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This article reviews recently proposed theories
postulating that, during simple choices, the brain
performs statistically optimal decision making. These
theories are ecologicallymotivated byevolutionary press-
ures to optimize the speed and accuracy of decisions and
to maximize the rate of receiving rewards for correct
choices. This article suggests that the models of decision
making that are proposed on different levels of abstrac-
tion can be linked by virtue of the same optimal compu-
tation. Also reviewed here are recent observations that
many aspects of the circuit that involves the cortex and
basal ganglia are the same as those that are required to
perform statistically optimal choice. This review illus-
trates how optimal-decision theories elucidate current
data and provide experimental predictions that concern
both neurobiology and behaviour.

Introduction
Neurophysiological and psychological data suggest that
during decision making driven by perceptual events, our
brains integrate the sensory evidence that supports avail-
able alternatives before making a choice [1–7]. This integ-
ration process is required because the sensory evidence, at
any given point in time, might not be entirely reliable due
to noise in the sensory system or in the environment itself
[8–10]. Because the process of decision making involves
integration of noisy evidence, it can be formulated as a
statistical problem [9,10]. Several recently proposed
theories assume that the brain implements statistical tests
to optimize decision making. These statistical tests define
decision rules that are the best solutions to tasks that
subjects face during experiments that aim to model tasks
that animals face on a daily basis. These tests optimize the
speed and accuracy of decisions and the rate of obtaining
rewards for correct choices, thus providing a clear evol-
utionary advantage to the animals that use them.

This article reviews optimal-decision theories and
shows that they enable neurobiology and behaviour to
be linked in two ways: first, they enable the identification
of correspondences between models of decision making
that have been proposed on different levels of abstraction
[3,6,7,11–16] by showing that they can implement the
same optimal test; and second, they enable a better under-
standing of current data and provide predictions for (i) the
neurobiology of decision circuitry, including the basal
ganglia, whose architecture can be mapped onto the
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equation that describes an optimal test, and (ii) behaviour
in terms of speed–accuracy trade-offs.

Neurobiology of decision

The neural bases of decision making are typically studied
in experiments by presenting a subject with a stimulus
that comprises moving dots [8]. A fraction of these dots
move coherently in one direction, while the rest move
randomly. The subject must identify the direction of coher-
ent movement of the majority of dots and make an eye
movement in this direction.

On the basis of single-unit recordings from monkeys
performing this task [4–6,8], it has been proposed that such
perceptual decisions involve three process [17] (Figure 1).
First, the neurons in sensory areas that are responsive to
critical aspects of the stimulus (in this task, motion-sensi-
tive neurons in the medial temporal area) represent evi-
dence in support of their preferred alternatives in their
firing rate [8]. The goal of the decision process has been
formulated as choosing the alternative for which the sen-
sory evidence has the highest mean [9,10]. However,
because the incoming evidence is noisy, a second process
is required. The neurons in cortical areas that are associ-
ated with alternative actions (in this task, neurons that
control eye movements in the lateral intraparietal area
and the frontal eye field) integrate the sensory evidence
over time [5,6]. This integration effectively removes the
noise that is present in the sensory evidence and thereby
facilitates more accurate decisions. Finally, a third process
checks whether a certain criterion (e.g. confidence level)
has been satisfied: if it is, the relevant behavioural output
is engaged; if is not, the integration continues. Two neural
mechanisms have been proposed to underlie the criterion
satisfaction: some authors assume that the choice is made
when the firing rate of the cortical integrators that corre-
spond to one of the alternatives reaches a threshold
[5,6,17]; others assume that criterion satisfaction is deter-
mined through a set of interconnected subcortical nuclei,
namely the basal ganglia [14–16,18].

Linking models of decision
The models that have been proposed to describe the
decision process [3,6,7,11–16] range from detailed models
of neural circuits to abstract psychological models of beha-
viour; this is because different models were designed to
capture experimental data from different domains. Never-
theless, this section shows that, in the case of a choice
between two alternatives (multiple alternatives will be
discussed in the next section), the majority of these models
d. doi:10.1016/j.tics.2006.12.006
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Figure 1. Schematic representation of three processes of decision making [17]. (a) The first process provides sensory evidence to support the alternatives. Blue lines show

schematically hypothetical firing rates of two populations of sensory neurons as functions of time. Note that the mean amount of evidence that supports the first alternative

is higher than the mean of the second, but the sensory evidence is noisy and at two first points the actual level of evidence is higher for the second alternative. (b) The

second process integrates sensory evidence over time. Note that, after a certain amount of time, the integrated evidence in support of the first alternative is clearly higher

than evidence in support of the second. (c) The third process checks whether a certain criterion has been satisfied. Its output can be compared to a traffic light: it will indicate

if the action that is connected with a choice can be executed or if it is better to wait and continue the integration process.
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can be parameterized to implement an optimal test called
the sequential probability ratio test (SPRT) [19], and then
they predict exactly the same error rate (ER) and reaction
time (RT) distributions. Thus, if one model that imple-
ments SPRT fits behavioural data, all other models
(including those on the neural level) can be parameterized
to do so equally well (of course, fitting the data does not
imply that the model is correct, but discrepancy of the
predictions made by the model with the data can be used to
discard the model).

