when N = 256. D: Example eigenspectra of the weight

matrices defining the inferential dynamics for the dendritic (left) and implicit (right) covPCNs. Error bars obtained by 5 different seeds for image

sampling. Please see main text for an explanation of the matrix M.

https://doi.org/10.1371/journal.pcbi.1010719.g004
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some specific regularities such as Gaussian distribution, the inverse can be precisely computed.

However, when encountered with high-dimensional data such as structured images, the

inverse computation can become imprecise, and the computational errors may accumulate

when the model is trained iteratively, leading to blurry retrievals.

We next perform a quantitative analysis of the performance of these models, by measuring

the mean squared errors (MSEs) between the original and retrieved grayscale CIFAR10 images

across different numbers of images we train the models to memorize (N). Fig 4B shows that

the explicit model indeed has much larger retrieval MSEs than the implicit and dendritic

model, confirming our visual observations. The MSE gap is also larger than that in Fig 3A,

where the random Gaussian patterns makes the learning of the explicit model more stable

when inverting S. Interestingly, this plot also shows that despite the equivalence between the

implicit and dendritic models when their inferential dynamics (Eqs 15 and 18) have con-

verged, the dendritic model has larger retrieval MSEs than the implicit model, especially when

N is large. We investigate this phenomenon by plotting the evolution of the retrieval MSEs of

both implicit and dendritic models during inference, when N = 256. As can be seen in Fig 4C,

the MSE of the dendritic model fails to decrease to the same (lower) value as that of the implicit

model, and it also fails to converge. To understand the distinction between the implicit and the

dendritic covPCNs in inference, recall that their inferential dynamics are described by two lin-

ear differential equations (Eqs 15 and 18). We now define:

M ¼W � I ð31Þ

where W is the learned weight matrix in the implicit/dendritic models (note that the learning

of these two models are identical) and I is the identity matrix of the same size as W. We can

therefore rewrite the inferential dynamics as:

Dxim ¼ bð� MTMxÞ; Dxden ¼ bðMxÞ ð32Þ

where “im” stands for implicit, and “den” stands for dendritic. Notice that in general, the sta-

bility of a linear dynamical system Δx = Ax for some matrix A is determined by the eigenvalues

of A: the system is stable if and only if the real part of all eigenvalues of A are non-positive [23].

As we show in Fig 4D, the largest eigenvalue of −MTM is 0, suggesting stable inferential

dynamics for the implicit covPCN. This is also generally true as −MTM defines a negative

(semi-)definite matrix for any M 6¼ 0, which has all eigenvalues smaller than or equal to 0. On

the other hand, Fig 4D shows that the largest eigenvalue of M is greater than 0, indicating

unstable dynamics for the dendritic model. Thus, although the implicit and dendritic models

have the same fixed point of their dynamics during retrieval, the neural dynamics defined by

the dendritic model may become unstable, preventing itself from the convergence. For the

dendritic model there are no theoretical reasons that guarantee negative eigenvalues of M, so

they may become positive as the values in that matrix grow with learning more patterns. The

experiments with MNIST [19] yielded similar results, and we describe them in S1 Fig.

Performance of hybrid models with natural images

While performing well on small subsets of structured data, the purely recurrent implicit/den-

dritic models present some problems: first, the recurrent structure only takes account of the

hippocampal structure, but does not correctly represent the hierarchical structure that con-

nects it to the neocortex; second, the number of parameters is quadratic to the dimension of

the inputs, which does not allow it to work on high-dimensional images, such as high quality

images. For example, consider a recurrent network trained on 224 × 224 pictures of the Ima-

geNet dataset [24]. Every image consists of * 150000 pixels, and hence needs a network with
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the same number of neurons. A recurrent network of this size would be impossible to train

without an exceptional amount of computational power, as it has * 40 billions of parameters.

