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Abstract

Experience and training are known to boost our skills and mold the brain’s organization and

function. Yet, structural plasticity and functional neurotransmission are typically studied at

different scales (large-scale networks, local circuits), limiting our understanding of the adap-

tive interactions that support learning of complex cognitive skills in the adult brain. Here, we

employ multimodal brain imaging to investigate the link between microstructural (myelina-

tion) and neurochemical (GABAergic) plasticity for decision-making. We test (in males, due

to potential confounding menstrual cycle effects on GABA measurements in females) for

changes in MRI-measured myelin, GABA, and functional connectivity before versus after

training on a perceptual decision task that involves identifying targets in clutter. We demon-

strate that training alters subcortical (pulvinar, hippocampus) myelination and its functional

connectivity to visual cortex and relates to decreased visual cortex GABAergic inhibition.

Modeling interactions between MRI measures of myelin, GABA, and functional connectivity

indicates that pulvinar myelin plasticity interacts—through thalamocortical connectivity—

with GABAergic inhibition in visual cortex to support learning. Our findings propose a

dynamic interplay of adaptive microstructural and neurochemical plasticity in subcortico-cor-

tical circuits that supports learning for optimized decision-making in the adult human brain.

Introduction

Learning from experience and adapting to changes in our environments is key for skillful

actions. Experience and training are known to boost our skills by altering the brain’s structural

organization and functional activity. Recent work has challenged the traditional view that

structural plasticity is confined to development. In particular, training [1] and neural [2] or

sensory [3] stimulation have been shown to promote myelination in the adult brain, the pro-

cess of insulating neural axons to enhance neurotransmission (for reviews, see [4–6]). Further,

training has been shown to alter neurochemical (i.e., GABAergic) signaling that is known to

regulate neural activity (for review, see [7]). Yet, microstructural (i.e., myelination) and neuro-

chemical plasticity have mostly been studied at different scales (large-scale networks, local
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circuits), limiting our understanding of the interactive mechanisms that underlie learning of

complex cognitive skills.

Previous studies demonstrate that interactions between myelination, neurochemistry, and

activity shape neuronal processing. In particular, myelination of GABAergic interneurons

accounts for up to half of the myelin content in the neocortex and disruption of fast-spiking

GABAergic interneuron myelination in sensory cortex results in profound deficits in interneu-

ron function [8,9]. Further, both GABAergic interneurons and myelination are thought to

promote network synchrony and regulate thalamocortical network oscillations [10,11]. In par-

ticular, driving excitatory signals (e.g., visual signals) to GABAergic interneurons promotes

inhibitory transmission as a regulator of cortical connectivity [12,13]. Further, feedforward

inhibition in sensory cortex has been shown to promote pyramidal output firing to synchro-

nize with gamma-band oscillations associated with intraregional connectivity [12,14]. Yet,

how these interactions between myelination, GABAergic inhibition, and functional connectiv-

ity shape learning in the human brain remains unknown. In light of previous work in animal

models, we hypothesize that interactions between network myelination and visual cortex

GABA may shape network connectivity to facilitate learning and plasticity in the human brain.

We employ multimodal brain imaging to investigate the links between microstructural (i.e.,

myelination) and functional (i.e., neurochemical) mechanisms that regulate sensory process-

ing and support perceptual decisions. We use (a) quantitative MRI to measure myelination

markers (i.e., magnetization transfer (MT) saturation) reflecting myelin formation or remodel-

ing; (b) magnetic resonance spectroscopy (MRS) to measure inhibition; and (c) resting-state

fMRI (rs-fMRI) to measure functional connectivity. We test whether learning-dependent

changes in these MRI-derived markers of brain plasticity predict learning, i.e., our ability to

improve after training on a perceptual decision task that involves identifying targets embed-

ded in cluttered scenes [15]. Our results demonstrate a key role of thalamocortical structural

(i.e., myelination) and neurochemical interactions for improved perceptual decisions in the

adult human brain. In particular, we show that learning to identify targets in clutter alters sub-

cortical (pulvinar, hippocampus) myelination and its functional connectivity to visual cortex

and relates to decreased visual cortex GABAergic inhibition. Modeling interactions between

these processes suggests that adaptive myelination in pulvinar supports learning for perceptual

decisions through thalamocortical interactions with GABAergic plasticity in visual cortex.

These adaptive thalamocortical interactions may facilitate selecting task-relevant features from

noise early in the training, while visual-hippocampal interactions may refine feature process-

ing for target identification later in the training. Our findings demonstrate a tight interplay

between microstructural plasticity and functional neurotransmission mechanisms in subcor-

tico-cortical circuits that interact to support optimized perceptual decisions.

Results

Training improves target detection in clutter

We trained participants on a perceptual decision task that involves identifying radial versus

concentric dot patterns (Glass patterns) embedded in noise (signal-in-noise (SN) task; Fig 1A).

Participants completed 3 behavioral training sessions with feedback and 3 test sessions (during

MRI scanning) without feedback (baseline, pre-training, post-training) (Fig 1B). For each par-

ticipant, we tested for learning-dependent changes in task performance and MRI-derived

markers of plasticity before (pre-training) versus after (post-training) training (3 sessions on

consecutive days). To test learning specificity, we compared the pre-training session to a base-

line session (3 days before the pre-training session) that served as a within-subject no-training

control.
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Training improved participant performance in the task (Fig 1C; one-way repeated measures

ANOVA across sessions, Greenhouse–Geisser corrected; F5, 95 = 19.74, p< 0.001). In particu-

lar, performance accuracy increased in the post-training compared to the pre-training session

(Post hoc comparisons, Sidak corrected, p< 0.001). This behavioral improvement was specific

to training; i.e., there was no significant differences in performance between baseline and pre-

training sessions (p = 0.997).

Training alters microstructural myelin plasticity

To investigate whether training in the SN task alters myelination processes, we tested changes

before versus after training (whole-brain GLM) in MT saturation, an MRI indicator of myelin

content that has been shown to be measured reliably by multiparameter mapping (MPM) [16–

18]. We found significant MT increase in grey matter after training in thalamic-hippocampal

(Th–HC), inferior frontal gyrus (IFG), and inferior temporal cortex (ITC) regions (whole-

brain repeated-measures GLM; S1 Table and Fig 2A and 2B).

These changes in MT were specific to training; i.e., comparing MT in 2 sessions before

training (i.e., whole-brain GLM: baseline versus pre-training) did not show any significant

Fig 1. Experimental design and stimuli. (A) Radial and concentric Glass patterns are shown with inverted contrast for illustration purposes. Left:

Prototype stimuli: 100% signal, spiral angle 0˚ for radial and 90˚ for concentric. Right: Stimuli used in the study: 25% signal, spiral angle 0˚ for radial and

90˚ for concentric. (B) Participants were trained on a signal-in-noise detection task with feedback for 3 consecutive training sessions (one per day).

Participants completed the task without feedback in MRI test sessions before (baseline, pre-training) and after (post-training) training. (C) Percent

behavioral improvement (mean performance per-session minus performance at baseline, divided by performance at baseline) across participants for test

(green, in MRI scanner) and training (red, in laboratory) sessions (n = 20). Error bars indicate SEM across participants. Source data are provided at:

https://doi.org/10.17863/CAM.93457.

https://doi.org/10.1371/journal.pbio.3002029.g001
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clusters. This lack of significant MT differences between baseline and pre-training sessions

suggests the changes we observed in MT following training—within the same participants—

were specific to training rather than potential confounds (e.g., pH of the targeted tissue) [19].