Psychological models

Let us consider two criteria that have been proposed for
terminating the process of deciding between two altern-
atives. According to the simplest criterion, a choice should
be made as soon as the integrated evidence in support of
one of the alternatives exceeds a threshold – this criterion
is implemented in the ‘race’ model [7]. According to the
second criterion, a choice should be made as soon as the
difference between the evidence supporting the winning
alternative and the evidence supporting the losing alterna-
tive exceeds a threshold – this criterion is implemented in
the ‘diffusion’ model [1,3,20].

The diffusion model is usually formulated in a simpler
way (equivalent to the description of above): instead of two
integrators, themodel includes just one abstract integrator
that accumulates the difference between the evidence for
the two alternatives; the choice is made when the level of
the activity of this integrator exceeds a positive or a
negative threshold (see first paragraph in Box 1). Recent
versions of the diffusion model include additional
parameters that describe the variability in the decision
process between trials and improve the fit to behavioural
data [21].

Optimality

Thediffusionmodel implementsSPRT[19]. SPRToptimizes
the speed of decisions for a required accuracy [19]; this
property can be illustrated using examples of the race
and the diffusion models. In both models, the speed and
the accuracy depend on the decision threshold, and there is
always a speed–accuracy trade-off (thehigher the threshold,
the greater the accuracy but the slower the speed of the
decision). However, if the thresholds in the two models are
www.sciencedirect.com
chosen togive the sameaccuracy (e.g. 10%), then the optimal
property of SPRT implies that the diffusion model, on
average, will be faster than the race model. Intuitively,
the advantage of the diffusion model comes from its ability
to react adaptively to the levels of evidence supporting the
losing alternative: the diffusion model will integrate for a
shorter time if the evidence supporting the losing alterna-
tive is weak relative to the winning alternative, and for a
longer time if the levels of evidence for each alternative are
similar – that is, there is a conflict between alternatives
(because, in this case, it will take longer for the accumulated
difference in evidence to cross the threshold). This adaptive
ability is not present in the race model. As will be explained
later (in the section ‘Optimal threshold’), the diffusionmodel
also has the ecologically important property of optimizing
the amount of reward that is acquired as a consequence of
choices.

If decision making by the brain is optimal, the analysis
described above predicts that the diffusion model should
provide a better explanation of observed experimental data
than the race model. The diffusion model has been used
successfully by Ratcliff and colleagues to describe beha-
vioural outcomes in a wide range of choice-related tasks
and paradigms (e.g. Refs [22–24]). Careful analyses of RTs
from choice tasks have established that the diffusionmodel
can indeed fit the distributions of RTs better than the race
model [21,25–27]. Moreover, Ratcliff et al. [26] showed
that, in the superior colliculus (the subcortical eye-move-
ment control nucleus that receives input from cortical
integrators), the growth of discriminative information is
also better described by the diffusion model than by the
race model.

Models of decision processes in the cerebral cortex

Three models have been proposed, by Shadlen and
Newsome [6], Usher and McClelland [12] and Wang [13],
to describe the cortical processes that underlie decision
making. The cortical models have the ability to describe
both the firing rate of cortical neurons and the behavioural
data [6,12,13,17]. Each of these cortical models includes
two neural integrators that correspond to the two altern-
atives and assumes that a choice is made as soon as the
activity level in one of the integrators exceeds a threshold.
In this aspect, the cortical models are related to the race



Box 1. Relationships among models

Figure I in this box illustrates the relationship among the models of

decision making, whose architectures are presented in a form of

diagrams. To clarify these diagrams, the race model includes two

integrators that independently accumulate evidence; hence, the

corresponding diagram includes two circles (which denote integra-

tors) receiving input (denoted by triangles). In the diffusion model,

one integrator receives the difference between the evidence in

support of the two alternatives.

An arrow between two models indicates that there is a set of

parameters of the first model for which the first model reduces to the

second. For example, in the Shadlen and Newsome [6] (SN) model (as

in all cortical models), the choice is made when the activity of any of

the integrators exceeds a threshold. If the weights of inhibitory

connections are set to 0, then the SN model reduces to the race

model. If the weights of inhibitory connections are equal to the

weights of excitatory connections, then each integrator accumulates

the difference between evidence in support of the two alternatives

(1st – 2nd and 2nd – 1st) and, hence, the SN model is computationally

equivalent to the diffusion model.

