
LETTER Communicated by Mehrdad Jazayeri

Neural Circuits Trained with Standard Reinforcement
Learning Can Accumulate Probabilistic Information
during Decision Making

Nils Kurzawa
n.kurzawa@stud.uni-heidelberg.de
Medical Research Council Brain Network Dynamics Unit, University of Oxford,
Oxford, OX1 3QT, U.K., and Institute of Pharmacy and Molecular Biotechnology,
University of Heidelberg, D-69120 Heidelberg, Germany

Christopher Summerfield
christopher.summerfield@psy.ox.ac.uk
Department of Experimental Psychology, University of Oxford,
Oxford OX1 3UD, U.K.

Rafal Bogacz
rafal.bogacz@ndcn.ox.ac.uk
Medical Research Council Brain Network Dynamics Unit, University of Oxford,
Oxford OX1 3UD, U.K., and Nuffield Department of Clinical Neurosciences,
University of Oxford, Oxford OX1 3UD, U.K.

Much experimental evidence suggests that during decision making, neu-
ral circuits accumulate evidence supporting alternative options. A com-
putational model well describing this accumulation for choices between
two options assumes that the brain integrates the log ratios of the likeli-
hoods of the sensory inputs given the two options. Several models have
been proposed for how neural circuits can learn these log-likelihood
ratios from experience, but all of these models introduced novel and spe-
cially dedicated synaptic plasticity rules. Here we show that for a certain
wide class of tasks, the log-likelihood ratios are approximately linearly
proportional to the expected rewards for selecting actions. Therefore, a
simple model based on standard reinforcement learning rules is able to
estimate the log-likelihood ratios from experience and on each trial accu-
mulate the log-likelihood ratios associated with presented stimuli while
selecting an action. The simulations of the model replicate experimental
data on both behavior and neural activity in tasks requiring accumula-
tion of probabilistic cues. Our results suggest that there is no need for
the brain to support dedicated plasticity rules, as the standard mecha-
nisms proposed to describe reinforcement learning can enable the neural
circuits to perform efficient probabilistic inference.
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1 Introduction

Humans and other animals often have to choose a course of action based
on multiple pieces of information. Consider a cat deciding whether to chase
a bird in your back garden. Her decision will depend on multiple factors:
how far away the bird is, how tasty it looks, and how long it is until
humans will provide a bowl of kibble. To make the best decisions in novel
or unfamiliar settings, animals have to learn by trial and error how to
weigh information appropriately. In this letter, we study this question in
the context of laboratory tasks in which multiple cues signal which response
is most likely to be rewarded. We focus on how the weight associated with
each cue is learned over time, in situations where multiple stimuli are
present at each trial, and participants need to learn to appropriately assign
credit to each cue for successes or failures. This, in turn, will facilitate
subsequent decision making.

Two broad classes of theory have been developed to describe learn-
ing and decision making in such situations. The classical theory of re-
inforcement learning (RL) suggests that animals learn to predict scalar
reward outcomes for each cue or combination of cues (Rescorla & Wag-
ner, 1972). When multiple cues are presented, the animal’s total expected
reward is a sum of rewards associated with the stimuli presented. Fol-
lowing feedback, the individual reward expectations are updated propor-
tionally to the reward prediction error, defined as the difference between
reward obtained and expected. This model naturally generalizes to learn-
ing about expected rewards following actions (Sutton & Barto, 1998). The
model also captures essential aspects of learning in basal ganglia; much ev-
idence suggests that reward prediction error is encoded in phasic activity
of dopaminergic neurons (Schultz, Dayan, & Montague, 1997; Fiorillo, To-
bler, & Schultz, 2003), which modulates synaptic plasticity in the striatum
(Reynolds, Hyland, & Wickens, 2001; Shen, Flajolet, Greengard, & Surmeier,
2008).

Another line of theoretical research, based on the sequential probability
ratio test (SPRT), has focused on describing the integration of informa-
tion by humans or animals during perceptual classification tasks (Gold &
Shadlen, 2001; Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006; Yang &
Shadlen, 2007; de Gardelle & Summerfield, 2011). In order to explain the
SPRT, let us consider a probabilistic categorization task in which monkeys
can choose either a red or a green target by fixating either of them with
their gaze (Yang & Shadlen, 2007). Choices follow a combination of four
sequentially displayed shapes, each of which has a different probability
of appearing on trials when the green or red response was rewarding.
Gold and Shadlen (2001) proposed that in such tasks, animals learn the
log likelihood of each stimulus given the hypothesis of either action being
correct:
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ws = log
(

P(s|A1)

P(s|A2)

)
. (1.1)

In equation 1.1, A1 and A2 denote the hypotheses that a saccade to a red or
green target, respectively, will result in a reward, and s is an index of the
stimulus, which is in range s ∈ {1, . . . , m}, where m is the number of different
stimuli that can be presented during the task. P(s|A1) and, respectively,
P(s|A2) describe the likelihood that stimulus s would be observed given
either A1 or A2, and ws is the weight of evidence (WOE) which is defined
as the log ratio of both likelihoods. Stimulus s provides evidence for action
A1 if ws > 0, and vice versa.

Representing log-likelihood ratios allows easy integration of information
during decision making (Gold & Shadlen, 2001). While making a decision
on the basis on n stimuli, we wish to choose an action with a higher posterior
probability given the observed stimuli. However, instead of computing the
posterior probabilities themselves, it is easier to compute a decision variable
equal to the log ratio of posterior probabilities (Gold & Shadlen, 2007):

log
(

P(A1|s1, . . . , sn)

P(A2|s1, . . . , sn)

)

= log
(

P(A1)P(s1, . . . , sn|A1)

P(A2)P(s1, . . . , sn|A2)

)

= log
(

P(A1)

P(A2)

)
+ log

(
P(s1|A1)

P(s1|A2)

)
+ . . . + log

(
P(sn|A1)

P(sn|A2)

)

= log
(

P(A1)

P(A2)

)
+

n∑
j=1

ws j
. (1.2)

In the transition from the first to the second line, we used Bayes’ theorem,
and in the transition from the second to the third line, we assumed con-
ditional independence of stimuli. Thus, the ratio of posterior probabilities
can be simply computed by adding the WOEs associated with presented
stimuli to a term representing the initial, prior probabilities (this term is
equal to zero when the prior probabilities of the two actions are equal).
Choosing action A1 or A2 when the sign of the above decision variable is
positive or negative, respectively, is equivalent to choosing the action with
a higher posterior probability.

