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The basal ganglia may play an important role in the control of motor scaling or effort. Recently local field poten-
tial (LFP) recordings from patients with deep brain stimulation electrodes in the basal ganglia have suggested
that local increases in the synchronisation of neurons in the gamma frequency band may correlate with force
or effort. Whether this feature uniquely codes for effort and whether such a coding mechanism holds true
over a range of efforts is unclear. Here we investigated the relationship between frequency-specific oscillatory
activities in the subthalamic nucleus (STN) and manual grips made with different efforts. The latter were
self-rated using the 10 level Borg scale ranging from 0 (no effort) to 10 (maximal effort). STN LFP activities
were recorded in patients with Parkinson's Disease (PD) who had undergone functional surgery. Patients were
studied while motor performance was improved by dopaminergic medication. In line with previous studies
we observed power increase in the theta/alpha band (4–12 Hz), power suppression in the beta band
(13–30 Hz) and power increase in the gamma band (55–90 Hz) and high frequency band (101–375 Hz) during
voluntary grips. Beta suppression deepened, and then reached a floor level as effort increased. Conversely,
gamma and high frequency power increases were enhanced during grips made with greater effort. Multiple
regression models incorporating the four different spectral changes confirmed that the modulation of power
in the beta bandwas the only independent predictor of effort during gripsmadewith efforts rated b5. In contrast,
increases in gamma band activity were the only independent predictor of effort during grips made with efforts
≥5. Accordingly, the difference between power changes in the gamma and beta bands correlated with effort
across all effort levels. These findings suggest complementary roles for changes in beta and gamma band activ-
ities in the STN in motor effort coding. The latter function is thought to be impaired in untreated PD where
task-related reactivity in these two bands is deficient.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Introduction

Neuronal recordings in monkeys and imaging studies in healthy
humans have suggested that the basal ganglia play an important role
in the control of the scaling of motor responses, as often measured in
terms of the amplitude, velocity or force of an action (Delong et al.,
1984; Spraker et al., 2007; Turner and Anderson, 1997; Vaillancourt
et al., 2007). However, it is not necessarily that the basal ganglia are
themselves directly involved in the parameterisation of thesemeasures
through the control of muscular contraction; rather, along with other
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functions, they determine the effort or vigour to be attributed to a
response that is then organised elsewhere (Schmidt et al., 2008;
Shadmehr and Krakauer, 2008; Turner and Desmurget, 2010). Indeed,
a distinction between effort and action dynamics would seem function-
ally relevant, as effortmay increasewhile force and othermeasures stay
constant or even fall, as might be the case when muscles begin to
fatigue. Derangement of the effort ascribing functionof the basal ganglia
has formed the basis for recent theoretical accounts of motor impair-
ment in Parkinson's disease (Mazzoni et al., 2007). Direct recordings
from basal ganglia targets in patients suggest that local synchronisation
in the gamma band may contribute to the selection of effort or force
levels for voluntary movements. Thus the power over 60–80 Hz in the
local field potential (LFP) in the globus pallidus correlates with the
movement amplitude and velocity of the contralateral hand of patients
with cranial dystonia, a condition that ostensibly spares hand function
(Brücke et al., 2012). Similar correlations have been noted in patients
with Parkinson's disease between power in the LFP of the subthalamic
served.
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nucleus over 70–90 Hz and movement speed (Joundi et al., 2012), and
between the LFP power in the subthalamic nucleus over 55–375 Hz
and force (Anzak et al., 2012). Conversely, lower levels of 55–375 Hz
power and their further reduction while contraction is meant to be
sustained are both associated with greater force decrement over time
in Parkinsonian patients (Tan et al., 2013).

Whether these correlations with effort measures are limited to the
gamma band is, however, less clear. It is well established that beta
band power in basal ganglia LFPs is suppressed prior to and during
voluntary movements, but whether this might help dictate force
measures is uncertain. Several studies have reported that the depth
of beta desynchronization is relatively fixed regardless of force or
movement speed (Anzak et al., 2012; Brücke et al., 2012; Joundi et al.,
2012), consistent with the hypothesis that suppression of population
synchrony in the beta frequency range serves a permissive role,
allowing task-related rate coding and more focal neuronal assemblies
to engage in task-specific processing related to voluntary movement
(Brown and Williams, 2005). At odds with this though, other studies
have reported that the level of suppression of beta power does vary
with the details of task performance, including the force generated
(Androulidakis et al., 2008; Kempf et al., 2007; Tan et al., 2013).

