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The error back-propagation algorithm
can be approximated in networks of
neurons, in which plasticity only
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This review article summarises recently proposed theories on how neural
circuits in the brain could approximate the error back-propagation algorithm
used by artificial neural networks. Computational models implementing these
theories achieve learning as efficient as artificial neural networks, but they use
simple synaptic plasticity rules based on activity of presynaptic and postsyn-
aptic neurons. The models have similarities, such as including both feedfor-
ward and feedback connections, allowing information about error to propagate
throughout the network. Furthermore, they incorporate experimental evidence
on neural connectivity, responses, and plasticity. These models provide
insights on how brain networks might be organised such that modification
of synaptic weights on multiple levels of cortical hierarchy leads to improved
performance on tasks.

Deep Learning and Neuroscience
In the past few years, computer programs using deep learning (see Glossary) have achieved
impressive results in complex cognitive tasks that were previously only in the reach of humans.
These tasks include processing of natural images and language [1], or playing arcade and
board games [2,3]. Since these recent deep learning applications use extended versions of
classic artificial neural networks [4], their success has inspired studies comparing informa-
tion processing in artificial neural networks and the brain. It has been demonstrated that when
artificial neural networks learn to perform tasks such as image classification or navigation, the
neurons in their layers develop representations similar to those seen in brain areas involved in
these tasks, such as receptive fields across the visual hierarchy or grid cells in the entorhinal
cortex [5–7]. This suggests that the brain may use analogous algorithms. Furthermore, thanks
to current computational advances, artificial neural networks can now provide useful insights on
how complex cognitive functions are achieved in the brain [8].

A key question that remains open is how the brain could implement the error back-propa-
gation algorithm used in artificial neural networks. This algorithm describes how the weights of
synaptic connections should be modified during learning, and its attractiveness, in part, comes
from prescribing weight changes that reduce errors made by the network, according to a
theoretical analysis. Although artificial neural networks were originally inspired by the brain, the
modification of their synaptic connections, or weights, during learning appears biologically
unrealistic [9,10]. Nevertheless, recent models have demonstrated that learning as efficient as
in artificial neural networks can be achieved in distributed networks of neurons using only simple
plasticity rules [11–14]. These theoretic studies are important because they overrule the
dogma, generally accepted for the past 30 years, that the error back-propagation algorithm
is too complicated for the brain to implement [9,10]. Before discussing this new generation of
models in detail, we first provide a brief overview of how the back-propagation algorithm is used
to train artificial neural networks and discuss why it was considered biologically implausible.
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Glossary
Anti-Hebbian plasticity: synaptic
weight modifications proportional to
the negative product of the activity of
the pre- and postsynaptic neurons.
Thus, if both neurons are highly
active, the weight of connection
between them is reduced.
Apical dendrite: a dendrite
emerging from the apex of a
pyramidal neuron (i.e., from the part
of a cell body closest to the surface
of the cortex).
Artificial neural networks:
computing systems loosely based on
brain networks. They consist of
layers of ‘neurons’ communicating
with each other via connections of
different weights. Their task is to
transform input patterns to particular
target patterns. They are trained to
predict target patterns in a process
in which weights are modified
according to the error back-
propagation algorithm.
Deep learning: learning in artificial
neural networks with more than two
layers (often >10). Deep networks
have shown much promise in the
field of machine learning.
Equilibrium propagation: a
principled framework for determining
network dynamics and synaptic
plasticity within energy-based
models.
Error back-propagation: the main
algorithm used to train artificial neural
networks. It involves computations of
errors associated with individual
neurons, which determine weight
modifications.
Error node: neuron type of
predictive coding networks. They
compute the difference between a
value node and its higher-level
prediction.
Hebbian plasticity: synaptic weight
modifications proportional to the
product of the activity of the pre-
and postsynaptic neurons. It is called
Hebbian in computational
neuroscience, as it captures the idea
of Donald Hebb that synaptic
connections are strengthened
between co-active neurons.
Input pattern: a vector containing
the activity levels to which the
neurons in the input layer are set.
For example, in the handwritten digit
classification problem, an input
pattern corresponds to a picture of a
digit. Here, the input pattern is a
Artificial Neural Networks and Error Back-Propagation
To effectively learn from feedback, the synaptic connections often need to be appropriately
adjusted in multiple hierarchical areas simultaneously. For example, when a child learns to
name letters, the incorrect pronunciation may be a combined result of incorrect synaptic
connections in speech, associative, and visual areas. When a multi-layer artificial neural
network makes an error, the error back-propagation algorithm appropriately assigns credit
to individual synapses throughout all levels of hierarchy and prescribes which synapses need to
be modified and by how much.

How is the back-propagation algorithm used to train artificial neural networks? The
algorithm is trained on a set of examples, each consisting of an input pattern and a
target pattern. For each such pair, the network first generates its prediction based on the
input pattern and then the synaptic weights are modified to minimise the difference
between the target and the predicted pattern. To determine the appropriate modifica-
tion, an error term is computed for each neuron throughout the network. This describes
how the activity of the neuron should change to reduce the discrepancy between the
predicted and target pattern (Box 1). Each weight is modified by an amount determined by
the product between the activity of the neuron it projects from and the error term of the
neuron it projects to.