These theories (RL and SPRT) have largely been developed in parallel.
Several models have attempted to combine the two approaches and de-
scribe how animals learn WOEs of stimuli using RL (Soltani & Wang, 2010;
Coulthard et al., 2012; Berthet, Hellgren-Kotaleski, & Lansner, 2012; Soltani,
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Khorsand, Guo, Farashahi, & Liu, 2016). However, these models employed
novel synaptic plasticity rules, which for some of the models were relatively
complex, and there is no evidence that synapses can implement these rules.
Building on the ideas from these earlier models, this letter shows that WOEs
can also be learned with a standard and simple plasticity rule. In particular,
we show that for a certain class of tasks, the expected reward for selecting
action A1 with a stimulus s present is approximately linearly proportional to
ws. Therefore, a simple model based on the standard Rescorla-Wagner rule
is able to learn WOEs and accumulate the WOEs associated with presented
stimuli while selecting an action. The main novel contribution of this letter
is showing that the learning of WOEs (previously demonstrated only with
unconventional learning rules) can also be achieved with the standard RL
plasticity rules, which are thought to be implemented in the basal ganglia
circuits.

In the next section, we describe the class of tasks under consideration
and present a model of learning in these tasks. In section 3, we show that
this model approximates decision making through accumulation of WOEs,
analyze how the WOEs estimated by the model depend on task and model
parameters, and compare the model with the data. Finally, in section 4, we
compare the proposed model with previous models and discuss further
experimental predictions.

2 Model

We consider a class of tasks often used to investigate the neural bases of
probabilistic decision making (Knowlton, Mangels, & Squire, 1996; Yang &
Shadlen, 2007; Philiastides, Biele, & Heekeren, 2010; de Gardelle & Sum-
merfield, 2011; Coulthard et al., 2012). On each trial, participants choose
between two actions on the basis of multiple sensory cues, and on a given
trial, only one of the actions is rewarded. At a start of each trial, n cues
are presented, which are sampled with replacement from a set of m. The
probability of each cue appearing depends on which action is rewarded on
a given trial, so the subject can deduce from the cues which action is more
likely to be rewarded. After the decision, a reward of r = 1 is received if
the correct action was selected and no reward r = 0 if the incorrect action is
selected.

2.1 Reinforcement Learning Model. To capture learning in such tasks
we employ a very simple model (single-layer perceptron) that learns based
on the standard Rescorla-Wagner rule for learning in tasks with multiple
stimuli. This model is schematically illustrated in Figure 1. It is composed
of an input layer (e.g., putative cortical sensory neurons) xs selective for the
cues s and an output layer (e.g., putative striatal neurons) yi selective for
actions i. A similar two-layer structure has been used in other models of
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Figure 1: Schematic illustration of the model. The input layer is composed of
m + 1 nodes x0, x1, . . . , xm representing stimuli, and each of them is connected to
nodes selective for actions y1 and y2 via connections with weights qi j. Dopamin-
ergic neurons (DA) receive input encoding reward, and inhibition encoding
the value of chosen action, and thus compute reward prediction error. The
dopaminergic neurons modulate changes of synaptic weights qi j.

learning stimulus-response associations (Law & Gold, 2009; Gluck & Bower,
1998).

The nodes xs have activity equal to the number of stimuli s present
on a given trial (i.e., xs = 0 if stimulus s is not present, xs = 1 if stimulus
s is present, xs = 2 if two copies of stimulus s are present). Additionally,
node x0 is always set to x0 = 1; we will refer to it as a bias node. The
reward prediction for an action Ai is defined simply as the synaptic inputs
to nodes yi:

yi =
m∑

j=0

qi jx j. (2.1)

In equation 2.1, qi j denote the synaptic weights from a neuron selective for
stimulus j to the neuron selective for action i. Thus, for j > 0, the weights qi j
describe by how much the expected reward for selecting action i increases
after observing stimulus j, while qi0 describes the expected reward for
selecting action i irrespective of stimuli presented.

After computing yi, the action is chosen stochastically such that the
probability of selecting Ai follows the softmax distribution,

Pi = eβyi∑2
u=1 eβyu

, (2.2)



Learning Likelihood Ratios with Reinforcement Learning 373

where β is a parameter that controls whether the models choose actions with
the highest expected reward (high β) or explore different actions (low β).

After the choice, the weights qi j to the neuron selective for the chosen
action Ai are updated with

qi j = qi j + α(r − yi)x j, (2.3)

where α represents the learning rate (which was set to α = 0.05 for all
simulations). According to this rule, the weights between sensory nodes
representing presented stimuli and the node representing the chosen action
are modified proportionally to the reward prediction error (r − yi). So these
weights are increased if the reward was higher than predicted and decreased
if the reward was lower than predicted.

To implement such learning, at the time of choice, a memory trace, known
as the eligibility trace, needs to form in synapses between neurons selective
for presented stimuli and the neurons selective for the chosen action (Sutton
& Barto, 1998). Subsequently, when the feedback is provided, the eligible
synapses should be modified proportionally to the reward prediction error.
The reward prediction error is thought to be encoded in the phasic activity
dopaminergic neurons (Schultz et al., 1997). They receive inhibitory input
from striatal neurons (Watabe-Uchida, Zhu, Ogawa, Vamanrao, & Uchida,
2012), which in our model encode yi. Assuming that the dopaminergic
neurons also receive an input encoding reward, they could subtract these
two inputs and compute r − yi. The dopaminergic neurons send dense
projections to striatum and modulate plasticty of cortico-striatal synapses
(Shen et al., 2008).

It has been also proposed how the weights qi j are physically represented
in strengths of cortico-striatal connections. The striatal projection neurons
can be divided in two groups: those whose activity can facilitate movements
(Go neurons, expressing D1 receptors) and those inhibiting movements
(NoGo neurons, expressing D2 receptors) (Kravitz et al., 2010). Compu-
tational models have been proposed in which the weights of Go neurons
increase, while the weights of NoGo neurons decrease when the prediction
error is positive, and vice versa when prediction error is negative (Frank,
Seeberger, & O’Reilly, 2004; Collins & Frank, 2014; Mikhael & Bogacz, 2016).
It has been shown that for a certain class of plasticity rules, the difference
between the weights of Go and NoGo neurons encodes qi j, that is, this
difference evolves according to equation 2.3 (Mikhael & Bogacz, 2016).