Some of these conflicting results may relate to the interdependency of
spectral features andmay be clarified bymultivariate approaches to statis-
tical dependencies (Anzak et al., 2012). However, task details may also be
important. Here we test the hypothesis that both beta desynchronisation
and gamma synchronisation in the basal ganglia relate to motor effort,
but that their relative contributions depend on the level of effort exerted.

Methods

Subjects

Nine patients with idiopathic Parkinson's Disease (mean disease
duration 13 years, mean age 62 years, range 49–69 years; 7 males)
provided informed consent to take part in this study, which was
approved by the local ethics committees. Patients underwent bilateral
implantation DBS electrodes into the STN, as a prelude to therapeutic
high frequency stimulation for advanced idiopathic PDwithmotorfluctu-
ations and/or dyskinesia. Techniques to target and implant electrodes in
the STN have previously been described (Foltynie and Hariz, 2010). Mi-
croelectrode recordings were not made during surgery. The permanent
quadripolar macroelectrode usedwasmodel 3389 (Medtronic Neurolog-
icDivision,Minneapolis,MN,USA) featuring four platinum–iridiumcylin-
drical surfaces. Its contacts are numbered 0, 1, 2, and 3, with 0 being the
most caudal and contact 3 being the most cranial. Localisation was sup-
ported intra-operatively by the effects of direct stimulation (cases 1–4)
and by immediate post-operative stereotactic imaging. Nonetheless, in
acknowledgement of the fact that not all electrode contacts could be
expected to lie in the STN per se, we term the area sampled by the
electrode contact the STN region (STNr). DBS electrode extension cables
were externalized through the scalp to enable recordings prior to connec-
tion to a subcutaneous DBS pacemaker, implanted in a second operative
procedure up to seven days later. One out of the nine patients (case 1)
had only one electrode externalized for testing, thus we could record
from 17 STN regions (STNr). Clinical details of the patients are given in
Table 1. The patients showed 53.4 ± 6.2% (p b 0.001) improvement
in the motor section of the Unified Parkinson's Disease Rating Scale
(UPDRS) on treatment with levodopa, indicating good responsiveness
to this drug.

Experimental paradigm

Subjects were seated in a comfortable chair with their shoulders
adducted and their elbows flexed at about 90°. They were presented
with a series of imperative visual cues (red light-emitting diode illumi-
nated for 3 s), separated by 11–13 s, and instructed to ‘choose an effort
level from the scale provided and then to squeeze the force dynamom-
eter at this chosen effort level when the light comes on and maintain
this squeeze for the duration of the light’. The subjects were asked to re-
port the effort level verbally right after each grip. They were also asked
to try and randomise their selection of effort levels, so that all levels
were represented. Subjects were providedwith the Rated Perceived Ex-
ertion Scale with 10 levels ranging from zero to 10 (Borg, 1998; Supple-
mentarymaterial). Patientswere asked to grip following illumination of
the LED, but were not requested to respond as quickly as possible.

Recordings

Recordings were made when the patients were ON their usual dopa-
minergic medication, 3–6 days postoperatively, while electrodes were
externalized and before implantation of the pulse generator. Grip force
was measured one hand at a time using an isometric dynamometer
with standard Jamar design, and it's handle set in the second of the five
discrete grip diameter adjustments possible (G200; Biometrics Ltd,
Cwmfelinfach, Gwent, UK; Sancho-Bru et al., 2008). The order in which
left and right hands were tested was counterbalanced across subjects.
Monopolar LFPs were recorded with a TMSi porti (TMS International,
Netherlands) and its respective software. They were low and high pass
filtered at 0.5 and 500 Hz, respectively. Force was only low pass filtered
at 200 Hz. LFP and force were originally at 2048 Hz. The effort level the
subject reported verbally after each grip was logged manually and then
used to label each individual trial.