Although the described procedure is used to train artificial neural networks, analogous steps
may take place during learning in the brain. For example, in the case of the child naming letters
mentioned above, the input pattern corresponds to an image of a letter. After seeing an image,
the child makes a guess at the name (predicted pattern) via a neural network between visual
and speech areas. On supervision by his or her parent of the correct pronunciation (target
pattern), synaptic weights along the processing stream are modified so that it is more likely that
the correct sound will be produced when seeing that image again.

Biologically Questionable Aspects of the Back-Propagation Algorithm
Although the algorithmic process described above appears simple enough, there are a few
problems with implementing it in biology. Below, we briefly discuss three key issues.

Lack of Local Error Representation
Conventional artificial neural networks are only defined to compute information in a forward
direction, with the back-propagating errors computed separately by an external algorithm.
Without local error representation, each synaptic weight update depends on the activity and
computations of all downstream neurons. Since biological synapses change their connection
strength based solely on local signals (e.g., the activity of the neurons they connect), it appears
unclear how the synaptic plasticity afforded by the back-propagation algorithm could be
achieved in the brain. Historically, this is a major criticism; thus it is a main focus of our review
article.

Symmetry of Forwards and Backwards Weights
In artificial neural networks, the errors are back-propagated using the same weights as those
when propagating information forward during prediction. This weight symmetry suggests that
identical connections should exist in both directions between connected neurons. Although
bidirectional connections are significantly more common in cortical networks than expected by
chance, they are not always present [15]. Furthermore, even if bidirectional connections were
always present, the backwards and forwards weights would still have to correctly align
themselves.
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vector created by concatenating
rows of pixels in the image, where
each entry is equal to the darkness
of the corresponding pixel.
Martinotti cells: small interneurons
found in cortex.
Oscillatory rhythms: rhythmic
patterns of neural activity, with
activity of particular cells oscillating
between higher and lower values.
Plateau potential: a sustained
change in a membrane potential of a
neuron, caused by persistent
inwards currents.
Predicted pattern: a vector of
activities generated by the network in
the output layer, by propagating the
input pattern through layers. In the
handwritten digit classification
problem, the output layer has ten
neurons corresponding to ten
possible digits. The activity of each
output neuron encodes the
network’s prediction for how likely
the input pattern is to represent a
particular digit.
Pyramidal neuron: an excitatory
neuron with conically shaped cell
body. Found in the cerebral cortex,
hippocampus, and amygdala.
Spike-time-dependent plasticity:
synaptic weight modification that
depends on the relative timing
between pre- and postsynaptic firing.
Supervised learning: a class of
tasks considered in machine
learning, where both an input and a
target pattern are provided. The task
for the algorithms is to learn to
predict the target patterns from the
input patterns.
Target pattern: a vector of activity
in the output layer, which the
network should generate for a given
input pattern. For example, in the
handwritten digit classification
problem, the target pattern is equal
to 1 at the position corresponding to
the class of the corresponding image
and is equal to 0 elsewhere.
Unsupervised learning: a class of
tasks considered in machine learning
where only an input pattern is
provided (e.g., an image of a
handwritten digit). The task for the
learning algorithm is typically to learn
an efficient representation of the
data.
Value node: neuron type of
predictive coding networks. Their
activity represents the values
computed by the network.

Box 1. Artificial Neural Networks

A conventional artificial neural network consists of layers of neurons, with each neuron within a layer receiving a
weighted input from the neurons in the previous layer (Figure IA). The input layer is first set to be the input pattern and
then a prediction is made by propagating the activity through the layers, according to Equation 1.1, where xl is a vector
denoting neurons in layer l and Wl � 1 is a matrix of synaptic weights from layer l � 1 to layer l. An activation function f is
applied to each neuron to allow for nonlinear computations.

During learning, the synaptic connections are modified to minimise a cost function quantifying the discrepancy between
the predicted and target patterns (typically defined as in Equation 1.2). In particular, the weights are modified in the
direction of steepest decrease (or gradient) of the cost function (Figure ID). Such modification is described in Equation
1.3, where dl+1 is a vector of error terms associated with neurons xl+1. The error terms for the last layer L are defined in
Equation 1.4 as the difference between the target activity t and the predicted activity. Thus, the error of an output
neuron is positive if its target activity is higher than the predicted activity. For the earlier layers, the errors are computed
according to Equation 1.5 as a sum of the errors of neurons in the layer above weighted by the strengths of their
connections (and further scaled by the derivative of the activation function; in Equation 1.5 � denotes element-wise
multiplication). For example, an error of a hidden unit is positive if it sends excitatory projections to output units with high
error terms, so increasing the activity of such a hidden neuron would reduce the error on the output. Once the errors are
computed, each weight is changed according to Equation 1.3 in proportion to the product of the error term associated
with a postsynaptic neuron and the activity of a presynaptic neuron.