At the start of each simulated experiment, weights are initialized to
qi j = 0 for j > 0, while the weights from the bias node are set to qi0 = 0.5
and kept constant in all simulations except for those in section 3.3.

2.2 Generating Stimuli. Before each simulated trial, it was decided
randomly which action would be rewarded, according to prior probabilities
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P(Ai), which were set to P(A1) = P(A2) = 0.5 in all simulations except when
indicated otherwise. Depending on which action i was rewarded, n cues
were drawn randomly with replacement according to probabilities P(s|Ai).

In the experimental studies considered here, the WOEs for individual
stimuli are reported (rather than P(s|Ai)). Here, for consistency, we also as-
sume that the stimuli are assigned unique weights w j, and in most simula-
tions we use {w1, w2, . . . , w8} = {−2,−1.5,−1,−0.5, 0.5, 1, 1.5, 2}. We com-
pute the probabilities P(s|Ai) from ws using

P(s|A1) = 2 · σ (ws)

m
, P(s|A2) = 2 · σ (−ws)

m
, (2.4)

where σ (w) is a sigmoid function:

σ (w) = 1
1 + e−w

. (2.5)

Equations 2.4 satisfy the desired constraints, as the logarithm of ratio of
probabilities defined in this ways is ws, and the probabilities P(s|Ai) add
up to 1 across stimuli for sets of WEOs we consider, which contain pairs of
stimuli with opposite WOEs.

3 Results

First, we investigate the values to which the weights converge in the model.
We first derive a general condition that the weights need to satisfy at the
stochastic fixed point and then analyze its implications for different variants
of the task.

At the stochastic fixed point, the expected change in weights in equation
2.3 must be 0, that is, E(r − yi) = 0, which implies that the weights at the
stochastic fixed point must satisfy

m∑
j=0

q∗
i jx j = E(r|Ai, s1, . . . , sn). (3.1)

Since we assumed that only one action is rewarded, the expected reward
for choosing action A1 is equal to

E(r|A1, s1, . . . , sn) = 1 · P(A1|s1, . . . , sn) + 0 · P(A2|s1, . . . , sn)

= P(A1|s1, . . . , sn) (3.2)

(which can analogously be derived for A2). Because we wish to relate the
expected reward to a ratio of probabilities, we note that for two alternatives
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P(A1|s1, . . . , sn) + P(A2|s1, . . . , sn) = 1, the following relationship holds:

P(A1|s1, . . . , sn)

P(A2|s1, . . . , sn)
= P(A1|s1, . . . , sn)

1 − P(A1|s1, . . . , sn)
. (3.3)

Rearranging terms, we obtain

P(A1|s1, . . . , sn) = σ

(
log

P(A1|s1, . . . , sn)

P(A2|s1, . . . , sn)

)
, (3.4)

where σ is a sigmoid function defined in equation 2.5. Combining equations
3.1, 3.2, 3.4, and using Bayes’ theorem, we obtain the relationship between
the synaptic weights learned by RL and WEOs:

m∑
j=0

q∗
1 jx j = σ

⎛
⎝log

(
P(A1)

P(A2)

)
+

n∑
j=1

ws j

⎞
⎠ . (3.5)

To make it easier to understand what weights q∗
i j satisfy the above condition,

we start with a very simple version of the task and progress through analysis
of more complex versions.

3.1 Learning with a Single Stimulus. We first consider a simple case
when only n = 1 stimulus is presented on a trial and prior probabilities of
two actions are equal. When a single stimulus j is presented, only sensory
nodes x j and x0 are equal to 1, while other sensory nodes are 0. Since we
assumed equal prior probabilities of action, we also fix qi0 = 1

2 , so then
equation 3.5 becomes

q∗
1 j = σ (w j) − 1

2
. (3.6)

Figure 2A shows the values of weights at the end of the simulation, and in-
deed for one stimulus presented per trial (n = 1), the weights after learning
q1 j are close to function σ (w j) − 1

2 .
Furthermore, it is important to consider that the sigmoid function σ (w)

features an approximately linear region for w ∈ [−1, 1]. The linear approx-
imation of sigmoid can be found by a Taylor expansion of σ (w) around 0:

σ (w)≈ σ (0) + σ ′(0)w

= 1
2

+ e−0

(1 + e−0)2 w

= w

4
+ 1

2
. (3.7)



376 N. Kurzawa, C. Summerfield, and R. Bogacz

Figure 2: Learned weights for different ranges of assigned weights. (A) Fi-
nal learned weights q1 j for different numbers of stimuli presented per trial
after 100 repetitions of 5000 learning iterations with exploration parameter
β = 0 were plotted over assigned weights: {w1, w2, . . . , wm} = {−2,−1.5, −1,

−0.5, 0.5, 1, 1.5, 2}. Standard errors are indicated by error bars. The solid
line represents σ (w j) and the dashed line

w j
4 . (B) Final learned weights

q1 j after analogous simulations with assigned weights: {w1, w2, . . . , wm} =
{−1, −0.75, −0.5, −0.25, 0.25, 0.5, 0.75, 1}.

Thus, when we simulated a task with WOE w j ∈ [−1, 1], we observed that
the weights learned by the model could be well approximated by q1 j ≈ w j

4
(see the dashed line in Figure 2B).

3.2 Learning with Multiple Stimuli. The analysis from section 3.1 can
be naturally extended to the case when n stimuli s1, . . . , sn are presented.
Then equation 3.5 becomes

n∑
j=1

q∗
1s j

= σ (wcum) − 1
2
, (3.8)

where wcum = ∑n
j=1 ws j

. When WOEs are chosen such that on a majority

of trials, wcum ∈ [−1, 1], then the sigmoid function in equation 3.8 can be
approximated by the linear function, and weights qi j = w j

4 approximately
satisfy that equation, which implies that the weights converge to similar
values as for the case of single stimulus (n = 1). This is illustrated in Figure
2B, which shows results of a simulation with WOEs relatively close to 0.
One can see that the weights for n = 2 and even n = 4 are relatively close
to those for n = 1.