On the other hand, a hierarchical structure that precedes the hidden implicit layer guarantees

the flexibility of choosing the number of parameters. For example, a network with 7 hidden

layers, followed by a recurrent implicit layer, all of dimension 1024, would be more than 200

times smaller than the above implicit model for ImageNet, and hence feasible to be trained. In

fact, we have successfully trained this model on high-dimensional ImageNet pictures. Particu-

larly, we trained this 7-layer network with 100 samples from the ImageNet dataset. We then

defined successful retrievals as those with retrieval MSEs smaller than 5e−3, and found that

when presenting the network a partial cue consisting of 1/2, 1/4 and 1/8 of the original pixels,

the model has successfully recovered, respectively and on average, 100, 97, and 44 of the origi-

nal memories. Similar performance was also obtained with the colored CIFAR10 dataset [20]

and examples of colored CIFAR10 images can be found in S2 Fig.

We then examine whether the hybrid structure leads to better retrieval performances com-

pared to the single-layer models. To do that, we trained an implicit covPCN and a hybrid

model with a topmost implicit covPCN to memorize the same subsets of grayscale CIFAR10

images (1024 pixels in total) of varying number of images N, and initialized the retrieval with

half-covered partial cues. To compare with earlier works [12] fairly, we also trained a purely

hierarchical PCN to perform the same AM task. The sizes of the networks are chosen such that

they have approximately the same number of parameters. The hybrid model we use has 3 lay-

ers: the sensory layer has 1024 neurons corresponding to the pixel space, with 512 neurons in

the hidden layer, and 512 neurons in the topmost implicit layer. We construct the hierarchical

model by replacing the topmost implicit recurrent layer with 2 hierarchical layers of size 512.

We chose such a configuration of hidden sizes and number of layers because in general, an

implicit covPCN with d neurons (for d-dimensional inputs) will have d(d − 1) parameters. A

hybrid model with d sensory neurons, one feedforward hidden layer of size d/2 and a topmost

implicit layer of size d/2 will have approximately the same number of parameters. Replacing

the final implicit layer with two feedforward layers of the same size results in a hierarchical

PCN with roughly the same number of parameters. This ensures the fairness of comparison

across models, and is illustrated in Fig 5A, where we also included the number of neurons in

each layer used in our experiments next to each layer, as well as the number of connections at

the top. As Fig 5B shows, the performance of the implicit model is in fact slightly better than

the hybrid implicit model and the purely hierarchical model when they have the same number

of parameters. Indeed, the retrieval MSE of the implicit model should be the smallest among

all linear retrieval functions: notice that the retrieval x̂k of the implicit model defined in Eq 27

is the least squares solution if we regress xk on xm. Although the exact retrieval function of the

hybrid and hierarchical models is unclear due to their nonlinearity, it has been shown that a

two-layer linear PCN with 1 neuron in the hidden layer yields linear retrievals following the

principal components of the sensory data [15], shedding light on the slightly worse perfor-

mance of the multi-layer models. However, we note that the similar performance in retrieval

fidelity between the implicit and hybrid models does not make the hierarchical structure in the

hybrid model redundant, as the functionality of the brain is far more heterogeneous than

merely memorization, and many functions require the hierarchical structure. For example, the

hierarchical structure can support the learning of meaningful representations of the sensory

inputs, which can be utilized to perform other tasks such as classification, while paying only a

negligible cost in memory retrieval tasks.

We further compared the implicit and dendritic models when they are “plugged in” as the

topmost recurrent layer in the hybrid model. Fig 5B shows that the hybrid dendritic model

performs identically to the hybrid implicit model, contrasting their performance difference in
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the single-layer case. During the inferential iterations, the retrieval MSEs of both models also

converge stably to the same value (Fig 5C). In other words, the introduction of the neocortical

layers remedies the unstable inferential dynamics due to the biologically more plausible den-

dritic structure in our models. We suspect that the hierarchical pre-processing of the sensory

inputs regularize the covariance matrix, such that the topmost recurrent weight matrix W
defines stable inferential dynamics for the dendritic layer. However, since the top-layer infer-

ence is no longer a simple linear dynamical system (Eq 22), the connections between a regular-

ized W and the stability of the dynamics may not be straightforward.