PredicƟon: = − 1 − 1

Weight update: Δ ~ + 1

Where the errors are

= −

Previous layers: = + 1 ·

(1.1)

(1.3)

(1.4)

(1.5)

21 3
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Cost:

(A)

(B)
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The last layer: Cost = constant
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Weight change

Figure I. Artificial Neural Networks. (A) Layers of neuron-like nodes are represented by sets of stacked blue circles.
Feedforward connections are indicated by green arrows. (B) Prediction. (C) Learning. (D) Schematic of the directions of
two consecutive weight modifications (thick arrows) in the space of weights (for simplicity, only two dimensions are
shown). Contours show points in weight space with equal cost function values.
Unrealistic Models of Neurons
Artificial neural networks use artificial neurons that send a continuous output (corresponding to
a firing rate of biological neurons), whereas real neurons use spikes. Generalising the back-
propagation algorithm to neurons using discrete spikes is not trivial, because it is unclear how to
compute the derivate term found in the back-propagation algorithm (Box 1). Away from the
back-propagation algorithm, the description of computations inside neurons in artificial neural
networks is also simplified as a linear summation of inputs.
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Models of Biological Back-Propagation
Each of the above-mentioned issues has been investigated by multiple studies. The lack of local
error representation has been addressed by early theories by proposing that the errors
associated with individual neurons are not computed, but instead the synaptic plasticity is
driven by a global error signal carried by neuromodulators [16–19]. However, it has been
demonstrated that learning in such models is slow and does not scale with network size [20].
More promisingly, in the past few years, several models have been proposed that do represent
errors locally and thus more closely approximate the back-propagation algorithm. These
models perform similarly to artificial neural networks on standard benchmark tasks (e.g.,
handwritten digit classification) [12–14,21,22], and we summarise several of them in more
detail in the following sections.

The criticism of weight symmetry has been addressed by demonstrating that even if the errors
in artificial neural networks are back-propagated by random connections, good performance in
classification tasks can still be achieved [21,23–27]. This being said, there is still some concern
regarding this issue [28]. With regard to the biological realism of neurons, it has been shown that
the back-propagation algorithm can be generalised to neurons producing spikes [29] and that
problems with calculating derivatives using spikes can be overcome [23]. Furthermore, it has
been proposed that when more biologically realistic neurons are considered, they themselves
may approximate a small artificial neural network in their dendritic structures [30].

There is a diversity of ideas on how the back-propagation algorithm may be approximated in the
brain [31–36]; however, we review the principles behind a set of related models [11,13,14,37]
that have substantial connections with biological data while closely paralleling the back-
propagation algorithm. These models operate with minimal external control, as they can
compute the errors associated with individual neurons through the dynamics of the networks.
Thus, synaptic weight modifications depend only on the activity of presynaptic and postsyn-
aptic neurons. Furthermore, these models incorporate important features of brain biology, such
as spike time-dependent plasticity, patterns of neural activity during learning, and proper-
ties of pyramidal neurons and cortical microcircuits. We emphasise that these models rely on
fundamentally similar principles. In particular, the models include both feedforward and feed-
back connections, thereby allowing information about the errors made by the network to
propagate throughout the network without requiring an external program to compute the
errors. Furthermore, these dynamics, as well as the synaptic plasticity, can be described within
a common framework of energy minimisation. We divide the reviewed models in two classes
differing in how the errors are represented, and we summarise them in the following sections.

Temporal-Error Models
This class of model encodes errors in the differences in neural activity across time. The first
model in this class is the contrastive learning model [37]. It relies on an observation that weight
changes proportional to an error (difference between predicted and target pattern) can be
decomposed into two separate updates: one update based on activity without the target
present and the other update with the target pattern provided to the output neurons [38]
(Box 2). Thus, the error back-propagation algorithm can be approximated in a network in which
the weights are modified twice: during prediction according to anti-Hebbian plasticity and
then according to Hebbian plasticity once the target is provided and the network converges
to an equilibrium (after the target activity has propagated to earlier layers via feedback
connections) [37]. The role of the first modification is to ‘unlearn’ the existing association
between input and prediction, while the role of the second modification is to learn the new
association between input and target.
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Box 2. Temporal-Error Models

Temporal-error models describe learning in networks with recurrent feedback connections to the hidden nodes
(Figure IA). The rate of change of activity of a given node is proportional to the summed inputs from adjacent layers,
along with a decay term proportional to the current level of activity (Figure IB). As the network is now recurrent, it is no
longer possible to write a simple equation describing how the activity depends on other nodes (such as Equation 1.1 in
Box 1); instead, the dynamics of neurons is described by the differential Equation 2.1 [72], where _x l denotes the rate of
change over time of xl (all equations in this figure ignore nonlinearities for brevity).

In the contrastive learning model, the weight modifications based on errors are decomposed into two separate changes
occurring at different times. To understand learning in this model, it is easiest to consider how the weights connecting to
the output layer are modified. Substituting Equation 1.4 into Equation 1.3, we see in Equation 2.2 that the weight
modification required by the back-propagation algorithm can be decomposed into two terms. The first term corre-
sponds to anti-Hebbian plasticity that should take place when the output activity is predicted based on the input
propagated through the network. The second term corresponds to Hebbian plasticity that should take place when the
output layer is set to the target pattern. O’Reilly [37] demonstrated that in the presence of backward connections, the
information about the target pattern propagates to earlier layers, and an analogous sequence of weight modifications in
the hidden layers also approximates a version of the back-propagation algorithm for recurrent networks [72].

In the continuous update model, the output nodes are gradually changed from the predicted pattern (x3|:t) towards the
target values (t), as shown for a sample neuron in Figure ID. Thus, the temporal derivative of output activity ( _x 3) is
proportional to (t � x3|:t), that is, to the error on the output (defined in Equation 1.4). Hence, the weight
modification required by back-propagation is simply equal to the product of presynaptic activity and the rate
of change of the postsynaptic activity (Equation 2.3).