Analysis

The mean number (±SEM) of remaining trials per hand was 31 ± 2
grips. Analyses of both behavioural and LFP data were performed in
Matlab (version 2010b). The grip force trajectory of each individual
trial of each subject was normalized against the average maximal force
that the subject achieved in their maximal effort trials. Normalized
peak force, normalized peak yank (differentiation of force) and response
time were calculated for each individual trial and averaged across trials
with the same self-rated effort (SRE), before averaging across subjects.
Response time was operationally defined as the time interval between
cue onset and the point at which force exceeded 5% of peak force
(taken as response onset).

LFP data were converted off-line to give three bipolar contact pairs (01,
12 and 23) per electrode. A time-frequency decomposition based on the
continuous wavelet transform was then applied to LFP recordings from
each trial to analyse changes in LFP activity in the time–frequency domain.
Event related LFP powerwas subsequently normalized relative to the aver-
age power during the one second before the cue, so that a value higher
than zero indicated power higher than before the cue and vice versa.
The normalized (event related synchronisation, ERS, and event related
desynchronisation, ERD)powerwasaligned tomovementonset and subse-
quently averaged across the three bipolar contacts for each STNr lead con-
tralateral to the gripping hand.We averaged across all the contact pairs in a
given electrode so as to avoid selection bias, although not all contacts will
have been in the STN per se. Grand averages of behavioural and LFP data
for a given SRE were calculated after deriving each of these variables from
the individual grips made by a subject, averaging across trials for a given
SRE in that subject, and then averaging across study participants.

Statistics

Statistical analyses were performed in SPSS Statistics 19
(SPSS Inc., Chicago, IL, USA). Visual inspection of Q–Q plots and
Kolmogorov–Smirnov testswere used to confirm that behaviouralmea-
sures and LFP data were normally distributed. Where necessary, raw
data were transformed using a monotonic Box–Cox transformation
prior to further parametric testing. Multiple regressions were used to
identify which, if any, frequency specific LFP activities were significant



Fig. 1. Force trajectories at different SRE levels. These have been normalized to peak
force in the maximal effort trials for each hand and aligned to movement onset before
averaging across hands. Lines are the average across subjects and shading represents
the standard error.

Table 1
Surgical sites: (1) John Radcliffe Hospital, Oxford; (2) Kings College Hospital, London; (3) National Hospital for Neurology and Neurosurgery, London, United Kingdom.

Site Patient number Age (years) Disease duration (years) Daily dose (mg) Preoperative UPDRS
part III

OFF ON

1 1 69 15 Ropinirole 8
Pramipexole 0.7
Levodopa 900

38 18

1 2 65 17 Amantadine 400
Levodopa 600

55 49

2 3 73 14 Rotigotine 16
Selegeline 10
Levodopa 700

35 15

2 4 63 14 Ropinirole 23
Levodopa 150

35 24

3 5 49 13 Levodopa 800
Apomorphine (6.3 mg/h)
Rotigotine 8

38 13

3 6 56 10 Trihexyphenidyl 24
Levodopa 1000

40 12

3 7 60 11 Levodopa 600
Pramipexole 0.7

53 16

3 8 56 6 Levodopa 400
Entacapone 800
Rotigotine 8

52 19

3 9 67 16 Levodopa 600
Amantadine 200
Ropinirole 24
Rasagiline 1

32 13
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independent predictors for SRE. The modelling errors of the multiple
regressions were also assessed by Q–Q plots, together with plots of
the standardized residuals (the errors) with respect to the regression
standardized predicted values. In this way we were able to check that
the model residuals were normally distributed and also satisfied the
assumption of homoscedasticity. Means ± standard error of means
(SEM) are presented throughout the text, unless otherwise specified.

Results

Effort level correlates with force parameters but not response time

The force trajectory of each grip was normalized to the maximal
force achieved in the maximal effort trials in that subject and aligned
to movement onset (Fig. 1). Response time, normalized peak force
and normalized peak yank were calculated from the force trajectory of
each individual grip, and averaged across trials with a given SRE before
averaging across subjects. Linear regression analysis showed that the
SRE correlated well with average normalized peak force (r = 0.741,
p b 0.001, n = 170), peak yank (r = 0.664, p b 0.001, n = 170) and
total force from the time of force onset to the time of peak force (r =
0.821, p b 0.001, n = 170). However, there was a lack of correlation
between response time and SRE (r = 0.129, p = 0.094, n = 170).
Mean response times were 0.387 ± 0.091 across grips of different SRE.