Nonlinear covPCNs learn individual attractors

The implicit covPCN we have investigated so far assumes that the relationship between neu-

rons in the recurrent network is linear, i.e., projections into neuron i is ∑j6¼iWijxj. Here, we

introduce an ad hoc nonlinearity into the definition of the free energy—as motivated by previ-

ous heuristics in neural networks and machine learning:

F ¼ �
1

2
kx � Wf ðxÞ � nk2

2
ð33Þ

where f(�) is a nonlinear function. One way to understand these heuristics more formally is to

Fig 5. Performance of the multi-layer models. A: Demonstration of how we keep the number of parameters across different

models to be roughly the same. B: Retrieval mean squared errors (MSEs) of the multi-layer models across multiple numbers of

training memories (N). The curve for the implicit model is the same as the one in Fig 4. C: Evolution of the retrieval MSEs of

the implicit and dendritic hybrid models when N = 256. Error bars obtained by 5 different seeds for image sampling.

https://doi.org/10.1371/journal.pcbi.1010719.g005
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appreciate that the free energy is a statement about the underlying generative model that

generates inputs (e.g., images) from some latent causes. Although linear covPCNs have

provided nice analytical results discussed above, nonlinearities can speak to more expressive

generative models similar to the hierarchical and hybrid schemes demonstrated above.

The plasticity rules of this model will be the same as Eqs 11 and 12, with the error ε changing

to x − Wf(x) − ν. The neural dynamics during inference follows:

Dx ¼ b
@F
@x
¼ bð� εþ f 0ðxÞ �WTεÞ ð34Þ

We first train this nonlinear implicit model to perform the same AM task as before, where

the model is trained to memorize different numbers of grayscale CIFAR10 images, and then

retrieve these memories from images with covered bottom half. For these experiments with

CIFAR10 we used tanh() as the nonlinear function f(). Fig 6A shows that the performance of

the nonlinear implicit covPCN is worse than that of the linear model in this completion task,

especially when N is large. To examine the reasons for this performance difference, we then

Fig 6. Comparison of linear and nonlinear implicit covPCN. A: Performance of linear and nonlinear implicit models in the completion task

with varying Ns. B: Same as A, but with the denoising task, where cues are memories with Gaussian noise of variance 0.1. C: A simple

3-dimensional example, where stars are data points the networks were trained to memorize. After training we ran inference on both linear and

nonlinear models, initialized with grid test data drawn from the range [−1, 1]3. The position of the test data at convergence of inference indicates

the shape of attractors. Images taken from the CIFAR10 dataset [20].

https://doi.org/10.1371/journal.pcbi.1010719.g006
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corrupt the memories differently by adding Gaussian noise with variance 0.1, and initialize the

retrieval dynamics with these noisy memories. Fig 6B shows that with this denoising task, the

linear and nonlinear implicit covPCNs perform similarly, although the retrieval MSE of the

nonlinear model is overall lower. We hypothesize that the difference across different retrieval

tasks results from the attractor structures learned by the linear and nonlinear models. Classical

nonlinear models, such as the Hopfield Networks [4], usually learn individual attractors corre-

sponding to each memorized item. On the other hand, as we have demonstrated in Fig 3D, the

linear implicit covPCN appears to learn a line attractor in the 2-dimensional space. We gener-

alize this observation by training both linear and nonlinear models to memorize 3 random

data points in range [−1, 1] inR3
. After training, we initialize the inference with test data in a

grid from the range [−1, 1], and examine where these test data points are attracted to at the

convergence of the inferential dynamics. Fig 6C shows that the attractor formed by the linear

model is a hyperplane, where any point on this plane defines the lowest energy. On the other

hand, the test data points all converge to the memories learned by the nonlinear model, sug-

gesting that the nonlinear model indeed learns individual attractors.