1.4 into 1.3:

Contras�ve lear ning:

Con�nu ous
update:

Time

(A)

(B)

(C)

Dynamics:

(D)

(2.2)

(2.3)

(2.1)

Figure I. Temporal-Error Models. (A) Network architecture. (B) Dynamics. (C) Contrastive learning. (D) Continuous
update.
Although the weight modifications in the contrastive learning model involve locally available
information, implementing them biologically would require a global signal informing the network
which phase it is in (whether the target pattern influences the network or not) as that determines
whether the plasticity should be Hebbian or anti-Hebbian. It is not clear whether such a control
Trends in Cognitive Sciences, March 2019, Vol. 23, No. 3 239



signal exists in the brain. This concern can be alleviated if the determination of learning phases is
coordinated by information locally available in the oscillatory rhythms [39], such as hippo-
campal theta oscillations [40]. In these models, the neurons in the output layer are driven by
feedforward inputs in one part of the cycle and forced to take the value of the target pattern in
the other.

The complications of separate phases have been recently addressed in the continuous update
model [11], where during training the output neuron activities are gradually changed from the
predicted pattern towards the target. In this case, the rate of change of the output units is
proportional to the error terms (Box 2). Consequently, the weight modification required by the
back-propagation algorithm could arise from local plasticity based on the rate of change of
activity. Although the continuous update model does not involve two different learning rules
during prediction and learning, it still requires a control signal indicating whether the target
pattern is present or not, because plasticity should not take place during prediction.

Explicit-Error Models
In this section, we describe alternative models that do not require control signals but as a trade-
off have more complex architectures that explicitly compute and represent errors.

It has been recently noticed [14,41] that the error back-propagation algorithm can be approxi-
mated in a widely used model of information processing in hierarchical cortical circuits called
predictive coding [42]. In its original formulation, the predictive coding model was developed for
unsupervised learning, and it has been shown that when the model is presented with natural
images, it learns representations similar to those in visual cortex [42]. Predictive coding models
have also been proposed as a general framework for describing different types of information
processing in the brain [43]. It has been recently shown that when a predictive coding network is
used for supervised learning, it closely approximates the error back-propagation algorithm [14].

An architecture of a predictive coding network contains error nodes that are each associated
with corresponding value nodes. During prediction, when the network is presented with an
input pattern, activity is propagated between the value nodes via the error nodes. The network
converges to an equilibrium, in which the error nodes decay to zero and all value nodes
converge to the same values as the corresponding artificial neural network (Box 3). During
learning, both the input and the output layers are set to the training patterns. The error nodes
can no longer decrease their activity to zero; instead, they converge to values as if the errors
had been back-propagated [14]. Once the state of the predictive coding network converges to
equilibrium, the weights are modified, according to a Hebbian plasticity rule. These weight
changes closely approximate that of the back-propagation algorithm.

An important property of the predictive coding networks is that they work autonomously:
irrespective of the target pattern being provided, the same rules for node dynamics and
plasticity are used. If the output nodes are unconstrained, the error nodes converge to zero,
so the Hebbian weight change is equal to zero. Thus, the networks operate without any need
for external control except for providing different inputs and outputs. However, the one-to-one
connectivity of error nodes to their corresponding value nodes is inconsistent with diffused
patterns of neuronal connectivity in the cortex.

A solution to this inconsistency has been proposed in several models in which the error is
represented in dendrites of the corresponding neuron [44–46]. In this review article, we focus
on a popular model called the dendritic error model [13]. This model describes networks of
240 Trends in Cognitive Sciences, March 2019, Vol. 23, No. 3



Box 3. Predictive Coding Model

Predictive coding networks include error nodes each associated with corresponding value nodes (Figure IA). The error
nodes receive inhibition from the previous layer and excitation from the corresponding value nodes and thus compute
the difference between them (Equation 3.1). The value nodes get feedforward inhibition from corresponding error
nodes and feedback from the error nodes in the next layer. In the predictive coding network, the value nodes act as
integrators, so they add their input to their current activity level (Equation 3.2).

During prediction, when the network is presented only with an input pattern, the information is propagated between the
value nodes via the error nodes. As the output layer is unconstrained, the activity of error nodes converges to zero,
because the value nodes change their activity until the feedback they send to their corresponding error nodes balances
the feedforward inhibition received by error nodes. At this state, the left side of Equation 3.1 is equal to 0, and by
rearranging terms (Figure IC), we observe that the activity of value nodes is equal to the weighted sum of value nodes in
the previous layer, exactly as in artificial neural networks [Equation 1.1 with f xð Þ ¼ x].

During learning, when the network is presented with both input and target patterns, the activity of error nodes may not
decrease to zero. Learning takes place when the network is in equilibrium ( _x l ¼ 0). At this stage the left side of
Equation 3.2 is equal to 0, and by rearranging terms (Figure ID), we observe that the activity of error nodes is
equal to a weighted sum of errors from the layer above, bearing the same relationship as in the back-propagation
algorithm [Equation 1.5 with f xð Þ ¼ x]. At convergence, the weights are modified according to Equation 1.3,
which here corresponds to Hebbian plasticity dependent on the activity of pre- and postsynaptic neurons.