Further, these learning-dependent changes were specific to MT—rather than other MRI-

derived myelination markers—which have been suggested to reflect changes in myelin forma-

tion or remodeling. Vasculature-related signals (i.e., T1 or T2 relaxation rates) may contribute

to changes in MRI-derived markers of myelination (MT, R2�, R1). However, we did not find

any clusters (whole-brain GLM) that showed significant changes in transverse relaxation rate

(R2�), nor any significant (all p> 0.05) differences in R2�, R1 across sessions within the clus-

ters that showed MT changes, suggesting that the MT-specific changes we observed could not

be simply due to vasculature-related signals.

Fig 2. Subcortical MT saturation increases after training and correlates with behavioral improvement. (A) Th–HC

cluster in MNI space (radiological convention, R-L; vPul x: 9.60 y: −25.60 z: 0.80; HC x: 21.60 y: −27.20 z: −11.20

(mm)) showing significantly higher MT after (post-training) compared to before (baseline, pre-training) training

(p< 0.001) (S1 Table). (B) Mean MT (percentage change from baseline session) in the Th–HC cluster before vs. after

training. (C) Parcellation of the Th–HC cluster (see Methods for details): vPul (no overlap with LGN), HC (S2 Table).

Higher mean MT in (D) vPul and (E) HC after compared to before training. (n = 17). Error bars indicate SEM. Source

data are provided at: https://doi.org/10.17863/CAM.93457. MT, magnetization transfer; HC, hippocampus; Th–HC,

thalamic-hippocampal; vPul, ventral pulvinar.

https://doi.org/10.1371/journal.pbio.3002029.g002
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To provide finer scale analysis of the subcortical cluster, we parcellated the Th–HC region

into subregions, using detailed subcortical atlases (Fig 2C–2E and S2 Table). We found that

MT change was significantly negatively correlated with behavioral improvement in the ventral

pulvinar (vPul; r = −0.49, p = 0.045, CI [−0.82, −0.01]) and hippocampus (HC; r = −0.59,

p = 0.012, CI [−0.90, −0.05]) (S1A and S1B Fig). To ensure that this relationship was not due to

variability between participants before training (i.e., at baseline), we regressed out baseline

measures and found that the relationships between MT and behavioral change (post-training

minus pre-training) remained significant (S1C and S1D Fig: vPul r = −0.58, p = 0.015, CI

[−0.80, −0.22]; HC: r = −0.62, p = 0.008, CI [−0.89, −0.11]). Further analyses on white matter

showed significant increase in MT in a white matter cluster adjacent to the grey matter regions

(S2A Fig) that related to behavioral improvement (S2B Fig; r = −0.59, p = 0.013, CI [−0.81, −-

0.19]). Taken together, these analyses show that training results in behaviorally relevant

changes in MRI markers of myelin (MT) in subcortical regions.

Training alters functional connectivity in subcortico-cortical networks

Next, we asked whether the learning-dependent changes we observed in myelination relate to

changes in functional connectivity, given the role of myelination in enhancing neurotransmis-

sion [4–6]. Specifically, we tested whether training alters subcortico-cortical functional net-

works seeded from the subcortical regions (vPul, HC) that showed myelin plasticity; i.e., we

focused on 2 networks: (a) a thalamocortical network including vPul, occipito-temporal cortex

(OCT), and anterior cingulate cortex (ACC), which are known to be connected to the pulvinar

[20,21] and involved in learning for perceptual decisions [22,23]; and (b) a visual–hippocam-

pal network including HC and visual areas (V1, V2, V3, and V4) that are known to be con-

nected to HC and have been implicated in learning for perceptual decisions [24,25]. This

connectivity analysis—despite limitations in capturing whole-brain networks—allows us to

target the link between myelin and functional plasticity.

We used rs-fMRI to investigate learning-dependent changes in functional connectivity in

these subcortico-cortical networks. Previous work has demonstrated a strong link between

functional resting-state networks and task-activated networks that have been shown to overlap

[26,27]. Reactivation of task-activated networks has been shown to occur at rest following task

performance [28,29] and may play a role in memory consolidation [29,30]. Further, previous

studies have demonstrated changes in rs-fMRI network activity following training on percep-

tual or motor tasks [31–35]. First, we found that thalamocortical network connectivity was

stronger before training, while visual-hippocampal network connectivity was stronger after

training (Fig 3A). In particular, network functional connectivity (i.e., mean connectivity of all

network node pairs) across sessions differed significantly between networks; i.e., thalamocorti-

cal connectivity decreased, while visual-hippocampal connectivity increased after training

(two-way mixed ANOVA, significant network × session (early-training comprising baseline

and pre-training versus post-training) interaction: F2,64 = 3.39, p = 0.040).

Second, correlating learning-dependent changes (post-training minus pre-training) in

functional connectivity in these networks with behavioral improvement showed positive cor-

relations for the visual-hippocampal network, while negative correlations for the thalamocorti-

cal network (Fig 3B–3D); i.e., decreased thalamocortical network connectivity (Fig 3C; r =

−0.71, p = 0.001, CI [−0.88, −0.45]) while increased visual-hippocampal connectivity after

training (Fig 3D; r = 0.48, p = 0.050, CI [0.03, 0.78]) related to behavioral improvement. These

correlations (i.e., thalamocortical versus visual-hippocampal FC correlation with behavioral

improvement) were significantly different from each other (z = −3.94, p< 0.001) and

remained significant when accounting for variability at baseline (i.e., regressing out functional
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connectivity at baseline; thalamocortical network connectivity: r = −0.72, p = 0.001, CI [−0.90,

−0.47]; visual-hippocampal connectivity: r = 0.51, p = 0.035, CI [0.06, 0.79]). Further, no sig-

nificant correlations were observed between connectivity differences before training (i.e., pre-

training minus baseline) and behavioral improvement (thalamocortical: r = 0.04, p = 0.88, CI

= [−0.41, 0.44]; visual-hippocampal: r = −0.27, p = 0.302, CI = [−0.67, 0.16]), confirming the

relationship was specific to the training period. Finally, we did not observe any significant cor-

relations between behavioral improvement and changes in functional connectivity between (a)

IFG and OCT (r = −0.12, p = 0.647, CI [−0.58, 0.38]); IFG and V1 (r = 0001, p = 0.996, [−0.39,

0.51]) and (b) ITC and OCT (r = −0.40, p = 0.111, CI [−0.75, 0.05]); ITC and V1 (r = 0.21,

p = 0.418, [−0.26, 0.63]), suggesting that the learning-dependent changes we observed were

specific to subcortico-cortical connectivity.

Taken together, these results suggest that training alters both microstructural myelination

processes and functional connectivity in distinct subcortico-cortical networks to support

learning for perceptual decisions. Our results showing higher thalamocortical connectivity

before training, but higher visual-hippocampal connectivity after training, suggest that

Fig 3. Thalamocortical and visual-hippocampal networks. (A) Visual-hippocampal network functional connectivity

(V1, V2, V3, V4, HC) increased, while thalamocortical network functional connectivity (OCT, vPul, ACC) decreased

after training. (B) Correlation matrix (units: Pearson’s r) showing the relationship between change (post-training–pre-

training) in functional connectivity between cortical and subcortical regions and behavioral improvement. (C)

Significant negative correlation between change in mean thalamocortical network functional connectivity and

behavior improvement (r = −0.71, p = 0.001, CI [−0.88, −0.45]). (D) Significant positive correction between change in

mean visual-hippocampal network functional connectivity and behavior improvement (r = 0.48, p = 0.050, CI [0.03,

0.78]). (n = 17). Source data are provided at: https://doi.org/10.17863/CAM.93457. ACC, anterior cingulate cortex;

OCT, occipito-temporal cortex; vPul, ventral pulvinar.

https://doi.org/10.1371/journal.pbio.3002029.g003
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thalamocortical and visual-hippocampal networks may contribute to early versus late learning

for perceptual decisions, respectively.