Increasing effort level is accompanied by reciprocal changes in the beta
and gamma bands

Time–frequency decomposition was applied to STNr LFPs recorded
during individual grips, and the power change for each frequencywas cal-
culated by normalizing the power at each time point against the average
power during the 1 s before cue presentation. Trials were grouped into
either low effort (SRE b 5) or high effort (SRE ≥ 5) ranges and averaged
within and across subjects (Fig. 2). A general pattern of enhanced theta
(4–7 Hz) and alpha (8–12 Hz) and decreased low beta (13–22 Hz) and
high beta (23–30 Hz) activity was observed prior to and following re-
sponse onset (Figs. 2A and B). In addition, therewas a prominent increase
in gamma (55–90 Hz) spectral power withmovement onset, particularly
over the high effort range. Finally therewas an increase in activity at even
higher frequency (101–375 Hz), but this was small compared with the
activity in the gamma band. As LFP reactivity was similar within the
4–12 Hz and 13–30 Hz bands, activities in these frequency ranges
were averaged to give ‘theta/alpha’ and ‘beta’ bands (see also Tan et
al., 2013). Thus, subsequent analysis of the LFP activity focused on four
frequency bands: alpha/theta (4–12 Hz), beta (13–30 Hz), gamma
(55–90 Hz) and high frequency (101–375 Hz).

Average power changes between the onset of grip force and the time
to peak force (a duration of 1.24 s ± 0.17 s; hitherto termed the force
generation period)were estimated over the four frequency bands in indi-
vidual grips. These valueswere then averaged across low effort (SRE b 5)
and high effort (SRE ≥ 5) ranges for each subject. A two-way repeated-
measures ANOVA applied to the average power change during force
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Fig. 2. Group average STNr LFP power changes over time. Power change across (A and C) the low effort (SRE levels b5) and (B and D) high effort (SRE ≥ 5) ranges at different fre-
quencies. There were power increases in the theta (4–7 Hz) and alpha (8–12 Hz) bands, and a decrease in both low (13–22 Hz) and high beta (23–30 Hz) band just prior to and
following response onset. There was a prominent increase in gamma (55–90 Hz) power with response onset that was greater over the high effort range. Activities in a broad high
frequency band (101–375 Hz) also increased with response onset, more prominently in high effort trials, although the relative increase was much smaller than the activity in the
gamma band. LFP power was normalized to the period between 1.5 s and 0.5 s before the cue and re-aligned to movement onset before averaging. Shading represents the standard
error.
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generation identified an effect of frequency band (F3,48 = 7.757,
p b 0.001) and an interaction between frequency band and effort range
(F3,48 =3.651, p = 0.019). Paired-sample t-tests confirmed that, com-
pared with the low effort range, the high effort range had significantly
lower power in the beta band (13–30 Hz; t16 = 4.204, p = 0.001) and
higher power in both the gamma band (55–90 Hz; t16 = −4.948,
p b 0.001) and high frequency band (101–375 Hz; t16 = −3.467, p =
0.003) during force generation (Fig. 3). Finally, we repeated this ANOVA
for the two beta sub-bands (low beta, 13–22 Hz and high beta,
23–30 Hz). This failed to show any effect of frequency (F1,16 = 0.464,
p = 0.506) nor interaction between frequency sub-band and effort
range (F1,16 b 0.001, p =0.999). There was, however, a main effect of ef-
fort level (F1,16 = 9.025, p = 0.008).

Figs. 2C and D suggest that spectral changes were less sustained in
low effort than in high effort contractions, particularly in the high beta
sub-band. Could the analysis based on average spectral changes over
the force generation period have confounded our assessment of the be-
haviour of different frequency ranges? To discount this possibility we
calculated the average over a 0.4 second window around the peak
absolute spectral change after the movement onset, and repeated the
above ANOVA. This confirmed an effect of frequency band (F3,48 =
49.327, p b 0.001) and an interaction between frequency band and effort
range (F3,48 = 5.808, p = 0.002). Paired-sample t-tests confirmed that,
compared with the low effort range, the high effort range had a signifi-
cantly lower power trough in the beta band (13–30 Hz; t16 = 6.387,
p b 0.001) and higher power peak in both the gamma band (55–90 Hz;
t16 = −4.0139, p = 0.001) and the high frequency band (101–375 Hz;
t16 = −2.336, p = 0.033). Thus the results were similar irrespective of
whether changes were contrasted over the force generation period or
during a shorter 0.4 s window around peak power changes.