Dynamics:

(3.1)

(3. 2)

Inh ibitory

Excitatory

(A)

(B)

Durin g predic�on
(C)

so f rom 3.1

Durin g lear ning
(D)

so f rom 3.2

Figure I. Predictive Coding. (A) Network architecture. Blue and red circles denote the value and error nodes,
respectively. Arrows and lines ending with circles denote excitatory and inhibitory connections, respectively; green
double lines indicate connections between all neurons in one layer and all neurons in the next layer, while single black
lines indicate within layer connections between a corresponding error and value node (see key). (B) Dynamics (for a
simple case of linear function f; for details of how nonlinearities can be introduced, see [14]). (C) Prediction. (D) Learning.
pyramidal neurons and assumes that the errors in the activity of pyramidal neurons are
computed in their apical dendrites. In this model, the apical dendrites compare the feedback
from the higher levels with a locally generated prediction of higher-level activity computed via
interneurons.

An easy way to understand why such an architecture approximates the back-propagation
algorithm is to notice that it is closely related to predictive coding networks, which approximate
artificial neural networks. Simply rearranging the equations describing the dynamics of predic-
tive coding model gives a description of a network with the same architecture as the dendritic
error model, in which dendrites encode the error terms (Box 4).
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Box 4. Dendritic Error Model

The architecture of the dendritic error model [13] is shown in Figure IA. In this network, the activity is propagated through
the layers via connections between pyramidal neurons. The errors in the activity of pyramidal neurons are computed in
their apical dendrites.

The relationship between predictive coding and dendritic error models can be established by observing that substituting
the definition of error nodes from the predictive coding model, Equation 3.1, into Equation 3.2, produces Equation
4.1, which describes the dynamics of pyramidal neurons in Figure IA. The right side of Equation 4.1 consists of four
terms corresponding to various connections in the figure. The first is simply a decay, the second is a feedforward input
from the previous layer, the third is a feedback from the layer above, and the fourth term is a within layer recurrent input.
This last term has a negative sign, while pyramidal neurons are excitatory, so it needs to be provided by interneurons. If
we assume that the interneurons have activity il = Wlxl, they need to be connected with the pyramidal neurons via
weights Wl.

The key property of this network is that when it converges to the equilibrium, the neurons with activity xl encode their
corresponding error terms dl in their apical dendrites. To see why this is the case, note that the first two terms on the right
of Equation 4.1 are equal to �dl according to the definition of Equation 3.1. At equilibrium _x l ¼ 0, the two last terms in
Equation 4.1 must be equal to dl (so that the right-hand side of Equation 4.1 adds up to 0), and it is these two
terms that define the input to the apical dendrite. As the errors dl are encoded in apical dendrites, the weight
modification required by the back-propagation algorithm (Equation 1.3) only involves quantities encoded in pre-
and postsynaptic neurons.

Appropriately updating weights between pyramidal and interneurons is more challenging. This is because the inter-
neurons must learn to produce activity encoding the same information as the higher-level pyramidal neurons. To allow
training of the interneurons, the dendritic error model includes special one-to-one connections to the interneurons from
corresponding higher-level pyramidal neurons (black dashed arrows in Figure IA).
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Figure I. Dendritic Error Model. (A) Network architecture. Blue circles indicate pyramidal neurons, red rectangles
indicate their apical dendrites, and purple circles denote interneurons. (B) Dynamics.
As the error term is now encoded within a neuron’s compartment, the update of weights
between pyramidal neurons required by the back-propagation algorithm corresponds to local
synaptic plasticity. Error information can be transmitted from the apical dendrite to the rest of
the neuron through internal signals. For example, a recent computational model proposed that
errors encoded in apical dendrites can determine the plasticity in the whole neuron [12]. The
model is based on observations that activating apical dendrites induces plateau potentials via
calcium influx, leading to a burst of spikes by the neuron [47]. Such bursts of spikes may
subsequently trigger synaptic plasticity [48,49].
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Although the dendritic error network makes significant steps to increase the biological realism
of predictive coding models, it also introduces extra one-to-one connections (dotted arrow in
Box 4) that enforce the interneurons to take on similar values to the neurons in next layer and
thus help them to predict the feedback from the next level. Furthermore, the exact dynamics in
the dendritic error model are much more complex than that given in Box 4, as it describes
details of changes in membrane potential in multiple compartments. Nevertheless, it is impor-
tant to highlight that the architecture of dendritic error networks can approximate the back-
propagation algorithm, and it offers an alternative hypothesis on how the computations
assumed by the predictive coding model could be implemented in cortical circuits.

Comparing the Models
Given the biological plausibility of the above-mentioned models, in this and the coming
sections, we compare the models in terms of their computational properties (as more efficient
networks may be favoured by evolution) and their relationships to experimental data (sum-
marised in Table 1).

Computational Properties
For correct weight modification, the temporal-error models require a mechanism informing
whether the target pattern constrains the output neurons, while the explicit-error models do
not. However, as a trade-off, the temporal-error models have simpler architectures, while the
explicit-error models need to have intricate architectures with certain constraints on connec-
tivity, and both predictive coding and the dendritic error model include one-to-one connections
in their network structure. As mentioned, there is no evidence for such one-to-one connectivity
in the neocortex.