Learning-dependent GABAergic plasticity

Previous studies provide evidence that MRS-assessed GABA relates to behavioral improve-

ment due to training, consistent with the role of GABA, the primary inhibitory neurotransmit-

ter, in brain plasticity [15,23,36]. Here, we tested whether GABAergic plasticity in OCT that is

known to be involved in perceptual decisions and learning [15,23] relates to behavioral

improvement following multisession training (OCT; Fig 4A). In particular, we measured OCT

GABA+ during performance on the SN task, before versus after training, to interrogate learn-

ing-dependent changes in GABAergic inhibition related to behavioral improvement. We

observed a significant relationship between changes in OCT GABA+/water (post-training

minus pre-training) and behavioral improvement in the SN task (Fig 4B; GABA+: r = −0.60,

p = 0.012, CI [−0.85, −0.07]), consistent with the role of decreased GABAergic inhibition in

learning-dependent plasticity [7,15,23,37].

To control for the possibility that the learning-dependent changes we observed in OCT

GABA+ were due to differences in task difficulty across sessions (i.e., the task was more diffi-

cult before than after training), we analyzed reaction times as a measure of task difficulty.

Analysis of reaction times did not show any significant relationship between OCT GABA

+ change and reaction times differences before versus after training (r = −0.19, p = 0.51,

[−0.50, 0.13]). Further, we measured GABA+ in posterior parietal cortex (PPC) that is known

to be involved in attentional processing [38,39]. We reasoned that any potential differences in

attention due to task difficulty would result in differences in PPC GABA+ across sessions.

However, we did not observe a significant correlation between PPC GABA+ change and

behavioral improvement (S3C and S3D Fig; r = 0.36, p = 0.154, CI [−0.22, 0.72]; Steigers Z

comparison showed that the correlations of GABA+ change in OCT versus PPC with behav-

ioral improvement were significantly different z = −3.16, p = 0.002). This is consistent with

our previous work [15] showing dissociable task-dependent GABAergic plasticity in OCT and

PPC; i.e., GABA+ decrease due to training was specific to OCT for the SN task (compared to

Fig 4. Visual GABAergic plasticity. (A) Group MRS voxel mask (cortical region common in 50% or more of

participants) indicates OCT voxel placement displayed on the average MT scan across participants (MNI x: 47.2 y:

−53.60 z: 8.80 (mm)), in MNI space (radiological convention, R-L). No significant differences in data quality measures

were observed across sessions (S3 Table). (B) Significant negative correlation between OCT GABA+ change and

behavioral improvement (n = 17; r = −0.60, p = 0.012, CI [−0.85, −0.07]). Source data are provided at: https://doi.org/

10.17863/CAM.93457. MT, magnetization transfer; OCT, occipito-temporal cortex.

https://doi.org/10.1371/journal.pbio.3002029.g004
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GABA+ increase for training on a Feature Differences task). Finally, during scanning (pre,

post-training session) participants did not receive feedback, suggesting that learning-depen-

dent changes in GABA+ relate to performance that is sustained following training.

Additional analyses (S3 Fig and S3 Table) tested the specificity of our results. First, the rela-

tionship between GABAergic plasticity and improved perceptual decisions was specific to

training; i.e., (a) the relationship between OCT GABA+ change and behavioral improvement

remained significant following regression of baseline measures (S3A Fig; r = −0.65, p = 0.005,

CI [−0.89, −0.25]; and (b) there was no significant correlation between differences in GABA

+ and behavior for sessions before training (i.e., pre-training minus baseline (r = −0.03,

p = 0.917, CI [−0.47, 0.39]). Second, this relationship remained significant when controlling

for voxel tissue composition (alpha correction of grey matter concentration; r = −0.64,

p = 0.006, CI [−0.87, −0.28]; regression of GABA+ concentration with CSF voxel concentra-

tion; r = −0.60, p = 0.011, CI [−0.85, −0.17]; 1 –fCSF division of GABA+ concentration; r =

−0.60, p = 0.010, CI [−0.84, −0.17]) and reference metabolite (i.e., NAA rather than water; r =

−0.60, p = 0.011, CI [−0.81, −0.33]). Third, the relationship between OCT GABA+ change and

behavioral improvement was specific to (a) GABA+ rather than other metabolites (i.e., gluta-

mate; r = 0.23, p = 0.375, CI [−0.42, 0.76]; Steiger’s Z comparison showed that the correlations

of GABA+ change versus glutamate change with behavioral improvement were significantly

different; z = −2.69, p = 0.007).

Taken together, our results demonstrate a strong relationship between decrease in visual

GABAergic inhibition and learning for improved perceptual decisions. Limitations in MRS

brain coverage meant that our study focused on specific areas (i.e., OCT versus PPC), provid-

ing evidence for the specific role of visual GABAergic plasticity in learning rather than general

task engagement. Future work is needed to investigate GABAergic plasticity across areas in the

subcortico-cortical networks we showed to be involved in learning for perceptual decisions.

Linking microstructural, functional, and neurochemical plasticity to

learning

We next asked whether the learning-dependent changes we observed in visual thalamus and

its functional connectivity to visual cortex link to GABAergic plasticity to support learning for

perceptual decisions.

First, we conducted a mediation analysis to model interactions between microstructural

(i.e., myelin), functional (i.e., functional connectivity), and neurochemical (GABAergic inhibi-

tion) plasticity. This analysis showed that pulvinar myelin plasticity influences GABAergic

processing in visual cortex through thalamocortical connectivity (total effect c = 0.44, z = 2.07,

p = 0.038, [0.024, 0.85]). In particular, the effect of learning-dependent changes in pulvinar

MT (predictor) on OCT GABA+ (outcome) was mediated by changes in thalamocortical net-

work connectivity (mediator): indirect effect: ab = 0.36, z = 1.99, p = 0.046, [0.01, 0.71]; no sig-

nificant direct effect c’ = 0.08, z = 0.39, p = 0.696, [0.32, 0.47]. These results suggest that

learning-dependent changes in pulvinar myelination drive changes in thalamocortical connec-

tivity that gates sensory processing (i.e., gain control) through GABAergic inhibition in visual

cortex.

We then employed structural equation modeling to test the role of this multimodal plastic-

ity in learning for perceptual decisions. We demonstrate a key role of thalamocortical connec-

tivity in linking thalamic myelin with visual GABAergic plasticity and predicting behavioral

improvement. In particular, we tested a model with the following paths: (a) learning-depen-

dent changes in pulvinar MT predict changes in thalamocortical connectivity; (b) learning-

dependent changes in thalamocortical connectivity predict changes in OCT GABA+; and (c)
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learning-dependent changes in pulvinar MT, thalamocortical connectivity, and OCT GABA

+ predict changes in behavior. Path directionality in our model—noting that structural equa-

tion models with reversed directionality are equivalent when bivariate relationships are mod-

eled—was guided by (a) previous work on the role of pulvinar in regulating interactions

between attentional and visual networks [40,41] and (b) our mediation analysis showing that

functional connectivity mediated the effect of pulvinar myelination on OCT GABA+. This

model (Fig 5A) showed a good fit to the data (df = 1.0, χ2 = 0.058, p = 0.810, SRMR = 0.012)

and the following significant interactions: (a) changes in pulvinar MT predicted changes in

thalamocortical connectivity (βSTD = 0.504, p = 0.029); (b) changes in thalamocortical connec-

tivity predicted changes in OCT GABA+ (βSTD = 0.72, p< 0.001); and (c) changes in thalamo-

cortical connectivity predicted changes in behavior (βSTD = −0.74, p = 0.005). Changes in OCT

GABA+ (βSTD = 0.05, p = 0.831) and pulvinar MT (βSTD = −0.12, p = 0.546) did not predict sig-

nificantly changes in behavior when accounting for thalamocortical connectivity. To further

interrogate the role of thalamocortical connectivity as a key predictor of behavior, we con-

strained the path between thalamocortical connectivity and behavior to zero; this model

resulted in a poor fit (Fig 5B; df = 2.0, χ2 = 6.549, p = 0.038, SRMR = 0.101 χ2 difference = 6.491,

p = 0.011). In contrast, constraining to zero the paths of OCT GABA+ to behavior and pulvi-

nar MT to behavior did not significantly affect the model fit (Fig 5C; df = 3.0, χ2 = 0.446,

p = 0.931, SRMR = 0.031, χ2 difference = 0.388, p = 0.823). These results suggest a key role of

thalamocortical interactions in predicting behavioral improvement due to training. Further, a

model that tested the link between visual-hippocampal connectivity, hippocampal MT, and

OCT GABAergic plasticity resulted in a poor fit (i.e., df = 1, χ2 = 10.231, p = 0.001,

SRMR = 0.219), suggesting that our results are specific to thalamocortical connectivity.