The observation above in turn helps explain the performance difference in completion and

denoising tasks between the linear and nonlinear models. Notice that the completion task is

inherently more challenging than the denoising task in terms of retrieval, as the corrupted pix-

els contain no information about the original images. Therefore, in the completion task, indi-

vidual attractors formed by the nonlinear model will confound with each other more severely

than in the denoising task, so that more retrievals will converge into the wrong attractors. The

retrieval MSE of the nonlinear model thus comes from these incorrect attractor choices. With

the linear model, the retrieved data points are always pulled towards the least squares regres-

sion hyperplane, such as the regression line in Fig 3. The MSE of the linear model therefore

only comes from the least squares prediction, which is the minimum across all linear solutions.

Thus, when we average across the whole dataset, a relatively large number of totally wrong

retrievals will produce a higher MSE than the retrievals from the least squares predictions. On

the other hand, in the less challenging denoising task, the confounding effect between attrac-

tors of the nonlinear model will be less severe, yielding a smaller retrieval MSE across the

whole dataset than in the completion task. Moreover, the least squares prediction from the lin-

ear model is less reliable in the denoising task, as all entries of the data are corrupted, i.e., the

independent variables in the regression problem are also changing. Therefore the retrieval

MSE of the linear model will increase, resulting in the observation in Fig 6A and 6B.

Discussion

Summary

This work introduces a family of covPCNs for AM tasks, providing a possible mechanism of

how the recurrent hippocampal network may perform AM via predictive processing, which

also unifies two disparate modelling approaches to the hippocampal network, namely covari-

ance learning and PC. First, we identified that a previously proposed PCN already considered

the learning of parameters encoding covariance in an explicit manner [16, 17], but was never

tested for AM tasks. We showed that, both theoretically and empirically, this model is able to

perform AM on random patterns. However, this explicit covPCN is neither biologically plausi-

ble nor numerically stable, due to the inverse term in its learning rule. We address both limita-

tions by proposing a model we call implicit covPCN, which also learns the covariance matrix,

but in an implicit manner. More importantly, it adopts a Hebbian learning rule that is biologi-

cally more plausible than the learning rule of the explicit covPCN. We then showed that this

model can be further simplified by introducing an apical dendritic architecture, which is even
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more biologically realistic. We named it the dendritic covPCN. In theory, we showed that both

the implicit and the dendritic models are exactly equivalent to the explicit covPCN in AM

tasks if their inference converges, although the dendritic model may suffer unstable inferential

dynamics. Nevertheless, in practice, both implicit and dendritic models can be trained to

memorize complex patterns such as handwritten digits and natural images. However, these

models are computationally and memory expensive, a drawback that limits its applicability

when confronted with more complex datasets. We hence solve this problem by combining our

implicit covPCN with a hierarchical PCN [11, 12], to model the predictive interaction between

the hippocampus and neocortex [9]. We showed that this hybrid network can memorize and

retrieve large-scale images in a parameter-flexible manner. We further conducted empirical

analysis of the memory attractors learned by our linear implicit model, and showed that the

memorized patterns are all stored on a hyperplane attractor of the inputs space. We found that

nonlinearities are needed to obtain individual point attractors corresponding to each memo-

rized pattern, similar to those observed in Hopfield Networks [4].Table 1 below summarizes

the property of each model discussed in this work. Overall, our models benefit the theoretical

understanding of the computational principles adopted by the hippocampal network, by pro-

viding a unitary account for two disparate theories of how the hippocampus performs AM

tasks.