When more extreme WOEs are used and wcum /∈ [−1, 1], the linear ap-
proximation does not hold. The simulations of this case are shown in
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Figure 2A, where symbols of different colors indicate how the weights
in the model depend on the number n of stimuli presented within a trial.
The weights converge to less extreme values when more stimuli are pre-
sented. In this simulation, when n > 1, the value of σ (wcum) is more likely to
exceed the linear range, and therefore the final weighting by the model for
each individual qi j will be damped. Let us, for example, consider the case in
which the model is presented with two stimuli in a trial: with ws1

= 1 and
ws2

= 1.5. If the weights were equal to the values as for n = 1 (i.e., q1s1
≈ 0.25,

and q1s2
≈ 0.375), then the expected reward would be y1 = 1.175, so even

if the reward r = 1 is received, the prediction error is negative and the
weights are decreased. The more stimuli are presented per trial, the more
the weights learned by the model will be damped.

Nevertheless, it is remarkable in Figure 2A that the weights q1 j learned
by the model remain an approximately linear function of w j, even for n > 1
when they are damped. This happens because all weights are damped, as
even the stimuli with w j closer to 0 may co-occur on the same trial with
stimuli with high w j, and so wcum may exceed the linear range of the sigmoid,
and weights of all stimuli on that trial will be damped. We will see in section
3.5 that for highly extreme weights, this linear relationship breaks, but the
relationship between q1 j and w j remains approximately linear for a wide
range of weights used in Figure 2A, which is similar to those used typically
in experimental studies (Yang & Shadlen, 2007; Philiastides et al., 2010).

Since q1 j ≈ cw j where c is a proportionality constant, the activity of neu-
rons selective for actions can be approximated by

y1 ≈ cwcum + 1
2
, y2 ≈ −cwcum + 1

2
. (3.9)

Thus, the activity of the action-selective nodes is proportional to the accu-
mulated WOE of stimuli presented so far (i.e., to the decision variable of
equation 1.2).

3.3 Learning Prior Probabilities. In all simulations so far, we assumed
for simplicity that the two actions were correct equally often, and we fixed
the weights from the bias node to qi0 = 0.5. Here we analyze to what values
these weights converge when the probabilities of two actions are no longer
the same.

Since qi0 encode the expected reward for selecting action i regardless of
the stimuli, we would expect them to converge to qi0 = P(Ai). In simulations
where the number n of stimuli per trial was fixed, qi0 converged to a value
between 0.5 and P(Ai) but closer to 0.5 (see Figure 3A). So although the qi0
moved slightly toward P(Ai), they never reached it. This happened because
such simulated trials did not sufficiently constrain learning. For example,
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Figure 3: Learning prior probabilities of actions. The left panels (A, C–E, I)
were obtained in simulations in which on each training trial, n = 4 stimuli
were presented, while the right panels (B, F–H, J) came from simulations in
which the number n of stimuli presented on each trial was randomly chosen
between 1 and 4. (A, B) The synaptic weights from the bias node obtained
in simulation with different prior probabilities of A1 (dashed lines indicate
the prior probabilities). (C–H) The synaptic weights from neurons represent-
ing stimuli in simulations with prior probability of A1 indicated above the
panels on the horizontal axis of panels A and B. Dashed lines indicate w j/4.
The dots represent the weights after 15,000 simulated trials, averages over 20
repetitions of the simulation. Simulations were performed using weights w j
with {w1, w2, . . . , wm} = {−1, −0.75, −0.5, −0.25, 0.25, 0.5, 0.75, 1.}. In the simu-
lations, the exploration parameter was set to β = 0. (I, J) The activity of node y1
during decision making in the models trained on a task where P(A1) = 0.8.
Each dot corresponds to a possible set of stimuli. Dashed lines indicate
identity.

if we consider n = 1, then the condition, which the weights need to satisfy
in the stochastic fixed point, given in equation 3.5, becomes

q∗
1 j + q∗

10 = σ

(
log

(
P(A1)

P(A2)

)
+ w j

)
. (3.10)
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Note that when m stimuli are used in the task, j ∈ 1, . . . , m, so there are
m equations that need to be satisfied, but there are m + 1 unknowns (q∗

10
to q∗

1m), so there are multiple sets of weight values that satisfy the above
condition.

In order for the model to learn the prior probabilities, the trials with
a different number n of stimuli per trial had to be intermixed. Figure 3B
shows that qi0 indeed converged to the vicinity of P(Ai).

To gain a sense of how learning of the prior probabilities affects subse-
quent decision behavior, Figures 3I and 3J show the activity of the decision
node y1 (selective for the more likely action) when the trained model is
presented with a particular set of stimuli. Each dot corresponds to a set of
stimuli, and the actual probability of action A1 being correct for a given
set is reflected by the position along the horizontal axis. Since the posterior
probability of action A1 being correct was equal to the expected reward, and
y1 is the reward predicted by the model, a perfectly trained model should
produce the activity on the identity line. Although model predictions are
generally close to the true expected reward, there are systematic departures
that are worth analyzing as similar misestimations of expected reward were
observed by Soltani et al. (2016).

When the model was trained with a fixed number of stimuli per trial (as
in the Soltani et al., 2016, study), the activity depended on the number of
stimuli present on a given testing trial (indicated by color in Figure 3I). In
particular, if only n = 1 stimulus was presented, the model underestimated
the reward for choosing action A1. This happened because the bias weight
q10 underestimated the prior probability (see Figure 3A). For a larger num-
ber of stimuli n, the activity y1 became closer to the expected reward. This
happened because the model incorporated information about prior proba-
bilities into learned weights, such that the weights for the more likely action
were increased. Note in Figures 3C to 3E that the majority of blue points
shift upward as the probability of action A1 increases. Therefore, when more
stimuli n were presented, these increased weights cumulated, raising the
activity y1. A similar dependence of expected reward on the number of
presented stimuli has been observed in an analogous task by Soltani et al.
(2016), and we will come back to it in section 4.

Figure 3J shows the activity of node y1, when the model has been trained
with the variable number of stimuli. Here, the activity y1 was closer to the
posterior probability of action A1 being correct for trials with n = 1 and
n = 2 stimuli than in Figure 3I, because the model has experienced such
trials during training. To help understand why the prediction is not perfect,
we need to analyze under what conditions the model is able to closely
approximate the decision variable of equation 1.2.