Taken together, modeling interactions between MRI measures of myelin, GABA, and func-

tional connectivity indicates a tight interplay between microstructural and functional plasticity

mechanisms for perceptual decisions. Our findings propose that adaptive myelin plasticity in

pulvinar links to GABAergic visual processing through thalamocortical connectivity to sup-

port improved perceptual decisions.

Fig 5. Linking microstructural, functional, and GABAergic plasticity to learning. (A) SEM modeling (χ2 = 0.058, p = 0.810) showed

thalamocortical connectivity was a key predictor of behavioral improvement. (B) Setting this path to zero resulted in a significantly poorer

fit to the data (χ2 difference = 6.491, p = 0.011). (C) Setting to zero the path of OCT GABA+ to behavior or pulvinar MT to behavior

resulted in a similar model fit (χ2 difference = 0.388, p = 0.823) that did not differ significantly from the main model fit. Path lines and

coefficients (completely standardized solution, βSTD) are shown in grey (n = 14). Source data are provided at: https://doi.org/10.17863/

CAM.93457. MT, magnetization transfer; OCT, occipito-temporal cortex.

https://doi.org/10.1371/journal.pbio.3002029.g005
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Discussion

Here, we provide evidence that structural myelin plasticity in subcortical regions interacts with

functional mechanisms of cortical neurotransmission to support learning. In contrast to previ-

ous studies that have focused on cortical circuits (i.e., frontoparietal and sensory areas) of

learning [42] and decision-making [43], we provide evidence that thalamocortical plasticity

plays a key role in improving perceptual decisions through training. Using a multimodal quan-

titative imaging approach, we demonstrate that adaptive myelination supports perceptual deci-

sion-making through thalamocortical interactions with neurochemical plasticity mechanisms

in visual cortex. Our findings advance our understanding of experience-dependent plasticity

mechanisms that support perceptual decision-making in the following main respects.

First, we demonstrate that training increases thalamic myelination, as indicated by learn-

ing-dependent changes in grey matter MT measured by quantitative MRI (MPM). Despite the

fact that MT imaging measures myelin indirectly by imaging water protons within and close to

the myelin sheath, recent work shows that MT maps have high reliability and are strongly

linked to histological measures of myelin content [16–18]. Further, quantitative MRI (MPM)

allows us to measure not only white but also grey matter myelin and test directly the link

between microstructure and neural processing in grey matter. While white matter myelination

has been associated with increased transmission speed along long-range axons, grey matter

myelination has been associated with microcircuit function related to learning [44] and may

serve to improve local activity synchronization [4]. Previous human brain imaging studies,

using standard structural MRI or diffusion tensor imaging, have focused on learning-depen-

dent changes in white matter in a range of tasks, including motor [45,46] and perceptual

[47,48] learning. In contrast, testing learning-dependent changes in grey matter MT, we pro-

vide evidence for a tight link between microstructural plasticity and functional neurotransmis-

sion for optimized processing within thalamocortical circuits.

Our results support an active role of myelin in adult learning [1,4,5,49], consistent with ani-

mal studies showing increased levels of oligodendrocyte precursor cells (OPCs) that promote

axon myelination due to training [44,50,51]. Understanding the link between myelination pro-

cesses and learning (i.e., behavioral improvement) depends on myelination dynamics. Insights

in understanding this link come from animals studies showing rapid OPC proliferation and

differentiation at initiation of learning or neuronal stimulation in vivo [2,4,44,52]. Further,

previous work [46] suggests that prolonged early learning results in higher myelination but

reduced behavioral improvement. Consistent with this work, we found a negative relationship

between myelin plasticity and behavioral improvement. Additional analyses (S1 Fig) indicate

that individuals who found the task more difficult (i.e., showed slower learning rate and

weaker improvement) remained at the early phase of learning for longer, resulting in increased

myelination. Future studies are needed to determine the precise kinetics of different myelina-

tion processes (i.e., OPC proliferation, myelin remodeling) and how they map onto learning

across different time scales [6]. More frequent sampling of myelin content during training

could capture myelin increase dynamics at the early phase of training.

Second, our results demonstrate that training reorganizes functional networks that are

involved in perceptual decision-making during the course of learning and predict behavioral

improvement. In particular, thalamocortical connectivity was stronger before training, while

functional connectivity between hippocampal and early visual cortex regions was stronger

after training. These results suggest that thalamocortical networks support performance at

early stages of learning (initial exposure and engagement with the task), when task demands

are higher. This is consistent with the role of pulvinar in regulating visual processing and the

role of thalamocortical networks in coordinating visual attentional processing [21,41,53,54]. In
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contrast, refining feature representations for target identification involves hippocampal and

early visual regions that engage later in training. These results are consistent with previous

studies implicating the HC in improved task performance following training [55,56]. Further,

the involvement of early compared to higher visual areas at later stages of learning [57] has

been suggested to afford finer processing of visual information at higher spatial resolution for

detecting targets in clutter [58]. This is supported by previous perceptual learning studies

showing learning-induced changes in synaptic strength that are associated with LTP-like pro-

cesses in early visual cortex [59].

Third, we provide evidence that thalamocortical connectivity links thalamic myelin plastic-

ity to visual GABAergic plasticity. In particular, we show that decreased visual cortex GABA—

as measured by MRS—due to multisession training in the SN task relates to behavioral

improvement, extending our previous work measuring GABAergic plasticity within a single

training session [15,23]. Reductions in cortical GABA have been shown to increase neuronal

gain by reducing shunting inhibition through tonic GABA receptors [60]. Despite our cur-

rently limited knowledge on the neural origins of MRS-GABA [61], it is possible that GABAer-

gic inhibition in visual cortex serves as a gain control mechanism that supports our ability to

detect task-relevant features for target identification, while filtering out background noise

[15,23].

Importantly, modeling thalamocortical connectivity, pulvinar MT, and visual GABA signals

suggests that myelin plasticity in the pulvinar supports learning through thalamocortical inter-

actions with GABAergic inhibition in visual cortex. It is likely that adaptive myelination in pul-

vinar results in learning-dependent changes in thalamocortical connectivity and GABAergic

plasticity in visual cortex to support optimized perceptual decisions, consistent with the role of

pulvinar in regulating visual processing [40,41]. In particular, connections from pulvinar to

visual cortex have been suggested to regulate inhibitory processing by synapsing directly onto

GABAergic interneurons, promoting oscillatory activity and thalamocortical connectivity

[41]. Here, we provide evidence that these interactive plasticity mechanisms are key in sup-

porting not only sensory processing but also learning of complex cognitive skills (i.e., identify-

ing targets in cluttered scenes).

Finally, our study sample was limited to male participants due to potential confounding

effects of menstrual cycle on GABA measurements. This has been the topic of extensive

research [62–67] with several studies restricting MRS-GABA studies to males (e.g., [68–76]).

Key hormones (estrogen, progesterone) exerting a suppressive or facilitatory effect on GABA

transmission [77, 63–65] may confound within-subject GABA measurements over time.