Different spectral features correlate with low and high effort grips within
subjects

Partial correlation was used to investigate the relationship between
LFP power changes during force generation in each of the four frequency
bands and SREwithin subjects, while controlling for the effect of activity
in the remaining three frequency bands. Thiswas assessed for each STNr

image of Fig.�2
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with respect to grips made with the contralateral hand. The mean and
standard error of the partial correlation coefficients are shown for the
different frequency bands for low and high effort ranges in Fig. 4.

Single sample t tests showed that when considering data from all
effort levels from one STN together, both the partial correlation coeffi-
cients between beta power change and effort (r = −0.163 ± 0.054,
t16 = −3.052, p = 0.008) and that between gamma power change
and effort (r = 0.237 ± 0.061, t16 = 3.906, p = 0.001) were signifi-
cantly different from zero. Further analysis with a two-way repeated
measures ANOVA of partial correlation coefficients with frequency
band (alpha/theta, beta, gamma and high frequency) and effort range
(low effort: SRE b 5 and high effort: SRE ≥ 5) asmain effects identified
an effect of frequency band (F3,48 = 4.232, p = 0.010), an effect of
effort range (F1,16 = 19.882, p b 0.001) and an interaction between fre-
quency band and effort range (F3,48 = 3.472, p = 0.023). Further anal-
yses with paired t-tests confirmed that the negative correlations
between SRE and power change in the beta band in the low effort
range (r = −0.310 ± 0.047) were diminished in the high effort
range (r = −0.058 ± 0.067; t16 = −3.539, p = 0.003). In contrast,
there was a positive correlation between SRE and power change
in the gamma band in the high effort range (r = 0.387 ± 0.053),
which was absent in the low effort range (r = 0.086 ± 0.054;
t16 = −3.361, p = 0.004). There was no consistent correlation be-
tween effort range and LFP activity in the theta/alpha and high frequen-
cy band or effects of effort levels on the correlation coefficients in these
two frequency bands (Fig. 4). Finally, note that the mean partial corre-
lation coefficients for beta activity were greater over SRE b 5 than
over all SRE (t16 = −2.582, p = 0.020), while the mean partial corre-
lation coefficients for gamma activity were greater over SRE ≥ 5 than
over all SRE (t16 = −2.720, p = 0.015).

Although we studied patients on levodopa when gamma activity
should have been promoted, we cannot discount the possibility that
the scaling of gamma and high frequency activity with increasing effort
at low effort levels could not be discriminated due to low signal to
noise ratios in these frequency bands. However, this appears unlikely;
even at low effort levels we were able to detect a significant increase in
gamma activity (single sample t test, t16 = 3.764, p = 0.002) and high
frequency band activity (single sample t test, t16 = 5.440, p b 0.001)
during the force generation period (Fig. 3). This was despite the fact
that mean partial correlation coefficients were not significantly different
to zero for gamma (single sample t test, t16 = 0.311, p = 0.760; Fig. 4)
or high frequency (single sample t test, t16 = 1.215, p = 0.242) activity
within this effort range, when the effects of activities in other frequency
bandswere controlled. Fig. 5 suggests that thiswas because therewas no
simple linear relationship between these activities and effort over
SRE b 5.
Different spectral features correlate with low and high effort grips across
subjects

Average power changes in the STNr contralateral to grips were
estimated over the four frequency bands during force generation across
trials with a given SRE level, and then averaged across sides in different
subjects. Desynchronisation in the beta band was progressively
enhanced as SRE level increased from 0 to 4, but plateaued upon further
increases in SRE (Fig. 5). In contrast, synchronisation in the gamma
band was particularly enhanced as SRE level increased from 5 to 10.
There was no systematic relationship between group average theta/
alpha power changes and SRE levels.