Let us consider to what values the other weights qi j converge when
priors are unequal. In the simulation of Figure 3B, q∗

10 = P(A1); hence, the
condition of equation 3.5 that the weights need to satisfy becomes
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P(A1) +
n∑

j=1

q∗
1s j

= σ

(
log

(
P(A1)

P(A2)

)
+ wcum

)
. (3.11)

The prior probability in equation 3.11 can be reexpressed using analysis
analogous to equations 3.3 and 3.4:

P(A1) = σ

(
log

(
P(A1)

P(A2)

))
(3.12)

Combining the above two equations, we obtain the following condition the
weights need to satisfy at the stochastic fixed point:

σ

(
log

(
P(A1)

P(A2)

))
+

n∑
j=1

q∗
1s j

= σ

(
log

(
P(A1)

P(A2)

)
+ wcum

)
. (3.13)

If the prior probabilities are sufficiently close to 0.5 and wcum is suffi-
ciently close to 0 so that the sigmoid on the right-hand side of equation 3.13
can be approximated as in equation 3.7, then the weight q∗

i j = w j

4 will ap-
proximately satisfy equation 3.13. Figures 3F and 3G show that the weights
indeed converge in the vicinity of qi j ≈ w j

4 , for priors close to 0.5, but not in
the case of the more extreme priors in Figure 3H. Equation 3.13 also implies
that the higher the prior probability, the closer wcum needs to be to 0 for the
weights to converge to q∗

i j ≈ w j

4 .
Let us now consider whether the model can incorporate learned priors

into the decision variable described in equation 1.2. If the prior probabilities
are sufficiently close to 0.5 and wcum is sufficiently close to 0 so that we can
approximate qi j ≈ w j

4 , then the activity of the unit selective for the first action
is approximately proportional to the decision variable of equation 1.2:

y1 = q10 +
n∑

j=1

q1s j
≈ 1

4

(
log

(
P(A1)

P(A2)

)
+ wcum

)
+ 1

2
. (3.14)

When the conditions described in the previous paragraph are not closely
satisfied, as in Figure 3H, then the accumulation of evidence will not be
fully accurate and the expected reward will not be closely estimated, as
seen in Figure 3J.

3.4 Properties of the Model. This section characterizes different aspects
of learning in the model in different variants of the task.
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Figure 4: Speed of learning. (A) The values of weights q1 j as a function of
learning iteration for different numbers n = 1, 2, 4 (blue, red, and green) stim-
uli presented at once. The weights are averaged over 100 repetitions of 5000
learning iterations with exploration parameter β = 0. (B) The number of tri-
als to convergence as a function of the number of stimuli presented per trial.
The number of trials to convergence was defined as the earliest trial number
t in which the difference between the value of weight q1,1 averaged over tri-
als ([t − 200]+, t + 200) of the 100 repetitions, and the average value on trials
(2000, 4000) was smaller than 0.01. For each n, the number of trials to conver-
gence was computed 20 times, and its average is plotted together with error
bars showing standard error.

3.4.1 Speed of Learning. Figure 4A compares how the weights changed
during learning for the different numbers n of stimuli presented in the
simulation shown in Figure 2A and reveals that the model converged faster
when more stimuli were presented at a time. This effect is illustrated in
Figure 4B, which shows the number of trials required for convergence
as a function of the number of stimuli presented per trial. The model’s
weights are able to converge faster due to the fact that more information
was presented at each trial and the final weights were less extreme when
more stimuli were present at a time.

3.4.2 Effect of Exploration Parameter. For simplicity, in all simulations so
far, we set the parameter β controlling how deterministic the choice is to
β = 0, which corresponds to random action selection. In order to test learn-
ing in the model with more deterministic action selection, we performed
simulations with different values for β. Figure 5A shows results when only
n = 1 stimulus was presented per trial. We found that in cases of high β,
which made the model choose only reward-promising actions, the neuron
selective for action A1 did not properly learn the weights of stimuli that
predicted a low reward for this action. This happened because for such
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Figure 5: Effect of exploration parameter on learning. Results of 100 repetitions
of 5000 learning iterations with (A) one stimulus presented per trial and (B) four
stimuli presented per trial.

stimuli, action A1 was rarely chosen. Nevertheless, we point out that the
neuron selective for action A2 did learn the weights of these stimuli (data
not shown), so the network as a whole was able to preferentially select ac-
tions with higher expected value (note that the softmax equation 2.2 can be
rewritten as P1 = σ (β(y1 − y2)) and P2 = σ (β(y2 − y1)), so the model makes
a choice on the basis of the difference in activity of the two action-selective
units).

The difficulty with learning weights for stimuli supporting the other
action vanished as we performed simulations featuring n = 4 stimuli per
trial (see Figure 5B). In this case, after extensive training, the model learned
weights of all stimuli as it inevitably had to choose actions on the basis
of four stimuli that may have included those predicting the nonchosen
action.

3.4.3. Effect of Stimulus Frequency. It has been reported that humans
weight stimuli that are unlikely to occur in learning tasks less strongly com-
pared to more frequently appearing ones, as subjects are more uncertain
about their influence and can update corresponding weights only infre-
quently (de Gardelle & Summerfield, 2011). To evaluate whether our model
was able to reproduce this behavior, it was confronted with the same type of
task as described above, but in this case, it featured pairs of stimuli with the
same weights: {w1, w2, . . . , w8} = {−2,−2 − 1,−1, 1, 1, 2, 2}. For each pair
of stimuli of the same weight, one was taken to appear more frequently
(P(s) = 4

20 ) than the other (P(s) = 1
20 ). While computing the likelihoods of

these stimuli, we used a formula analogous to equations 2.4 but scaled by
the actual P(s) rather than 1

m .
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A

Figure 6: Effect of stimulus frequency on learning. (A) Simulations with a low-
frequency difference ( 4

20 , 1
20 ) between stimuli of the same weight. (B) Simula-

tions with a high-frequency difference ( 199
800 , 1

800 ) between stimuli of the same
weight. One hundred repetitions of simulations with 5000 learning iterations
were performed with β = 0.