Developing precise methods for controlling for the effects of menstrual cycle on MRS GABA

measurements is hampered by physiological complexity (i.e., phase and regional effects of

menstrual cycle on GABA) and limited knowledge of the kinetics of menstrual cycle GABA

changes in humans. As our study involves repeated MRS GABA measurements over time, it is

not possible to satisfactorily control for menstrual cycle effects; i.e., not only the phase and

duration of the menstrual cycle but also the kinetics of GABA changes across menstrual cycle

days would likely differ substantially across participants. Ongoing large-scale multisite studies

are expected to provide normative data that will advance our understanding of these cyclical

effects, allow us to develop precise control methodologies, and conduct similar studies includ-

ing female participants to enhance the generalizability of our findings.

In sum, our findings provide evidence for a tight interplay between microstructural plastic-

ity and functional neurotransmission mechanisms in subcortico-cortical networks for percep-

tual decision-making. We propose that myelin plasticity in the pulvinar early in the training

may regulate—through thalamocortical connectivity—GABAergic gain control mechanisms

in visual cortex for selecting task-relevant features. In contrast, as performance becomes more
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automated later in the training, connectivity across hippocampal and early visual networks

increases to facilitate finer processing of task-relevant features and support the identification

of targets in clutter. Capturing the dynamics of microstructural (i.e., myelin) and functional

(i.e., neurochemical) interactions that drive experience-dependent plasticity is key for under-

standing how experience molds the adult brain and supports our ability for adaptive behavior

across the lifespan.

Materials and methods

Participants

Twenty-two males (mean age: 23.45 ± 4.21 years) participated in the study. We did not recruit

females to avoid previously reported menstrual cycle effects on GABA concentration [63]. All

participants were right-handed, had normal or corrected-to-normal vision, were not under

any prescription medication, and gave written informed consent. Participants were naive to

the aim of the study and received payment for their participation. All experiments were

approved by University of Cambridge Ethics Committee [PRE.2017.057].

Stimuli

Participants were trained to distinguish radial versus concentric Glass patterns [78] embedded

in noise (SN task). Stimuli (size = 7.9˚ × 7.9˚) comprised of white dot pairs (dipoles) that were

presented within a square aperture on a black background. The stimulus parameters followed

previous studies [15,23]. The dot density was 3%, and the Glass shift (i.e., the distance between

2 dots in a dipole) was 16.2 arc min. The size of each dot was 2.3 × 2.3 arc min2. Radial and

concentric patterns were generated by placing dipoles orthogonally (radial) or tangentially

(concentric) to the circumference of a circle centered on the fixation dot. The spiral angle was

defined as the angle between the dot dipole orientation and the radius from the dipole center

to the center of the stimulus aperture. For radial patterns the spiral angle was 0˚ and for con-

centric 90˚. Each stimulus consisted of dot dipoles aligned according to either the radial or

concentric spiral angle and noise dipoles for which the spiral angle was randomly selected. The

ratio of signal to noise dipoles defined the stimulus signal level; stimuli were presented at 24%

± 1% signal level; i.e., 76% of the dipoles were presented at random position and orientation

based on [79].

We randomized the presentation of clockwise (0˚ to 90˚ spiral angle) and counterclockwise

patterns (0˚ to −90˚ spiral angle) across participants. To control for potential local adaptation

and ensure that learning related to global shape rather than local stimulus features, we gener-

ated a new pattern per trial and jittered (±1 to 3˚) the spiral angle across stimuli. Stimuli were

presented at the left hemi-field (11.6 arc min from fixation) contralateral to the MRS voxel

position to maximize stimulus-related MRS signals, similar to our previous studies [23].

Experimental design and procedures

Participants took part in 6 experimental sessions over 9 days: 3 brain-imaging sessions (day 1,

day 5, and day 9) and 3 consecutive behavioral training sessions (day 6, day 7, and day 8).

MRI sessions. All brain imaging sessions followed the same procedure and were con-

ducted with scanner and room lights off. First, T1w, PDw, and MTw FLASH MPM images

were acquired, during which participants watched a neutral nature documentary (Dynasties;

BBC) with episodes randomized across sessions for each participant. Next, MRS was acquired

from OCT and PPC voxels (order counterbalanced across participants). During MRS acquisi-

tions, participants performed the SN task. Participants were asked to judge if a presented
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stimulus was radial or concentric, responding by button press with the right index finger. For

each trial, the stimulus was presented for 300 ms and was followed by variable fixation for 500

to 2,500 ms (a blank screen with a central fixation dot) during which participants were

instructed to respond. Participants were not given feedback in the MRI sessions. Participants

completed blocks of 200 self-paced trials each (i.e., the next trial was initiated following the

participant’s response) comprising 100 trials of concentric and 100 trials of radial patterns.

The average number (±SD) of trials completed per scan across participants was as follows: (a)

baseline scan: 593.52 ± 135.37; (b) pre-training scan: 645.58 ± 81.78; and (c) post-training

scan: 686.21 ± 60.18. Following the MRS acquisition, rs-fMRI was collected while participants

fixated on a white central cross on a black background.

Training sessions. Behavioral training sessions were conducted in the lab. For each ses-

sion, participants were trained for 8 runs of 200 trials each, receiving in total 800 trials of con-

centric and 800 trials of radial patterns. For each trial, participants were presented with a

radial or concentric pattern for 300 ms. Participants were asked to judge whether the stimulus

presented was radial or concentric. Trial-by-trial feedback was provided by means of a visual

cue (green tick for correct, red “x” for incorrect), which remained on the screen for 200 ms

and was followed by a fixation dot for a variable time between 500 and 1,500 ms before the

next trial onset.

Data acquisition

MRI data acquisition. MRI scans were conducted at the Wolfson Brain Imaging Centre,

Cambridge, UK, on a Siemens 3T Prisma (Siemens, Erlangen) with a 32-channel head coil.

Whole-brain MPM data were collected using a spoiled multi-echo 3D fast low-angle shot

(FLASH) protocol [80] of 3 gradient acquisitions: MT saturation, T1-weighted, and proton

density (PD) weighted maps. All weighted maps had 0.8 mm isotropic resolution, field of view

of 256 × 240 × 176 mm, and readout bandwidth of 488 Hz/pixel and were collected with par-

tially parallel imaging in each phase-encoded (AP, RL) direction (GRAPPA, 40 integrated

autocalibrating lines in each direction, acceleration factor of 2). We used a semiquantitative

MT saturation (MTsat) sequence that accounts for spatially varying T1 and B1+, enhancing

specificity to myelin content [81,82]. For MT (excitation flip angle of 6˚), we acquired 6 gradi-

ent echoes with alternating readout gradient polarity at echo times ranging from 2.30 to 18.40

ms in steps of 2.30 ms. For PD (excitation flip angle of 6˚) and T1 (excitation flip angle of 21˚),

we acquired 8 gradient echoes with alternating readout gradient polarity at echo times ranging

from 2.30 to 18.40 ms in steps of 2.30 ms. Unaccelerated 8 mm isotropic head and body coil

sensitivity bias fields (TR: 6 ms, TE 2.20 ms, flip angle: 6˚) were collected before each FLASH

acquisition. To correct for field inhomogeneities and susceptibility distortions, we collected B1

and B0 fieldmaps. B1 field maps were acquired with 11 spin-echo and stimulated spin-echo

pairs (TR: 500 ms, 4 mm isotropic resolution, 3D-EPI readout with 0.5 ms echo spacing, echo

time 39.06 ms, mixing-time 33.8 m) with flip angle between 115˚ to 65˚ in 5˚ increments ([83]

for full description of the 3D-EPI B1+ mapping). B0 maps were acquired with a flip angle of

60˚ (TR: 1020 ms, 3 × 3 × 2 mm resolution. Two images with echo times of 10.00 and 12.46 ms

at 260 Hz/pixel bandwidth were acquired, and the phase difference image was generated by

Siemens software.