Relationship to other models

Predictive coding networks. Our proposed models form a subset of the PC models [11,

16, 17], characterized by neural architectures (e.g., neurons and dendrites) encoding the mis-

match between internally generated predictions and sensory inputs, i.e., error signals. Linear

PC was first introduced for the compression of timeseries data in the 1950s [25]. In the neuro-

sciences, it was originally proposed to explain the efficient processing of visual inputs to the

retina [26] and subsequently used to model hierarchical processing in the visual cortex, with a

special focus on extra-classical receptive field effects [11]. As noted above, PC is a particular

class of variational inversion schemes for hierarchical generative models under Gaussian or

parametric assumptions [27].Some versions of PC deal with state space models and implicit

predictions about dynamics [28]; it was later extended to account for a range of neuronal

responses from various brain regions such as the retina and auditory cortex [29]. The versatil-

ity of the PC framework enabled it to be later adopted as a general, high-level model for repre-

sentation learning in the brain [16, 17], i.e., models for describing how sensory inputs are

represented in the cortex. The explicit covPCNs described in this work are essentially the PC

models with parameters encoding the precision (covariance) matrix [16–18] with a single layer

architecture. These models introduced the covariance matrix to represent the uncertainty of

different input features, by differentially weighting error signals derived from different input

Table 1. Summary of covPCNs discussed in this work.

Hebbian Parameter flexibility Random pattern Structured pattern

explicit ✘ ✘ ✔ ✘
implicit ✔ ✘ ✔ ✔

dendritic ✔ ✘ ✔ ✔
hybrid ✔ ✔ ✔ ✔

“Hebbian” denotes whether the model employs the Hebbian learning rule; “Parameter flexibility” denotes whether we can freely control the number of parameters of the

network, i.e., whether the number of parameters in the model is not constrained to scale quadratically with the input size; “Random/Strctured pattern” denotes whether

the model can perform AM on random/strctured patterns.

https://doi.org/10.1371/journal.pcbi.1010719.t001
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sources. However, to our knowledge they have never been tested in AM tasks. Earlier works

have also identified the implausibility of the learning rule for the covariance parameters, and

addressed this issue by introducing additional inhibitory interneurons on top of error neurons

[18]. On the other hand, our implicit/dendritic covPCNs naturally circumvents the implausi-

ble learning rule by introducing a new set of recurrent weights W. Furthermore, our nonlinear

covPCN is reminiscent of the sparse coding schemes of the kind found in independent compo-

nent analysis [30]. This suggests an interesting relationship between sparse coding, PC and the

properties evinced by the numerical studies above.

In recent years, multiple lines of research have revealed the potential of PC in modelling

various brain functions and in performing complex machine learning tasks. Most notably,

the exploration of purely hierarchical PCNs in AM tasks by Salvatori et al. [12] has directly

inspired our work, and their model was also employed in our work to construct the hybrid

PCN. Recurrent PCNs for AM tasks have also been proposed recently [31]. However, the

covariance-learning property of these recurrent PCNs, as well as their connections to earlier

PCNs with precision matrices [16–18], were not fully investigated in these works. More

broadly, the approximation of PC to backpropagation [32], the most commonly used learn-

ing rule of modern artificial neural networks, has been extensively investigated and discussed

in recent works [15, 33–37]. The PC algorithm has also been scaled to adapt to various mod-

ern machine learning architectures [31, 38–41] and studies have also shown that it can

approximate backpropagation in arbitrary computational graphs [42]. These works suggest

that it is possible to implement PC within modern deep neural networks, making our PC-

based AM networks potential candidates of efficient memory-storage machines in artificial

intelligence.

Models for associative memory and the hippocampus. The covariance-learning prop-

erty of our proposed models relates them directly to earlier AM models [4, 43–45] that memo-

rize random patterns by learning the covariance or correlation between features, as well as

their modern variations for complex patterns [46–48]. The simplicity of these models has

enabled significant developments on the understanding of their theoretical properties, espe-

cially the memory capacity [49–51]. Thus, the connection of our covPCNs to these classical

AM models makes the capacity computation of PC-based AM models an intriguing future

direction.

Independent from these earlier models, new theories and models for AM have also been

proposed recently, such as those based on the autoencoder [52]. Although these models work

well in performing AM retrieval tasks, they usually lack resemblance to the known anatomy of

the hippocampus, and are trained with biologically implausible learning algorithms such as

backpropagation [32]. On the other hand, PC-based models for AM [12] provide a biologically

more plausible approach that follows both local, Hebbian learning as well as the predictive

nature of the hippocampus [8, 9]. Our models take a step further by introducing recurrent

connections to PCNs, which capture the connectivity pattern of the hippocampal network.