Figure 6A shows that given enough training, the weights for stimuli
with different frequency converge to similar values. In a second simulation,
we set the differences in frequencies to be more extreme among stimuli
with the same weight—P(s j) = 199

800 and P(s j) = 1
800 respectively—so that

the infrequent stimuli are presented only rarely. Figure 6B illustrates that
in this case, the weights for stimuli with lower frequency were closer to
0. This occurred because the infrequent stimuli were shown so rarely that
their weights had not converged in the course of the simulation.

3.5 Simulation of Primate Learning Behavior. Yang and Shadlen (2007)
conducted an experiment in which monkeys had to perform a probabilis-
tic decision task similar to those in our simulations. In the experiment,
they presented monkeys on each trial with n = 4 out of a total of m = 10

stimuli with the following WOEs: {wlog10
1 , w

log10
2 , . . . , w

log10
10 } = {−∞,−0.9 −

0.7,−0.5,−0.3, 0.3, 0.5, 0.7, 0.9,∞}. These WOEs were defined using log10
so are related to the WOE used so far according to

w
log10
s = log10

(
P(s|A1)

P(s|A2)

)
=

log
(

P(s|A1 )

P(s|A2 )

)
log(10)

= ws

log(10)
(3.15)

In the Yang and Shadlen (2007) experiment, the stimuli presented on each
trial were generated randomly with replacement, and then the probability
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Figure 7: Model simulations reflect different characteristics of primate learn-
ing behavior. (A) Naive weight of evidence against assigned weights from the
supplementary materials of Yang and Shadlen, 2007, replotted from Figure S3a.
(B) Learned weight of evidence after 100 repetitions of 1000 learning itera-
tions with β = 0. (C) Firing rates after presentation of the four stimuli within
a trial in the experiment of Yang and Shadlen (2007), replotted from Figure 2c.
(D) Difference in the activity of nodes selective for actions y1 − y2 of the model
in different epochs of stimuli presentation.

of two targets being rewarded was computed from

P(r = 1|A1, s1, s2, s3, s4)= 10
∑4

j=1 ws j

1 + 10
∑4

j=1 ws j

, (3.16)

P(r = 1|A2, s1, s2, s3, s4)= 1 − P(r = 1|A1, s1, s2, s3, s4). (3.17)

Yang and Shadlen (2007) estimated WOE represented by the animals from
behavioral data under different assumptions about the independence of the
stimuli. Figure 7A replots the “naive” WOE estimated under the assumption
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of stimuli being conditionally independent given action, which is typically
assumed in the models of decision making, and used in equation 1.2. We
found that our model simulated in the same paradigm was able to learn
weights similar to the ones the two monkeys learned in their experiments
(see Figure 7B). In order to compare our simulated final learned weights
with the naive WOE, which Yang and Shadlen (2007) defined in their work,
we defined the learned weight of evidence (LWOE) for our model data by
considering the linear approximation:

LWOEj =
4 q1 j

log(10)
. (3.18)

Yang and Shadlen (2007) also recorded the activity of neurons in a decision-
making area and observed it reflected integrated evidence for the action the
neuron was selective for, as shown in Figure 7C. The four displays show
the activity after the presentation of four consecutive stimuli. Within each
display, the trials were sorted by the cumulative WOE of stimuli presented
so far and binned into 10 groups. Each dot shows the average firing rate for
trials in a given group.

Figure 7D shows analogous analysis of difference in activity in the action
units in the model y1 − y2 after the presentation of consecutive stimuli.
The trials were binned, excluding the trials in which stimuli with infinite
WOE were present. We observed that the nodes in the model had activity
proportional to cumulative WOE, similar to the primate data by Yang and
Shadlen (2007).

4 Discussion

This letter has analyzed the relationship between computational accounts
of learning and decision making based on reinforcement learning (RL) and
the sequential probability ratio test (SPRT). We demonstrated that synaptic
weights learned by RL rules in a certain class of tasks are proportional to
WOEs, and hence allow information to be integrated from multiple cues to
form a decision. Simulations of the model in the task of Yang and Shadlen
(2007) replicated the key features of animal behavior and neural activity. In
this section, we relate the model we have presented to other models and
experimental data, and we discuss further experimental predictions.

4.1 Relationship to the Soltani and Wang Model. In a closely related
study, Soltani and Wang (2010) proposed a model that can also learn weights
of synaptic connections allowing probabilistic inference and can also repli-
cate the observations of Yang and Shadlen (2007). We briefly review their
model, discuss in what ways it differs from the model we have proposed in
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this letter, and suggest experiments that can differentiate between the two
models.

The Soltani and Wang (2010) model describes a network that includes
neurons selective for different stimuli and neurons selective for different
actions. It assumes that the weights of connections between these neurons
are binary, so that an individual synapse can have a weight of zero or one.
After each trial, the weights between the neurons selective for presented
stimuli and chosen action are modified according to the reward received.
If a reward was received, the synapses equal to zero may increase with
probability α+, while if no reward was received, the synapses equal to
one may decrease with probability α−. We denote the average value of
connections between neurons selective for stimulus s and neurons selective
for action i by cis, so:

�cis =
{

α+(1 − cis), if the reward present

−α−cis, if no reward given
. (4.1)

In equation 4.1, the weight increase after the reward depends on the frac-
tion of inactive synapses (and analogously following the lack of reward).
Despite seemingly different learning rules, the weights in the two models
converge to closely related values. In particular, let us first consider the case
when α+ = α−, the prior probabilities are equal, and only n = 1 stimulus
is presented per trial. Under these conditions on trials when stimulus s is
presented and action i is chosen, the expected change in the corresponding
weights is

E
(
�cis

) = α(1 − cis)P(Ai|s) − αcis(1 − P(Ai|s)). (4.2)

To find the value of ci j at the stochastic fixed point, we set E
(
�cis

) = 0 in
equation 4.2 and find that c∗

i j = P(Ai|s), which together with equations 3.1
and 3.2 implies the following relationship between the weights in the two
models c∗

i j = q∗
i j + 1

2 . A linear relationship between c∗
i j and q∗

i j seems to also
hold for n > 1, as can be seen by comparing the simulations of the two
models in the Yang and Shadlen (2007) task (see Figure 7 in this letter and
Figure 2b in Soltani and Wang, 2010).