The models differ in the time required for signals to propagate through the layers. To make a
prediction in networks with L layers, predictive coding networks need to propagate information
through 2L � 1 synapses, whereas the other models only need to propagate through L � 1
synapses. This is because in a predictive coding network, to propagate from one layer to the
next, the information must travel via an error neuron, whereas in the other models the
Table 1. Comparison of Models

Temporal-error model Explicit-error model

Contrastive learning Continuous update Predictive coding Dendritic error

Propertiesa

Control signal Required Required Not required Not required

Connectivity Unconstrained Unconstrained Constrained Constrained

Propagation time L-1 L-1 2L-1 L-1

Pre-training Not required Not required Not required Required

Error encoded in Difference in activity
between separate
phases

Rate of change of
activity

Activity of specialised
neurons

Apical dendrites of
pyramidal neurons

Data accounted for Neural responses
and behaviour in a
variety of tasks

Typical spike-time-
dependent plasticity

Increased neural
activity to
unpredicted stimuli

Properties of
pyramidal neurons

MNIST performanceb �2–3 – �1.7 �1.96

aGreen indicates properties desired for biological plausibility, while red indicates less desired properties.
bThese are error percentages reported on a testing set in a benchmark task of handwritten digit classification (lower is better), for predictive coding [14], dendritic error
[13], and contrastive learning models [22] (in this simulation, the output neurons were not set to the target pattern, but slightly moved or ‘nudged’ towards it). We are not
aware of reported simulations of the continuous update model on this benchmark problem. MNIST, Modified National Institute of Standards and Technology database.
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information is propagated directly to the neurons in the layer above. There is a clear evolutionary
benefit to propagating information via fewer synapses, as it would result in faster responses and
a smaller number of noise sources.

In the dendritic error model, for errors to be computed in the dendrites, the inhibitory inter-
neurons first need to learn to predict the feedback from the higher level. Thus, before the
network can learn feedforward connections, ideally the inhibitory neurons need to first be pre-
trained. Although it has been shown that the feedforward and inhibitory weights can be learned
in parallel, learning in the dendritic error model may well be slower as the reported number of
iterations required to learn a benchmark task was higher for the dendritic error model [13] than
for contrastive learning [22] and predictive coding [14] models. Such statements, however,
should be taken with reservations as not only were simulations not necessarily comparable but
also computations in standard von-Neumann computers may not be representative of com-
putations in biological hardware.

Relationship to Experimental Data
The models differ in their predictions on whether errors should be explicitly represented in
neural activity. In particular, the predictive coding model includes dedicated neurons encoding
errors, and the dendritic error model suggests that errors computed in dendrites may trigger
bursts of firing of pyramidal neurons, while in temporal models there is no direct association
between error and the overall activity level at a given time. In line with the explicit-error models,
increased neural activity has been observed when sensory input does not match the expecta-
tions encoded by higher-level areas. For example, responses of neurons in the primary visual
cortex were increased at brief intervals in which visual input did not match expectation based on
animal movements [50]. An increase in neural activity when expectations about stimuli were
violated has also been found with fMRI [51]. Further details are discussed in several excellent
reviews [52–55]. The two explicit models differ in predictions on whether errors and values are
represented by separate neuronal populations or within the same neurons. Experimental data
relevant to this question have been reviewed in an excellent chapter by Kok and de Lange [56].
Although they conclude that there is ‘no direct unequivocal evidence for the existence of
separate populations’, they discuss several studies suggesting preferential encoding of errors
and values by different neurons. For example, in a part of visual cortex (inferior temporal cortex),
the inhibitory neurons tended to have higher responses to novel stimuli, while excitatory
neurons typically produced highest response for their preferred familiar stimuli [57]. Kok
and de Lange point that these responses may potentially reflect error and value nodes,
respectively [56].

Each model accounts for specific aspects of experimental data. The models based on
contrastive learning rules have been shown to reproduce neural activity and behaviour in a
wide range of tasks [58]. The learning rule in the continuous update model (in which the synaptic
modification depends on the rate of change of the postsynaptic neuron; Figure 1A), can be
implemented with classic spike-time-dependent plasticity (Figure 1B) [11]. In this form of
plasticity, the direction of modification (increase or decrease) depends on whether the spike
of a presynaptic neuron precedes or follows the postsynaptic spike [59]. Figure 1C shows the
effect of such plasticity in a case when the postsynaptic neuron increases its firing. If the
postsynaptic spike follows the presynaptic spike, the synaptic weight is increased (pink area),
while if the postsynaptic spike precedes the presynaptic spike, the weight is decreased (yellow
area). If the postsynaptic neuron increases its firing rate (as in the example), there will be more
postsynaptic spikes in pink than in yellow area on average, so the overall weight change will be
positive. Analogously, the weight is weakened if the postsynaptic activity decreases (Figure 1D).
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Figure 1. Relationship between Learning Rules and Spike-Time-Dependent Plasticity. (A) Plasticity dependent
on the rate of change of postsynaptic activity, illustrated by the left column of panels. (B) Asymmetric spike-time-
dependent plasticity often observed in cortical neurons [59]. The curve schematically shows the change in synaptic
weights as a function of the difference between the timings of postsynaptic and presynaptic spikes. Red and orange parts
of the curve correspond to increases and decreases in synaptic weights, respectively. (C) Strengthening of a synaptic
weight due to increasing postsynaptic activity. Hypothetical spike trains of two neurons are shown. The top sequence
corresponds to an output neuron, which increases its activity over time towards the target (see Figure ID in Box 2). The
bottom sequence corresponds to a neuron in the hidden layer; for simplicity, only a single spike is shown. The pink and
yellow areas correspond to spike timings in which the weights are increased and decreased, respectively. In these areas
the differences in spike timing result in weight changes indicated by red and orange parts of the curve in the panel B. (D)
Weakening of weight due to decrease in postsynaptic activity. (E) Plasticity dependent on postsynaptic activity, illustrated
by the right column of panels. In the equation, x0 denotes the baseline firing rate. (F) Symmetric spike-time-dependent
plasticity, where weight change depends on spike proximity. (G) Increase in synaptic weight due to high activity of the
postsynaptic neuron. (H) Decrease in synaptic weight when the postsynaptic neurons is less active.
In summary, with asymmetric spike-time-dependent plasticity, the direction of weight change
depends on the gradient of a postsynaptic neuron activity around a presynaptic spike, as in the
continuous update model.