Importantly, it is worth noting that the comparison between PC-based hierarchical memory

networks [12] and earlier models for AM such as the Hopfield Networks [4] has been thor-

oughly investigated by Salvatori et al. [12]. In particular, they found that classical Hopfield Net-

works [4] and their modern variations [46] performed much worse than the hierarchical PCN

in memory retrieval tasks. The retrievals with Hopfield Networks can also easily collapse into

one memorized item, resulting in large retrieval errors. Since we have shown a similar perfor-

mance of our models in AM tasks to the hierarchical PCNs, one can infer how our covPCNs

compare to the classical models.

The aforementioned works focused mainly on computational models for associative mem-

ory, whereas another track of research concerns the modelling of the entire hippocampal
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network with sub-region connectivities, including the entorhinal cortex (EC), dentate gyrus

(DG), CA3 and CA1 areas. For example, both Treves and Rolls (1992) [6] and O’Reilly and

McClelland (1994) [5] proposed models containing the sparse DG region for pattern separa-

tion, and the recurrent CA3 block that performs pattern completion through AM. The charac-

teristic connectivity pattern between these regions, such as the mossy fiber pathway and the

perforant pathways, were also considered in these models. More recent models of these sub-

regions employ modern machine learning architectures to study place cells in the hippocam-

pus [53]. Our single-layer covPCNs can be viewed as models of the single recurrent CA3 area

performing AM, or a full graph of the hippocampal network where sub-region specifications

are temporarily ignored but can be achieved by modifying graph topology of this network via

PC, following the mechanism proposed by Salvatori et al. (2022) [31]. Furthermore, our hybrid

PCN attempted to model the hippocampo-neocortical interaction using a unified computa-

tional principle, i.e., PC. This relates them to earlier computational models for the mediation

of stimulus representations in the cortex by hippocampus after a memory is recalled [54], as

well as computational models of the hippocampo-neocortical system that helped explain the

memory consolidation phenomenon [55].

Models with dendritic computation. In the dendritic covPCN proposed in this work we

computed error signals within apical dendrites, rather than within explicit error nodes in origi-

nal PCNs. This relates our model to works investigating dendritic computation. Earlier works

have shown that it is possible to construct multilayer neural networks with dendritic compart-

ments encoding errors, which also approximates backpropagation [21]. It was later illustrated

by Whittington and Bogacz that these models are closely related to PC [56]. PC with dendritic

computations has also paved the way for spiking neural networks [22], pushing it towards

more biological plausibility. Our dendritic covPCN differs from these dendritic models, in that

the dendritic formulation results naturally from a stop-gradient operation, rather than an arti-

ficial construction of dendrites. Broadly speaking, recent studies have shown that incorporat-

ing dendritic architectures into artificial neural network may benefit transfer and continual

learning, and help the design of neuromorphic hardware with lower energy consumption (see

[57, 58] for reviews of dendritic computation in artificial neural networks), suggesting other

potential advantages of dendritic PCNs beyond biological plausibility.

Relationship to experimental data

Our proposed models all belong to the family of PCNs, which assumes that computations in

the cortex are carried out by generating predictions of activities representing sensory inputs.

In general, it has been shown that this assumption is consistent with the known anatomy of

the cortex, and that several cortical microcircuits can implement the PC algorithm [59–62].