MRS data acquisition. MRS spectra were acquired using a MEGA-PRESS sequence [84]

(S4 Table) with TR = 3,000 ms; TE = 68 ms; 256 transients (2,048 samples) in 13-minute exper-

iment time. A 14.28-ms Gaussian editing pulse applied at 1.9 ppm (MEGA-ON) and 7.5 ppm

(MEGA-OFF). Measurements with this sequence at 3T have been previously shown to pro-

duce reliable and reproducible estimates of GABA+ [85]. Water suppression was achieved
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using variable power with optimized relaxation delays and outer volume suppression. MRS

voxel B0 shimming was conducted with automated shimming; the full width at half-maximum

measured of the unsuppressed water signal was above 20 Hz after 3 attempts at automated

phase mapping, manual shimming was performed. A total of 16 unsuppressed water spectra

were collected for eddy current correction and metabolite referencing.

Spectra were acquired from the right OCT and PPC, voxel size 2 × 2 × 2.5 cm. To ensure

consistent voxel placement across training sessions and between participants (Fig 4A and S2C

Fig), the MRS voxel was manually positioned on each participant’s T1w FLASH anatomical

image using anatomical landmarks (superior temporal gyrus and middle occipital gyrus for

OCT and intraparietal sulcus for PPC). Voxel position was similar across sessions (mean dif-

ference in position between voxel center (mm): OCT pre-training–baseline, X; M = 0.62,

SD = 0.70, Y; M = 1.07, SD = 0.87, Z; M = 1.29, SD = 1.03, post-training–pre-training, X;

M = 0.44., SD = 0.49, Y; M = 0.76, SD = 0.84, Z; M = 1.20, SD = 1.17. PPC pre-training–base-

line, X; M = 0.93, SD = 0.63, Y; M = 0.98, SD = 1.05, Z; M = 0.93, SD = 0.74, post-training–pre-

training, X; M = 0.49, SD = 0.73, Y: M = 0.84, SD = 0.64, Z: M = 1.02, SD = 0.81. The mean GM

tissue fraction for baseline, pre-training, and post-training was 56.02%, 56.28%, and 56.51%

for OCT and 46.62%, 46.75%, and 45.70% for PPC. GM tissue content did not differ signifi-

cantly between sessions, OCT F2,34 = 0.196, p = 0.822; PPC F2,34 = 1.280, p = 0.292.

Resting-state fMRI (rs-fMRI). Echo-planar imaging (EPI) acquisitions with full brain

coverage (TR: 727 ms, TE: 34.6 ms, slices: 72; voxel size: 2 mm isotropic; multiband factor: 8;

flip angle 48˚; volumes: 812) were collected. Cardiac and respiratory signals were recorded

using a pulse oximeter and respiratory belt, respectively.

Data analysis

Behavior. We calculated performance accuracy (i.e., percentage correct responses) per

session, as: (total correct responses / total trials) � 100. To quantify behavioral improvement,

we calculate the difference in post-training and pre-training percent correct scores (post-train-

ing–pre-training). When controlling for the baseline session, the percent correct score at base-

line was regressed from the post-training–pre-training improvement. Data were excluded

from 2 participants who did not show improvement in the behavioral task, as defined by a pos-

itive learning rate across sessions (pre-training to post-training).

MPMs. We used the hMRI toolbox [82] in in SPM12 (v7771; Wellcome Centre for

Human Neuroimaging, London, UK) for MPM map generation and pre-processing. This

quantitative MRI and transmit field mapping sequence results in quantitative MPM with

improved sensitivity and reliability [81,86]. First, baseline, pre and post T1w images (first

echo) were segmented in SPM and brain-masked prior to longitudinal registration with the

CAT12 toolbox (http://www.neuro.uni-jena.de/cat/). Brain-masked T1w images from each

session were coregistered to the subject-average T1w, and the transformation applied to all

MPM scans acquired in that session. The hMRI auto-reorient module was used to reorient

images to the anterior commissure, using the first session T1 as a reference for each subject.

The hMRI toolbox map creation module was used to generate bias-corrected R1, R2, MT, and

PD maps. Five participants were excluded from MPM analyses due to poor map quality as

assessed by a PD map error estimate less than 8% (mean / SD white matter intensity)

(mean ± SEM: baseline: 6.32% ± 0.12, pre-training: 6.36% ± 0.17, post-training, 6.29% ± 0.17)

and visual inspection. One of these participant was also a bivariate outlier (as identified using

the Robust Correlation Toolbox [87]) for all MRI and MRS measurement correlations with

behavior and was excluded from all further analyses. Clusters from whole-brain MT analysis

were masked with the brainnetome [88] and probabilistic thalamus atlases [89] (S2 Table). We

PLOS BIOLOGY Adaptive thalamocortical interactions predict improved decisions

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002029 March 10, 2023 14 / 24

http://www.neuro.uni-jena.de/cat/
https://doi.org/10.1371/journal.pbio.3002029


concentrated on right hemispheric subregions, i.e., contralateral to stimulus presentation (left

hemi-field).

Next, maps were resliced to native space and segmented to create a single tissue-class per

subject. Subject maps were normalized to MNI space using DARTEL (“Diffeomorphic Ana-

tomical Registration using Exponentiated Lie algebra”) [90]. Finally, tissue-weighed smooth-

ing [91] was applied with a Gaussian kernel of 6 mm full-width half maximum.

MRS. MRS data were pre-processed using MRspa v1.5c (https://www.cmrr.umn.edu/

downloads/mrspa/). Spectra were eddy current corrected (ECC2 + zero phase), frequency

aligned (3.01 ppm), and phase corrected (least squares) before averaged MEGA-OFF and

MEGA-ON spectra were subtracted. LC-model [92] was used to estimate metabolite concen-

trations by fitting modeled γ-amino-butyric acid (GABA), Glutamate (Glu), Glutamine (Gln),

and N acetylaspartate (NAA) to the edited spectra. We refer to GABA concentration as GABA

+, as MRS measurements of GABA with MEGA-PRESS include coedited macromolecules

[93]. To ensure results were not driven by the chosen reference, GABA+ and Glu concentra-

tions were referenced to both Water and NAA [94].

All spectral linewidths were below 10 Hz and GABA+ Cramer–Rao Lower Bound (CRLB)

values were less than 10% with no visible lipid contamination (as detected by visual inspection

by 2 independent reviewers (PF, JZ). Signal-to-noise ratio (SNR) was calculated as the ampli-

tude of the NAA peak in the difference-spectrum divided by twice the root mean square of the

residual signal [92]. We have not included control analyses for changes in CRLB, as reductions

in GABA concentration have been shown to be inherently linked to increases in CRLB [94–

96]. Two participants were excluded from MRS analyses (one had inconsistent voxel place-

ment across sessions (only 25% overlap), one was detected as univariate outlier (post-training–

pre-training) using MATLAB isoutlier function (Grubbs test) [97]. The voxel percentage of

grey matter (GM), white matter (WM), and cerebrospinal fluid (CSF) in the OCT and PPC

MRS voxels was calculated from the segmented MPM maps. Correction for voxel tissue com-

position was performed by (1) dividing GABA+ concentration by 1 –fCSF [98]; (2) regressing

CSF voxel fraction from measured GABA+; and (3) accounting for GM voxel fraction with the

α-correction method [99]. OCT mask used in all analysis was the 50% overlap of MRS voxels

across participants (Fig 4A and S2 Table).