The relationship of spike-time-dependent plasticity to other models requires further clarifying
work. Nevertheless, Vogels and colleagues [60] demonstrated that a learning rule in which the
direction of modification depends on activity of neurons in equilibrium (Figure 1E), as in the
predictive coding model, can arise from an alternate form of spike-time-dependent plasticity.
They considered a form of plasticity where the weight is increased by nearly coincident pre- and
postsynaptic spikes, irrespectively of their order, and additionally the weight is slightly
decreased by each presynaptic spike. The overall direction of weight modification in this rule
is shown in Figure 1F. Such a form of plasticity may exist in a several types of synapse in the
Trends in Cognitive Sciences, March 2019, Vol. 23, No. 3 245



brain [61]. Figure 1G illustrates that with such plasticity, the weights are increased if the intervals
between pre- and postsynaptic spikes are short, which is likely to occur when the two neurons
have high activity. When the postsynaptic neuron is less active (Figure 1H), the short intervals
(pink area) are less common, while longer intervals are more common (yellow area), so overall
the weight change is negative. In summary, with symmetric spike-time-dependent plasticity the
direction of weight change depends on whether the postsynaptic neuron activity is above or
below a certain level (which may correspond to a baseline level typically denoted with zero in
computational models), as in the predictive coding model.

The dendritic error model describes the computations in apical dendrites of pyramidal neurons
and features of cortical micro-circuitry such as connectivity of a group of interneurons called the
Martinotti cells, which receive input from pyramidal neurons in the same cortical area [62] and
project to their apical dendrites [63]. Furthermore, there is some evidence that inhibitory
interneurons also receive feedback from higher areas in the cortical hierarchy [64].

Integrating Models
The above-mentioned comparison shows that each model has its own computational advan-
tages, accounts for different data, and describes plasticity at different types of synapses. It is
important to note that the cortical circuitry is much more complicated than any of the proposed
models’ architectures. Therefore, the models presented above need not be viewed as com-
petitors but may be considered as descriptions of learning in different motifs of more complex
brain networks.

Different classes of models may be more suited for different tasks faced by brain networks. One
task engaging the primary sensory areas is predicting the next value of sensory input from the
previous ones. A recent modelling study suggests that primary visual and auditory cortices may
use an algorithm similar to back-propagation while learning to predict sensory input [65]. This
study demonstrated that the temporal properties of receptive field in these areas are similar to
those in artificial neural networks trained to predict the next video or audio frames on the basis of
past history in clips of natural scenes [65]. In such sensory prediction tasks, the target (i.e., the next
‘frame’ of sensory input) always arrives,so the temporal-error models maybeparticularlysuited for
this task, as there is no need for the control signal indicating target presence.

The explicit-error models are suitable for tasks where the timing of target pattern presentation is
more uncertain. Although the predictive coding and dendritic error networks are closely related,
they also exhibit a trade-off: the predictive coding networks are slow to propagate information
once trained, while the dendritic error networks are slower to train. It is conceivable that cortical
networks include elements of predictive coding networks in addition to dendritic error motifs, as
the cortical networks include many other interneuron types in addition to the Martinotti cells and
have a much richer organisation than either model. Such a combined network could initially rely
on predictive coding motifs to support fast learning and, with time, the dendritic error models
could take over, allowing faster information processing. Thus, by combining different motifs,
brain networks may ‘beat the trade-offs’ and inherit advantages of each model.