Despite the similarities, the models differ in two key aspects: the plastic-
ity rule and the presence of the bias node that is critical for learning prior
probabilities. We now review these two differences, compare the models
with experimental data, and suggest further experiments that can differen-
tiate between the models.

In the Soltani and Wang (2010) model, the weight modification is mod-
ulated by reward, while in the model proposed here, it is modulated by
reward prediction error. The model proposed here aims at capturing learn-
ing in the basal ganglia and assumes that such modulation of plasticity is
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mediated by the neuromodulator dopamine, which is known to influence
cortico-striatal plasticity (Reynolds et al., 2001; Shen et al., 2008), and en-
code the reward prediction error during learning tasks (Schultz et al., 1997;
Fiorillo et al., 2003). By contrast, the Soltani and Wang (2010) model aimed
at capturing learning in the cortex, where the effects of reward on synap-
tic plasticity are not as well understood. Importantly, the model proposed
here uses the same synaptic plasticity rule, which is also known to well
capture learning about reward magnitudes in reinforcement learning tasks.
Therefore, we suggest that there is no need for the brain to have specialized
plasticity rules dedicated to support probabilistic reasoning, as the standard
synaptic mechanisms that learn expected rewards can fulfill this function.

The two models make differential predictions on how the learning about
WEO should interact with reward. Consider an experiment in which some
stimuli are presented on trials on which a reward of r = 2 is given for correct
choices, while other stimuli are presented on trials where r = 1 is given for
correct responses. Subsequently, on critical test trials, participants need to
make a choice on the basis of stimuli from both groups presented together.
In the model proposed here, the learned weights qi j are proportional to the
expected reward; thus, it would predict that the participants would be more
influenced by the stimuli from the first group. Such increased influence is
not predicted by the Soltani and Wang (2010) model, where the reward
magnitude does not affect ci j.

Recently Soltani et al. (2016) proposed an extended version of the model
in which the weight changes depend on average reward rate r̄i for selecting
action i,

�cis =
{

α+(1 − cis) × 2σ
(

r̄i−0.5
d

)
, if the reward present

−α−cis, if no reward given
, (4.3)

where d is an additional scaling parameter. In this extended model, the
weight change depends on the overall average reward connected with an
action, while in the Rescorla-Wagner rule, the weight change depends on
the reward for a particular action after presentation of a particular stimulus.
Consequently this extended model would still make the same prediction
as the original Soltani and Wang (2010) model in the experiment suggested
above if it is ensured that the average reward for both actions is the same. For
example, consider a task in which during training, four stimuli A, B, C, D are
interleaved. For stimuli A and B, the reward for the correct choice is r = 2,
while for C and D, it is r = 1, and for stimuli A and C, the more rewarded
response is left, while for B and D it is right. Since the average reward is
the same for the left and right actions, the reward magnitude does not a
effect weights ci j of the extended Soltani et al. (2016) model, while it affects
qi j learned with the Rescorla-Wagner rule. Therefore, the model proposed
here predicts that stimuli A and B will have higher magnitudes of learned
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weights than C and D, while the Soltani et al. (2016) model predicts equal
weight magnitudes.

It is also worth comparing the biological plausibility of the Rescorla-
Wagner rule and the rule of equation 4.3. A nice property of equation 4.3 is
that the change of a particular synaptic weight depends only on the value of
this weight, not on other weights in the network. By contrast, in the Rescola-
Wagner rule, the change in qi j depends on the reward prediction error, which
is a function of yi, which in turn depends on other weights in the network.
Nevertheless, we described in section 2.1 how this problem can be overcome
in the basal ganglia circuit. Recall that the model assumes that the reward
prediction error is computed by dopaminergic neurons that receive input
from striatal neurons computing yi. Consequently, the Rescorla-Wagner
rule requires the eligible synapse to have information on only a single
quantity: the reward prediction error that could be brought by a single
neuromodulator, dopamine. By contrast, the rule of equation 4.3 requires the
synapse to have information on two quantities: the presence of the reward
on the current trial and the average reward rate. Thus, to implement such a
rule, two separate neuromodulators would need to encode these quantities,
and it is unclear which of the known neuromodulators could play this
role.

The second difference between the models is that the one proposed here
includes bias weights qi0 that allow it to learn about prior probabilities of
the responses under certain conditions, while the Soltani and Wang (2010)
model does not include the bias node and hence is unable to represent prior
probabilities separately from likelihoods.

To test whether humans are able to learn prior probabilities separately
from WEO, Soltani et al. (2016) trained participants with a fixed number
(n = 4) of stimuli presented per trial. Then they presented the participants
with one, two, or four stimuli and asked them to estimate how likely the two
responses are to be correct. They found a pattern similar to that in Figure
3I (see Figure 2d in Soltani et al., 2016): participants underestimated the
probability of the more likely option for n = 1 stimuli. Soltani et al. (2016)
pointed out that these data can be explained only by the model that did not
learn prior probabilities separately from WEO. Simulations in section 3.3
show that our model also produces this pattern of behavior, because our
model also did not learn prior probabilities when a fixed number (n = 4) of
stimuli was presented per trial during training.

The model presented here predicts that when the number of stimuli
presented during learning is intermixed, the networks in the brain should
be able to learn prior probabilities of responses. To test this prediction,
one could modify an experiment from Soltani et al. (2016) such that trials
with different n are intermixed and the model proposed here predicts that
the participants then would be able to learn the prior probabilities and no
longer underestimate the probability of a more likely option for small n (i.e.,
produce the pattern illustrated in Figure 3J).
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It would be interesting to investigate whether a modified version of the
Soltani and Wang (2010) model, including the bias node, could also learn
the prior probabilities if the trials with different n are intermixed during
training, but not when n is fixed during training.

The model presented in this letter describes learning in the basal gan-
glia, while the Soltani and Wang (2010) model focuses on learning in the
neocortex. It is likely that both structures are involved in learning in tasks
requiring evidence accumulation, so it is also possible that the two mod-
els describe complementary contributions of basal ganglia and cortex to
probabilistic decision making.