Resting-state fMRI (rs-fMRI). rs-fMRI data were pre-processed in SPM12 following the

HCP pipeline for multiband data [100]. Two dummy scans were removed; EPI data were dis-

tortion corrected (Fieldmap toolbox) [101] and motion corrected. One participant was

excluded from resting-state analysis due to high head movement (>2 mm). Data were not

slice-time corrected [100]. For EPI coregistration, the high-resolution single-band reference

was used for alignment estimation. Subject EPI images were aligned across sessions using

CAT12 longitudinal alignment module. Subject R1 maps (coregistered across sessions; see

MPM pre-processing) were averaged, segmented, and brainmasked. Subject EPIs were aligned

to the average R1 anatomical and normalized with DARTEL deformation fields generated dur-

ing MPM pre-processing. Data were resliced after MNI normalization to minimize the num-

ber of interpolation steps. After normalization, data were skull stripped, smoothed (4 mm

Gaussian kernel), wavelet despiked with the BrainWavelet toolbox [102], and linear drifts

removed (linear detrending).

Data were denoised using spatial group independent component analysis (ICA; GIFT

Toolbox v3.0b; http://mialab.mrn.org/software/gift/). Principal component analysis was

applied for dimensionality reduction, first at the subject level, then at the group level. A total of

35 components were extracted from the data, specified manually to yield components with

clear visually identifiable components. Group information guided ICA (GIG-ICA) back-

reconstruction was used to reconstruct subject-specific components from the group
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components. We visually inspected the results and identified noise components according to

published procedures [103]. Using consensus voting among 2 experts (JZ, VK), we labeled 11

of the 35 components as noise that captured signal from veins, arteries, CSF pulsation, suscep-

tibility, and multiband artifacts. A soft cleanup approach [104] was used to clean the data.

Motion parameters (translation, rotation, and their squares and derivatives) were regressed

from each voxel and ICA component time course. The unique contribution of each ICA com-

ponent to the voxel time-course was estimated with multiple regression and subtracted.

Physiological regressors were generated from heart rate (third order), respiratory record-

ings (fourth order), and their interaction (first order) with zero delay for HRV and RVT terms

using the PhysIO toolbox [105]. Data were treated for serial correlations using the FAST auto-

regressive model [106] with physiological and motion (translation, rotation, and their squares

and derivatives) regressed from the timeseries. The first eigenvariate were extracted from

regions of interest (ROIs) and fifth order Butterworth band-pass filtered (0.01 to 0.08 Hz).

Early visual brain regions (V1, V2, V3, V4) were identified based on a probabilistic atlas [107].

ACC was defined by whole-brain functional connectivity analysis seeded in the pulvinar (thre-

sholded p< 0.005) that yielded a cluster in dorsal ACC. We used the MNI coordinates for this

cluster (x = 4, y = 20, z = 38) as the center of a spherical mask (radius 8 mm3) that defined the

ACC ROI for further analysis. We computed the first eigenvariate across all GM voxels within

ROIs to derive a single time course per ROI. Functional connectivity was computed as the

Pearson correlation between the first eigenvariate of 2 ROIs and the variance was normalized

with fisher-z transform before mean-change analyses.

Network connectivity was calculated as the average strictly (i.e., not including the diagonal)

upper-triangular of the node-to-node correlation matrix (thalamocortical: OCT, pulvinar,

ACC; visual-hippocampal: V1, V2, V3, V4, HC).

Statistical analysis

Repeated measure ANOVAs were used to assess change in behavioral improvement across all

experimental sessions and network connectivity across scanning sessions with JASP v0.14.1.

MT change across scanning sessions was analyzed with a mass-univariate repeat-measures

GLM (contrast [–1, –1, 2]) in SPM12 (p< 0.05 cluster-wise FWE correction with a cluster

defining threshold of p< 0.001). Violations of sphericity detected by Mauchley’s test were cor-

rected with the Greenhouse–Geisser method.

For correlation analyses, difference between pre-training and post-training sessions were

calculated for all measures. To control for baseline variability, baseline session values were

regressed from post-training to pre-training differences. Confirmatory analyses were under-

taken by generating bootstrapped confidence intervals (600 resamples) of the correlation coef-

ficient; significance is determined when the CI does not include zero. Correlations were

performed with the Pearson function of the Robust Correlation Toolbox [87]. Correlations

were compared using Steigers Z. Mediation analysis and structural equation modeling was

conducted with JASP v0.14.1. Model fit was assessed using the chi-squared (χ2) test and stan-

dardized root mean square of the residuals (SRMR), on the difference between the empirical

covariance matrix and model-implied covariance matrix.

Supporting information

S1 Fig. Correlating subcortical MT with behavioral improvement. The correlation between

behavioral improvement and MT change (post-training minus pre-training) in (A) vPul (r =

−0.49, p = 0.045, CI [−0.82, −0.01]) and (B) HC (r = −0.59, p = 0.012, CI [−0.90, −0.05])

remained significant when accounting for baseline variability ((C) vPul: r = −0.58, p = 0.015,
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CI [−0.80, −0.22]; (D) HC: r = −0.62, p = 0.008, CI [−0.89, −0.11]) (i.e., regressing out baseline

measures). Superior colliculus MT change was significantly correlated with behavioral

improvement (r = −0.53, p = 0.028, CI [−0.83, −0.07]; baseline regression (r = −0.58, p = 0.015,

CI [−0.88, −0.19]). Further analysis on the superior colliculus was not performed due to the

small number of voxels in this region (S2 Table). There were no significant correlations

between changes in MT and behavior (performance accuracy) before training (pre-training

minus baseline) (vPul: r = 0.0002, p = 0.999, CI [−0.59, 0.53]; HC: r = −0.02, p = 0.929, CI

[−0.53, 0.41]). Source data are provided at: https://doi.org/10.17863/CAM.93457. Considering

individual variability in learning rate provides some insight into the negative correlation

between MT changes and behavioral improvement. In particular, individuals who improved

the most after training learned faster, as indicated by a significant correlation between learning

rate and behavioral improvement (r = 0.75, p< 0.001, CI [0.42, 0.90]). Further faster learners

showed lower MT change after training, as indicated by a significant correlation (r = −0.592,

p = 0.010, [−0.82, −0.20) between learning rate (calculated across 6 sessions from pre- to post-

training) and MT change (post-training minus baseline). Interestingly, faster learners showed

significantly (t15 = 3.37, p = 0.004) lower MT change (n = 9; mean learning rate = 3.84; mean

behavioral improvement = 11.13%; mean MT change = 1.21%) compared to slower learners

who showed higher MT change (n = 9; mean learning rate = 1.05; mean behavioral improve-

ment = 3.89%; mean MT change = 9.67%). These analyses suggest that learning-dependent

myelin plasticity is stronger when participants find the task difficult and learn slower, consis-

tent with previous work showing that prolonged early learning promotes myelination [46].

HC, hippocampus; MT, magnetization transfer; vPul, ventral pulvinar.

(TIFF)

S2 Fig. Learning-dependent changes in white matter MT. (A) A repeated-measures whole

brain GLM on white matter MT, using the same parameters as the analysis on grey matter

showed a significant white matter cluster (binary mask) adjacent to the Th–HC cluster. (B)

Significant negative correlation between change in MT in the white matter cluster adjacent to

the Th–HC cluster and behavioral improvement (r = −0.59, p = 0.013, CI [−0.81, −0.19]). This

remained significant after baseline regression (r = −0.61, p = 0.010, CI [−0.82, −0.29]). There

was no significant correlation between change in white matter MT and behavior before train-

ing (pre-training minus baseline) (r = 0.011, p = 0.967, CI [−0.52, 0.62]). Source data are pro-

vided at: https://doi.org/10.17863/CAM.93457. MT, magnetization transfer; Th–HC,

thalamic-hippocampal.