Multiple linear regressionwith average power changes over the four
bands in the STNr contralateral to grips as independent variables (Box–
Cox transformed) and SRE levels as the dependent variable in the low
effort range (SRE 0–4; F4,91 = 3.808, p = 0.006 and adjusted R2 =
0.095 for the model) revealed that power change in the beta band was
an independent predictor of SRE level (standardized β = −0.262,
t95 = −2.263, p = 0.026). Thus a one standard deviation decrease in
beta power led to a 0.262 standard deviation increase in SRE level in
the low effort range while other variables in the model were held con-
stant. Changes in power in the theta/alpha (standardized β = 0.055,
t95 = 0.476, p = 0.635), gamma bands (standardized β = 0.132,
t95 = 1.261, p = 0.210) or high frequency (standardized β = 0.130,
t95 = 1.293, p = 0.199) did not significantly predict SRE over the low
effort range.
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This was repeated over the high effort range (SRE 5–10; F4,55 =
3.081, p = 0.035 and adjusted R2 = 0.114 for the model). Under
these circumstances only power change in the gamma band was an
independent predictor of SRE level, with increases in gamma power
being associated with higher levels of effort (standardized β =
0.435, t59 = 2.615, p = 0.011). Thus a one standard deviation
increase in gamma power led to a 0.435 standard deviation increase
in SRE level while other variables in the model were held constant,
so that gamma power was a stronger determinant of effort level in
the high effort range than beta power in the low effort range. Theta/
alpha (standardized β = −0.275, t59 = −1.701, p = 0.095), beta
(standardized β = −0.033, t59 = −0.256, p = 0.799) and high fre-
quency (standardized β = −0.022, t59 = −0.121, p = 0.904) band
activities did not significantly predict SRE over the high effort range.

A combination of power changes encodes effort across all effort levels

The above findings and Fig. 5 suggest that a combination of beta and
gamma power changes might correlate with SRE level over the whole
range of effort. Multiple regression with theta/alpha, high frequency
power change and the difference between gamma and beta as indepen-
dent variables and SRE as the dependent variable applied to all SREs
(F3,154 = 21.808, p b 0.001 and adjusted R2 = 0.267 for the model)
showed that the difference between gamma and beta was a significant
predictor for SRE level (standardized β = 0.395, t157 = 5.249,
p b 0.001). Changes in the theta/alpha band or high frequency band
were non-contributory (standardized β = −0.029, t157 = −0.391,
p = 0.697 and standardized β = 0.156, t157 = 1.320, p = 0.189,
respectively). The group average difference between power changes
in the gamma and beta bands correlated even more strikingly with
the SRE level across the whole effort range (0–10; Pearson correlation
coefficient, r2 = 0.9282, n = 10, p b 0.001; Fig. 6a).

Earlier it was noted that SRE correlated well with average normal-
ized peak force. Thuswe repeated themultiple regressionwith normal-
ized peak force over thewhole range of effort as the dependent variable
and theta/alpha and high frequency power changes and the difference
in gamma and beta band power changes as the independent variables.
This gave a more noisy model but with similar results: the model was
significant (F2, 155 = 4.284, p = 0.015 and adjusted R2 = 0.053; com-
pared with an adjusted R2 = 0.267 for the model with SRE), the differ-
ence between gamma and beta was a significant predictor for
normalized peak force (standardized β = 0.231, t157 = 2.923, p =
0.004), but not the power change in theta/alpha band (standardized
β = −0.033, t157 = 0.413, p = 0.680) or high frequency bands
(standardized β = 0.047, t157 = 0.595, p = 0.552). The group average
difference between power changes in the gamma and beta bands corre-
lated with normalized peak force (Pearson correlation coefficient, r2 =
0.9156, n = 10, p b 0.001; Fig. 6B).

LFP recordings were focal and findings were preserved when analysing
only the contact paper with the highest beta power at rest

LFP recordings from the STNr were highly focal, as indexed by steep
percentage drops in power when comparing the contact pair with the
highest absolute power to the mean power recorded by the two
remaining contact pairs on each electrode. Relative to the best contact
pair, the relative mean power in the frequencies of interest for the
two remaining channels dropped to: theta/alpha: 44.2 ± 13.6%; beta:
59.8 ± 7.8%, gamma: 69.9 ± 7.3% and high frequency: 41.7 ± 17.3%.