More specifically, experimental evidences have suggested mechanisms of predictive pro-

cessing within the hippocampus and related areas. It has long been postulated that the hippo-

campus predicts upcoming sensory inputs, in both spatial and non-spatial experimental setups

[7, 8, 63, 64]. The special feedforward circuitry of the hippocampus may also be an evidence

for predictive processing: Lisman [65] suggested that the CA1 region of the hippocampus

serves as a “mismatch” detector, encoding the error between sensory reality and the internally

generated prediction based on past events communicated through the feedforward pathway

from CA3 to CA1. However, although hippocampal cell populations that fire exclusively fol-

lowing erroneous trials in associative learning tasks have been found in animals [66, 67], it is

unclear, at the single-cell level, whether prediction error representations exist in the hippocam-

pus, and in what form they exist: are there neurons encoding them, or are they encoded in spe-

cific neuronal structures such as apical dendrites? Our models inform future experimental
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works to answer these questions by making the prediction that hippocampal neurons can

representation prediction errors, via somatic or dendritic activities.

It is also worth pointing our that the experiments in our work focused mainly on “spatial”

predictions e.g., predicting each pixel using other pixel values. Although predictions made

through different pixels or patches of a static image can be interpreted as eye saccade across a

large visual scene, prediction of sequential sensory inputs is more realistic and consistent with

experiments mentioned above. Modelling temporal PC models while retaining the plausible

implementation discussed in this work will be a focus of our future explorations.

Future directions

Following the discussions above, there are several directions in which this work should

develop.The theory needs to be extended to modelling sub-regions of the hippocampus using

PC. Rather than a simple, fully-connected recurrent circuit, the hippocampal network contains

multiple sub-regions with different possible functionalities. For example, the DG area is postu-

lated to perform pattern separation through its sparse activities, while the CA3 is believed to be

the associative area and CA1 acts as a decoder and mismatch detector [5, 6, 65]. Moreover, the

connectivity between these regions also has a unique pattern. For example, the EC-DG-CA3

connection is fully feedforward and unidirectional, whereas CA3 also receives direction input

from EC.It will be important to investigate how these other regions could be included in the

PC framework. Notably, we have shown in this work that a simple stop-gradient operation in

PCNs could yield unidirectional connections in a recurrent network, which provides a poten-

tial approach of modelling the hippocampal sub-region connectivity.

Another direction in which the work can develop is temporal prediction in the hippocam-

pus. While abundant experimental evidences have shown the predictive nature of the hippo-

campus, the observed predictions are mainly sequential or temporal, i.e., predicting sensory

input in the future. This temporal property of the hippocampal prediction is not reflected in

our PC models. Earlier and recent works have attempted to model cortical temporal prediction

using a Kalman filter [10, 28], where the hierarchical prediction of sensory inputs made by the

hidden state can potentially be implemented within the hierarchical PCNs [11]. Another track

of research assumes that both sensory input and neural response dynamics along the temporal

dimension are contained by attractor manifolds, but on different levels [68, 69]. Thus, higher-

level attractor of neural responses can generate controls over lower-level attractors of

responses or sensory input streams, which can be described within the hierarchical PC/free

energy framework [11, 16]. However, it remains an open question whether these temporal PC

models can be implemented within simple and plausible neural circuits similar to those dis-

cussed in this work. It is also possible to combine this direction of research with sub-regions of

the hippocampus, as the CA1 area was postulated to encode the mismatch between inputs

from CA3 and those from EC [65], whereas recent experimental works have found that the

EC-CA1 inputs is prioritized over the CA3-CA1 inputs when a new sensory stimulus is pre-

sented, suggesting that the mismatch encoded in CA1 results from a temporal delay [70].

These findings shed light on a hippocampal sub-region approach to temporal PC.

Moreover, in our current work, we have focused on learning covariance or precision matri-

ces inherent in a batch of training images, which can be implemented within a single-layer net-

work. On the other hand, hierarchical implementations of PC often use more expressive

generative models, in which the covariance or precisions at various hierarchical levels can

change over time. This means that instead of learning the covariances, they are inferred, lead-

ing to the notion of dynamic precision weighting of prediction errors [71, 72]. This is also par-

ticularly interesting from a machine learning point of view, because it provides a model of
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attention from a neuroscience perspective—that may be related to the kinds of attention found

in transformers and the like [73].
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