4.2 Relationship to Other Models. A handful of other studies have
linked the RL to the framework provided by the SPRT, or related sequen-
tial sampling models. Law and Gold (2009) have also used a standard RL
model with an architecture and learning rule very similar to these consid-
ered here to capture learning and decision making in a motion discrimina-
tion task. Their model was able to learn weights allowing accumulation of
information and reproduced many aspects of neural activity during motion
discrimination tasks. Here we show that a similar model can also be used
to describe decision tasks with discrete stimuli, and we explicitly demon-
strate that in these tasks, the learned synaptic weights are approximately
proportional to WOEs.

Two studies described models of the basal ganglia circuit that can learn
probabilistic quantities, allowing the circuit to implement Bayesian decision
making in a fashion equivalent to that described in equation 1.2 (Berthet
et al., 2012; Coulthard et al., 2012). However, both of these models assume
complex rules for the plasticity of cortico-striatal synapses, and it is not clear
if such rules can be implemented by biological synapses. By contrast, here
we show that weights allowing integration of information during decision
making can also arise from the very simple plasticity rule of Rescorla and
Wagner (1972).

In this letter, we have focused on decision making between two options,
but it would be interesting to generalize our approach to choices with
multiple alternatives. With more than two options, it is no longer possible
to define a simple decision variable as in equation 1.2. Nevertheless, it has
been proposed that the basal ganglia can compute posterior probabilities of
actions given presented stimuli (Bogacz & Gurney, 2007; Bogacz & Larsen,
2011). In order to perform such computation, the neurons selective for an
action in this model need to receive input proportional to the log likelihood
of stimuli given the action (Bogacz & Gurney, 2007), or WOE in the case of a
choice between two alternatives (Lepora & Gurney, 2012). Thus, for a choice
between two alternatives, the cortico-striatal weights proportional to WOEs
would allow this Bayesian model of basal ganglia to compute the posterior
probabilities of actions. Future research may wish to investigate whether
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the cortico-striatal weights learned with the Rescorla-Wagner rule can allow
the model of the basal ganglia to approximate the posterior probabilities of
actions for the choice between multiple alternatives.

4.3 Relationship to Experimental Data. The simulation of the model in
the task of Yang and Shadlen (2007) showed that the model learned similar
WOEs as the animals for cues with finite WOE. For cues with infinite WOE,
the weights learned by the model were more dampened than those learned
by the animals (see Figures 7A and 7B). Nevertheless, note that the animals
also dampened the weights of these stimuli (i.e., the WOEs estimated by
animals are not infinite). The difference in the extent to which these weights
were dampened could arise from the fact that our model captured only
model-free RL, while animals could have employed both model-free and
model-based RL systems during their choices (Daw, Niv, & Dayan, 2005),
and the model-based system could have learned simple deterministic rules
for these stimuli (e.g., choose A1 whenever stimulus 10 is presented). During
decision making with such stimuli, the final choice could have been based
on information brought by both the model-based and model-free system,
resulting in a high but not fully deterministic influence of these stimuli on
choice.

The simulations also showed that the model could replicate key features
of neural responses to successive stimuli, the neural activity being propor-
tional to the accumulated WOE of stimuli seen so far. Nevertheless, this
relationship was more linear in the last “Epoch 4” in our model than in
the experimental data, where it appeared more sigmoid (see Figures 7C
and 7D). This difference may arise from the fact that after seeing the last
stimulus, the animals knew that they had all available information, and
the neural activity could have started to reflect the choice rather than the
decision variable.

The neural activity in the experiment of Yang and Shadlen (2007) was
recorded from the lateral intraparietal cortex, while our model described the
activity in the striatum. Nevertheless, it has been observed that the neural
activity in striatum also encodes information accumulated during decision
making (Ding & Gold, 2010). This similarity in activity between decision-
related cortical regions and striatum may arise from the prominent feedback
connections from basal ganglia back to cortex via the thalamus (Alexander,
DeLond, & Strick, 1986) and the fact that in highly practiced tasks, the
stimulus-response mapping learned in the striatum becomes consolidated
in the cortex (Ashby, Ennis, & Spiering, 2007).

The model presented here required fewer trials to converge when mul-
tiple stimuli were present per trial (see Figure 4). It seems unlikely that hu-
mans and animals would show such behavior, as humans often learn faster
in tasks that start with training with a single stimulus per trial (Gould, No-
bre, Wyart, & Rushworth, 2012). Our simulations (not shown here) indicate
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that slower learning with multiple stimuli occurs in a modified version of
the model in which on each trial, the weights qi j are updated for only a single
stimulus j (randomly chosen in the simulations). It is also possible that such
slower learning arises because subjects have difficulty focusing on several
stimuli presented to them and evolution has optimized perception in a way
that only stimuli crucial to decision making are attended (Summerfield &
Tsetsos, 2015).

4.4 Other Experimental Predictions. In addition to the predictions de-
scribed in section 4.1, the model described in this letter makes a few more
predictions. In the proposed model, the estimated WOEs often depend on
the number n of stimuli presented within a trial (see Figure 2A; a similar
prediction is also made by the Soltani and Wang, 2010, model). In partic-
ular, the model predicts that the estimated WOEs are closer to zero if the
participants learn them in a task with multiple stimuli presented in a trial.
This prediction could be tested in an experiment in which participants learn
WOEs for one set of stimuli with n = 4 and WOEs for another set with n = 1,
and then make decisions on the basis of multiple stimuli from both sets. The
model predicts that participants would give more weight to stimuli learned
with n = 1.

Experiments with human subjects by de Gardelle and Summerfield
(2011) featuring shapes colored by stochastically drawn values of a two-
color gradient showed that humans performed averaging among presented
color values when they were asked to decide which of the two colors was
predominant. It was also observed that outliers (extreme color values that
appeared less frequently) were downweighted by the subjects, even though
they should have had a strong influence on decision outcome (de Gardelle
& Summerfield, 2011). We performed simulations featuring stimuli with
the same weights but different frequencies of occurring. In cases where fre-
quency of commonly and uncommonly occurring stimuli was sufficiently
different, we were able to observe a downweighting by a constant factor.
It would be interesting to perform experiments with human subjects in a
similar scenario in order to see whether downweighting occurs only if the
stimuli are sufficiently infrequent.

In summary, in this letter, we have shown that the same learning rule that
allows estimating expected rewards associated with stimuli and actions can
approximate WOEs in a class of tasks with binary rewards. Such WOEs can
be efficiently integrated across different stimuli during decision making.
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