Our results hitherto have been based on LFP spectra that were aver-
aged across all contact pairs, so as to avoid selection bias. The ANOVA
results were similar if spectral data were just analysed from the contact
pair of each electrode with the highest beta power at rest (Supplemen-
tary material). Increased effort level was accompanied by lower power
in the beta band and higher activity in both the gamma and high fre-
quency bands. There was an interaction between effort levels and
frequency bands in the within-subject trial-to-trial partial correlation
coefficients between the power changes and SRE. There was a negative
correlation between SRE and power change in the beta band, whichwas
identified as the only independent predictor at low effort levels. There
was a positive correlation between SRE and power change in gamma
band, which was identified as the only independent predictor at high
effort levels. The only departure from our previous results based on
averaging across all contact pairs was that high frequency activity esti-
mated at the contact pair with the highest beta activity at rest was an
independent predictor for SRE and normalized peak force, but only
when regression models were simplified by substituting the difference
between gamma and beta activities for changes in these bands consid-
ered separately.

Discussion

We have previously shown that frequency-specific LFP activities in
the STNr correlate with force-related variables in manual grips made
with maximal effort (Anzak et al., 2012; Tan et al., 2013). In the current
study we demonstrate that this is also true at lower levels of effort,
but that the precise pattern of LFP involvement depends on the effort
range. Thus low effort contractions correlate with the degree of beta
(13–30 Hz) band suppressionwhereas high effort contractions correlate
with the degree of gamma (55–90 Hz) band synchronisation. Our
recordings provide further evidence that the basal ganglia play an im-
portant role in the control of the scaling of motor responses (Delong
et al., 1984; Spraker et al., 2007; Turner and Anderson, 1997;
Vaillancourt et al., 2007), and highlight that this function may hold
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over the whole range of efforts and be associated with changes in oscil-
latory synchronisation in the STN, as indexed by changes in the LFP
(Hammond et al., 2007).

Before considering the significanceof thefindings in greater detailwe
should acknowledge three possible limitations of the present study. First,
participants were necessarily PD patients who had undergone surgery,
so inferences with regard to normal functioning must be circumspect
(Williams et al., 2002). That said, recordings were made on levodopa,
while patients' clinical state was as near normal as possible. Second,
even depth recordings of LFPs can be subject to volume conduction of
activities from cerebral cortex. To mitigate this, we recorded in a bipolar
configuration from the contacts of theDBS electrode and demonstrated a
steep gradient in LFP power between contact pairs, consistent with a
local generator (Kühn et al., 2004; Kühn et al., 2006). Furthermore, sev-
eral studies have confirmed the locking of neuronal discharge to LFP
oscillations in the STN (Kühn et al., 2005; Levy et al., 2002; Weinberger
et al., 2006). However, this brings us to the third limitation. In order to
avoid selection bias we averaged the results of all contact pairs of a
given electrode, some of which will have been close to but not within
the STN per se. This may have led us to underestimate the strength of
behavioural correlations arising from activities within the STN. To coun-
ter this we also analysed power change at the contact pair of each elec-
trode that had the highest beta power at rest, based on the premise
that activity at this contact pair is most likely to represent that in the
STN itself (Chen et al., 2006; Kühn et al., 2004; Kühn et al., 2006). Behav-
ioural correlations were maintained. The final limitation of the current
study is the failure to categorically disambiguate effort level from nor-
malized force level. Multiple regression models incorporating power
changes averaged across contacts for the whole range of contraction
efforts/forceswere less noisy for effort (R2 = 0.267) than for normalized
force (R2 = 0.053). However, further studies will be necessary in the
future to completely disambiguate effort from force coding, perhaps
using fatigue to disengage the two phenomena.

The correlation between gamma synchronisation in the basal
ganglia, as indexed by gammaband power LFP, and effort in strong con-
tractions is consistent with other reports where very strong or very fast
movements have been studied (Anzak et al., 2012; Brücke et al., 2012;
Joundi et al., 2012), and with the general characterisation of such LFP
activity as prokinetic (Brown, 2003). Its failure to predict lower effort
levels is more unexpected and evidenced by the insignificant correlation
with low effort levels when changes in beta activity were controlled for
in themultiple linear regressionmodel. Nevertheless, the lack of correla-
tion at low effort levels might be in line with the view that gamma syn-
chronisation centred around 70 Hz represents an attentional or arousal
related process that impacts on motor performance (Jenkinson et al.,
2013; Kempf et al., 2009). Low effort movements may not necessitate
changes in attentional or arousal state. It should be noted that here we
have focussed on the oscillatory gamma activity that is often associated
with a discrete spectral peak centred around 70 Hz.