Furthermore, predictive coding models may describe information processing in subcortical
parts of brain networks that do not include pyramidal cells and thus may not be able to support
computations of the dendritic error model. Indeed, it has been recently suggested how the
predictive coding model can be mapped on the anatomy of cerebellum [66], and the model may
also describe aspects of information processing in basal ganglia, where the dopaminergic
neurons are well known to encode reward prediction error in their activity [67].
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As the brain networks may incorporate elements of different models, it is important to under-
stand how individual models relate to each other and how they can be combined. Such insights
have been revealed by a recently proposed framework called equilibrium propagation
[22,68]. Here, it was noticed that the dynamics of many models of neuronal networks can
be defined in terms of the optimisation of a particular function. This function is known as the
network energy. For example, recurrently connected networks of excitatory neurons, such as
the temporal-error models, under certain assumptions converge to an equilibrium in which
strongly connected neurons tend to have similar levels of activity. Indeed, they minimise a
function that summarises the dissimilarity in the activity of strongly connected nodes, called the
Hopfield energy [69]. The predictive coding networks are also known to minimise a function
during their dynamics, called the free energy [70]. The free energy has a particularly nice
statistical interpretation, as its negative provides a lower bound on the log probability of
predicting the target pattern by the network [70,71] (in case of supervised learning, this
Hopfield energy

Energy-based models

Free  energy

Temporal -error models Explici t-error models

Dend ri�c
error

Predic�ve
coding

Con�nu ous
update

Contras�ve
lear ning

Input pa�ern only In put and  target pa�erns

Ac�vity change

Wei ght change

Energy = constant

Minimum

Figure 2. Equilibrium Propagation. The framework considers networks with dynamics described by the minimisation
of an energy function. As the activity of these networks converges to an equilibrium, the energy simultaneously decays
(blue arrows) to a minimum given the current weights. Once in equilibrium, the weighs are modified (green arrows). It has
been shown that network error can be minimised if the synaptic weights are modified in two steps (schematically illustrated
by the two displays in the top box; [22]). First, with only the input pattern provided, once the network converges, weights
are modified in the direction in which the energy increases. Second, the output layer is additionally constrained to values
closer to the target pattern (particular details described in [22]). Constraining the output nodes changes the energy
landscape for the units in the middle layers. Once these units converge to a new equilibrium, weights are modified in the
direction in which the energy decreases. Scellier and Bengio [22] noted that for temporal-error networks, this procedure
gives the contrastive learning rule (Equation 2.2). The predictive coding networks, however, converge to an equilibrium in
the first step where the free-energy function reaches its global minimum [14]; thus, there is no weight modification required
by the equilibrium propagation framework. Therefore, only a single phase (i.e., the second phase) and a single weight
update are required in the explicit-error models, and it only involves Hebbian plasticity.
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Outstanding Questions
Are biologically plausible deep learning
implementations robust to the lack of
symmetry between the feedforward
and feedback connections? The four
models reviewed use symmetric feed-
forward and feedback weights. In
these models, both sets of weights
are modified during learning, and the
plasticity rules maintain the symmetry.
As mentioned, such symmetry does
not exist in brain networks, so it is
important to continue investigations
into whether biologically plausible net-
works still perform robustly without
weight symmetry.

How can researchers make biologi-
cally plausible deep learning imple-
mentations scale? Although the
above-mentioned models perform well
on some tasks, it is unclear whether
they scale to larger problems. This is in
part due to the multiple iterations
required to update node activity via
network dynamics. The number of iter-
ations required does not currently
scale well for larger networks. Further
work optimising this process is
required if high depth networks are
to be trained.

How can efficient learning of temporal
sequences be implemented in biologi-
cal networks? The models reviewed
above focus on a case of static input
patterns, but the sensory input
received by the brain is typically
dynamic, and the brain has to learn
to recognise sequences of stimuli (e.
g. speech). To describe learning in
such tasks, artificial neural networks
have been extended to include recur-
rent connections among hidden units,
which provide a memory of the past. It
probability is conditioned on the input patterns). Since the dendritic error models have
approximately similar dynamics as the predictive coding models, all models reviewed above
can be considered as energy-based models described within the equilibrium propagation
framework (Figure 2).

The framework also prescribes how synaptic weights should be modified in any network that
minimises energy, and the weight modifications in the reviewed models indeed follow this
general rule (Figure 2). Importantly, the framework can describe learning in more complex
networks, which could include the elements of the different models. For any network for which
an energy function can be defined, the framework describes the plasticity rules of individual
synapses required for efficient learning.

Nevertheless, the form of energy function minimised by a network may influence its perfor-
mance. So far, the biologically plausible networks that perform best in a handwritten digit
classification task are those that minimise energies analogous to the free energy (Table 1). The
superior performance of networks minimising free energy may stem from the probabilistic
interpretation of free energy, which ensures that the networks are trained to maximise the
probability of predicting target patterns.

Concluding Remarks
This review article has not been exhaustive of all current biological models but nevertheless has
described main classes of recent models; those that represent errors temporally and those that
represent them explicitly, as well as a framework unifying these methods. These theoretic
results elucidate the constraints required for efficient learning in hierarchical networks. How-
ever, much more work needs to be done both empirically and theoretically, for example, on how
the networks scale to larger architectures [28], as well as linking theory to neurobiological data
(see Outstanding Questions).

It is crucial to map the models implementing efficient deep learning on biological networks in the
brain. In particular, mapping the nodes in the model on distinct cell types in the cortex may be a
fruitful route to identifying their computational function. The framework of equilibrium propa-
gation (or its future extensions) may prove particularly useful in this endeavour. Based on known
patterns of connectivity, models could be defined and their energy function formulated. The
framework could then be used to predict properties of synaptic plasticity that could be
compared with experimental data, and the results of such comparisons could be iteratively
used to improve the models.
is important to extend the models
reviewed above for learning through
time.

How can the dynamics of neural cir-
cuits be optimised to support efficient
learning? This question can be first
studied in models of primary sensory
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