(TIFF)

S3 Fig. Controls for correlations with OCT GABA+. (A) Correlations of OCT GABA

+ change (post-training minus pre-training) with behavioral improvement remained signifi-

cant after accounting for baseline variability (i.e., regressing out baseline measures) (r = −0.65,

p = 0.005, CI [−0.89, −0.25]). There was no significant correlation between OCT GABA

+ change and behavior before training (pre-training minus baseline) (r = −0.03, p = 0.917, CI

[−0.47, 0.39]). (B) Example OCT representative MEGA-PRESS spectra showing measured dif-

ference spectra, spectral fit, residual and GABA fit (e.g., GABA multiplet at 3 ppm). There

were no significant differences in data quality measures across sessions for these voxels (one-

way repeat measures ANOVA): Linewidth (OCT: F2,32 = 2.06, p = 0.143, PPC: F2,32 = 0.14,

p = 0.867), SNR (OCT: F2,32 = 0.05, p = 0.945, PPC: F2,32 = 0.22, p = 0.80), CRLB (OCT: F2,32 =

2.01, p = 0.15, PPC: F2,32 = 0.56, p = 0.579). (C) Group MRS voxel mask (cortical region com-

mon in 50% or more of participants) indicating the position of the PPC (control) voxel. (D)

PPC GABA+ change was not significantly correlated (r = 0.36, p = 0.154, [−0.22, 0.72]) with

behavioral improvement (shown; following regression of baseline measures; r = 0.34,
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p = 0.186, [−0.15, 0.76]). Source data are provided at: https://doi.org/10.17863/CAM.93457.

CRLB, Cramer–Rao Lower Bound; MRS, magnetic resonance spectroscopy; OCT, occipito-

temporal cortex; PPC, posterior parietal cortex; SNR, signal-to-noise ratio.

(TIFF)

S1 Table. Significant clusters from whole-brain GLM on grey matter MT (one-way

repeated measures ANOVA: baseline: -1, pre-training: -1, post-training: 2). For each clus-

ter, the number of voxels, x, y, z coordinates of the peak voxel and cluster-level significance are

shown.

(DOCX)

S2 Table. Masks for MT (voxel size: 0.8 mm isotropic) and rs-fMRI (voxel size 2 mm isotro-

pic) analyses extracted from the Brainnetome atlas [88] and probabilistic thalamus [89]

and visual [107] atlases. Masks contain only grey matter voxels, as determined from the grey

matter segmentation of the group average anatomical scan. Number of voxels and MNI coor-

dinates are shown. V2 and V3 masks include dorsal and ventral subregions.

(DOCX)

S3 Table. MRS GABA+ quality measures (mean and standard deviation per scanning ses-

sion). There were no significant differences in data quality measures across sessions (one-way

repeated measures ANOVA): Linewidth (OCT: F2,32 = 2.06, p = 0.143, PPC: F2,32 = 0.14,

p = 0.867), SNR (OCT: F2,32 = 0.136, p = 0.718, PPC: F2,32 = 0.01, p = 0.92), CRLB (OCT: F2,32

= 2.01, p = 0.15, PPC: F2,32 = 0.56, p = 0.579).

(DOCX)

S4 Table. Minimum reporting standards in MRS checklist.

(DOCX)
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96. Emir UE, Tuite PJ, Öz G. Elevated pontine and putamenal gaba levels in mild-moderate parkinson dis-

ease detected by 7 tesla proton mrs. PLoS ONE. 2012. https://doi.org/10.1371/journal.pone.0030918

PMID: 22295119

97. Grubbs FE. Sample Criteria for Testing Outlying Observations. Ann Math Statist. 1950; 21:27–58.

https://doi.org/10.1214/AOMS/1177729885

PLOS BIOLOGY Adaptive thalamocortical interactions predict improved decisions

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002029 March 10, 2023 23 / 24

https://doi.org/10.3389/fnins.2015.00037
https://doi.org/10.3389/fnins.2015.00037
http://www.ncbi.nlm.nih.gov/pubmed/25750611
https://doi.org/10.1038/223578a0
https://doi.org/10.1038/223578a0
http://www.ncbi.nlm.nih.gov/pubmed/5799528
https://doi.org/10.1523/JNEUROSCI.2033-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/22262876
https://doi.org/10.1016/j.dib.2019.104132
http://www.ncbi.nlm.nih.gov/pubmed/31297422
https://doi.org/10.1002/mrm.21732
http://www.ncbi.nlm.nih.gov/pubmed/19025906
https://doi.org/10.1016/j.neuroimage.2019.01.029
https://doi.org/10.1016/j.neuroimage.2019.01.029
http://www.ncbi.nlm.nih.gov/pubmed/30677501
https://doi.org/10.1002/mrm.22421
https://doi.org/10.1002/mrm.22421
http://www.ncbi.nlm.nih.gov/pubmed/20572153
https://doi.org/10.1002/%28sici%291099-1492%28199810%2911%3A6%26lt%3B266%3A%3Aaid-nbm530%26gt%3B3.0.co%3B2-j
https://doi.org/10.1002/%28sici%291099-1492%28199810%2911%3A6%26lt%3B266%3A%3Aaid-nbm530%26gt%3B3.0.co%3B2-j
http://www.ncbi.nlm.nih.gov/pubmed/9802468
https://doi.org/10.1016/j.pnmrs.2011.06.001
http://www.ncbi.nlm.nih.gov/pubmed/22293397
https://doi.org/10.1101/2021.11.10.467254
https://doi.org/10.3389/fpsyg.2012.00606
https://doi.org/10.3389/fpsyg.2012.00606
http://www.ncbi.nlm.nih.gov/pubmed/23335907
https://doi.org/10.1093/cercor/bhw157
https://doi.org/10.1093/cercor/bhw157
http://www.ncbi.nlm.nih.gov/pubmed/27230218
https://doi.org/10.1038/sdata.2018.270
http://www.ncbi.nlm.nih.gov/pubmed/30480664
https://doi.org/10.1016/j.neuroimage.2007.07.007
https://doi.org/10.1016/j.neuroimage.2007.07.007
http://www.ncbi.nlm.nih.gov/pubmed/17761438
https://doi.org/10.1016/j.neuroimage.2011.01.052
http://www.ncbi.nlm.nih.gov/pubmed/21277375
https://doi.org/10.1002/nbm.698
http://www.ncbi.nlm.nih.gov/pubmed/11410943
https://doi.org/10.1016/j.neuroimage.2012.12.004
http://www.ncbi.nlm.nih.gov/pubmed/23246994
https://doi.org/10.1016/j.cub.2015.04.021
http://www.ncbi.nlm.nih.gov/pubmed/26004760
https://doi.org/10.1002/mrm.25568
http://www.ncbi.nlm.nih.gov/pubmed/25753153
https://doi.org/10.1371/journal.pone.0030918
http://www.ncbi.nlm.nih.gov/pubmed/22295119
https://doi.org/10.1214/AOMS/1177729885
https://doi.org/10.1371/journal.pbio.3002029


98. Quadrelli S, Mountford C, Ramadan S. Hitchhiker’S Guide to Voxel Segmentation for Partial Volume

Correction of in Vivo Magnetic Resonance Spectroscopy. Magn Reson Insights. 2016; 9:MRI.S32903.

https://doi.org/10.4137/MRI.S32903 PMID: 27147822

99. Harris AD, Puts NAJ, Edden RAE. Tissue correction for GABA-edited MRS: Considerations of voxel

composition, tissue segmentation, and tissue relaxations. J Magn Reson Imaging. 2015; 42:1431–

1440. https://doi.org/10.1002/jmri.24903 PMID: 26172043

100. Smith SM, Beckmann CF, Andersson J, Auerbach EJ, Bijsterbosch J, Douaud G, et al. Resting-state

fMRI in the Human Connectome Project. NeuroImage. 2013; 80:144–168. https://doi.org/10.1016/j.

neuroimage.2013.05.039 PMID: 23702415

101. Hutton C, Bork A, Josephs O, Deichmann R, Ashburner J, Turner R. Image distortion correction in

fMRI: A quantitative evaluation. NeuroImage. 2002; 16:217–240. https://doi.org/10.1006/nimg.2001.

1054 PMID: 11969330
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