In contrast, therewas a negative correlation between beta synchroni-
sation, as indexed by beta band power in the STNr LFP, and effort during
low effort contractions, although this relationship saturated at higher
effort levels. Previous studies that have reported a relatively fixed depth
of beta desynchronization regardless of force or movement speed may
have possibly demanded higher effort levels (Anzak et al., 2012; Brücke
et al., 2012; Joundi et al., 2012). Thus beta desynchronisation may not
act in a binary fashion to gate movement (Brücke et al., 2012; Kempf
et al., 2007 Kühn et al., 2004); rather it may potentially help code for
performance at weaker effort levels but hit a floor effect at higher efforts.

Beta and gamma activities could therefore be considered comple-
mentary non-linear correlates of effort, that when combined as, for
example as a difference between power levels, afford a measure that
linearly correlates with effort across all levels. Interestingly, functional
magnetic resonance imaging (fMRI) studies raise the possibility of a sig-
moid rather than simple linear relationship between STN activation and
force (Spraker et al., 2007), and blood oxygenation-level dependent
fMRI signal seems to correlate with gamma activity, at least in cerebral
cortex (Logothetis et al., 2001; Nir et al., 2007).

The absence of a systematic relationship between theta/alpha activ-
ity in the STNr LFP and effort is also interesting. This has been previously
reported as correlating with force measures and reaction time during
tasks performed under time pressure (Anzak et al., 2012). Likewise,
others have highlighted that alpha activity increases in ballistic but
not in non-ballistic arm movements (Singh et al., 2011). However, in
the current study we did not request subjects to make grips as fast as
possible, and perhaps because of this we were able to disambiguate
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reaction time phenomena from force measures, and the two did not
correlate. Thus increases in theta/alpha power may be more important
under circumstances of time pressure.

Activities at the high frequency range (100 Hz–375 Hz)were also ob-
served and power at this frequency band increased at higher effort levels.
Similar activities in the STN were previously reported either as a discrete
peak centred around 300 Hz (Foffani et al., 2003; Lopez-Azcarate et al.,
2010; Özkurt et al., 2011) or as a broad power increase that may reflect
changes in neural spiking, by analogy with similar features in the cortex
(Anzak et al., 2012; Litvak et al., 2012; Ray & Maunsell, 2011). High fre-
quency activity from the contact pair with highest beta activity at rest,
was an independent predictor for effort or force, but not when spectra
were averaged across all contact pairs. This difference may relate to the
focality of the high frequency activity, so that changes in this band were
compromised by averaging across contact pairs. That said, the high
frequency activities contribution was only detectable when regression
models were simplified by substituting the difference between gamma
and beta activities for changes in these bands considered separately. On
the other hand, these behavioural correlations with high frequency activ-
ity are consistent with previous observations showingmovement related
amplitude modulation of high-frequency oscillations in the basal ganglia
when the patients are ON dopaminergic medication (Lopez-Azcarate
et al., 2010), and a positive correlation between this high frequency activ-
ity and force at the outset of the maximal grip (Anzak et al., 2012) and
with slower force decrement during sustained maximal grip (Tan et al.,
2013).

There is an emerging view that the basal ganglia motor cortical cir-
cuit, including its dopaminergic innervation, regulates response vigour
or effort (Niv and Rivlin-Etzion, 2007; Salamone et al., 2009; Turner
and Desmurget, 2010) and that Parkinsonian bradykinesia reflects an
impairment in the link between motivation and movement vigour or
effort (Mazzoni et al., 2007). The current results add to this in demon-
strating a correlate of motor effort that can be recorded in the STNr
and is valid across the full range of efforts. This correlate particularly
consists of the combined suppression of beta activity and promotion
of gamma activity, both forms of task-related reactivity that are defi-
cient in untreated Parkinson's disease and which may be potentiated
by treatment with the dopamine-pro drug levodopa (Androulidakis
et al., 2007; Cassidy et al., 2002; Devos and Defebvre, 2006; Doyle
et al., 2005).
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