The reduction of the Usher and McClelland [12] (UM) model to the

diffusion model requires the analysis of its dynamics; this was first

reported by Usher and McClelland [12] and later developed by Bogacz

et al. [28]. The model proposed by Wang [13] is a detailed spiking

neuron model. Wong and Wang have recently shown that, for certain

parameters, the model can closely approximate the diffusion model

[64]. Bogacz et al. [28] analyzed a population-level model using the

architecture of the Wang [13] model, and identified parameters for

which it can be reduced to the UM model and to the diffusion model.

Figure I. Relationships among the models of decision making. Each box with rounded edges contains a diagram that shows the architecture of one model. The

elements of the diagrams are explained in the key. The following models are shown: Wang [13], Usher and McClelland [12] (UM), Shadlen and Newsome [6] (SN), the

diffusion model [1,3,20] and the race model [7]. Arrows between two models indicate that parameters of the first model reduce to the second model. The horizontal

dashed line separates the cortical models from the models that are proposed in psychological context.
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model. However, each of the cortical models also includes
inhibitory connections that, for certain parameter values,
enable the integrators to accumulate the difference
between evidence in support of the two alternatives (Box
1). Therefore, for these optimal parameter values, all the
cortical models become computationally equivalent to the
diffusion model and, thus, achieve optimal performance.

Consequently, the cortical models predict exactly the
same behavioural data as the diffusion model if they are
appropriately parameterized [28]. However, if they are not
appropriately parameterized, the models might produce
different behavioural predictions [12,21,29]. Importantly,
different cortical models make slightly different predictions
www.sciencedirect.com
regarding neuronal firing rates of integrators. For example,
the models that have inhibitory connections from inputs to
integrators [6,17] predict that the firing rate of cortical
integrators depends only on the difference between the
inputs, whereas the models that have mutual inhibitory
connections between integrators (direct [12] or indirect [13])
predict that their firing rate will also depend on the total
input to integrators [28]. Therefore, although all cortical
models can be parameterized to perform the same compu-
tation, it is of interest to discoverwhichmodel best describes
the integration process at the neuronal level.

In summary, all three cortical models become
computationally equivalent to the diffusion model for
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parameter values that optimize their performance.
Because the diffusion model can describe behavioural data
from choice tasks [22–24], this equivalence implies that the
cortical models that can describe neurophysiological data
can also be parameterized to fit behavioural data
[6,12,13,17].

Models of decision processes in the basal ganglia
This section reviews recent hypotheses that the basal
ganglia perform the third process of decision making
shown in Figure 1: the criterion satisfaction. In this sec-
tion, I review the theory that the basal ganglia evaluate the
criterion satisfaction in an optimal way [14] – namely, that
they implement the multihypothesis SPRT (MSPRT) stat-
istical test, which is a generalization of SPRT, to the choice
between multiple alternatives [30]. This section first
reviews how the basal ganglia interact with the functional
Box 2. Mapping MSPRT onto the basal ganglia

The goal of decision making between N alternatives is to choose the

alternative with the most evidence supporting it. Hence, the decision

process can be formalized as a choice between N hypotheses Hi, each

stating that the sensory evidence that supports alternative i has the

highest mean [9,14]. In MSPRT [30], at each moment in time and for

each alternative i, one computes the probability Pi of hypothesis Hi

given the evidence that has been observed so far, and the decision is

made as soon as any Pi exceeds a threshold. Bogacz and Gurney [14]

proposed that the activity of channel i of the output nuclei of the basal

ganglia is proportional to OUTi = �log Pi (note that �log Pi > 0

because Pi < 1). Thus, to implement MSPRT, the decision is made in

the model as soon as any OUTi decreases below a threshold, which is

consistent with the selection by disinhibition by the basal ganglia (see

‘Models of decision processes in the basal ganglia’). Computing

�log Pi from the Bayes theorem gives Equation I, where yi denotes the

integrated evidence that supports alternative i:

OUT i ¼ �yi þ ln
XN

k¼1

expðyk Þ (I)

Equation I includes two terms: the first expresses the integrated evi-

dence for alternative i; the second involves summation over all chan-

Figure I. The pathways within the basal ganglia that are required for MSPRT. The top

nucleus (STN), output nuclei (including substantia nigra pars reticulate and entopedun

and the lines with circles denote inhibitory connections. Single lines denote connec

diffused projections across channels.
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systems of the brain; it then shows how they might
implement MSPRT and how this theory relates to the
theories of reinforcement learning in the basal ganglia.

Redgrave et al. [18] and others [31–33] have proposed
that the basal ganglia resolve competition between paral-
lel-processing cortical and sub-cortical functional systems
that are vying for behavioural expression. Redgrave et al.
[18] pointed out that the resolution of competition by a
‘central switch’ (i.e. the basal ganglia), rather than by
mutual communication between cortical and subcortical
regions in competition, dramatically reduces the amount of
connections and information transmission that is required
and conforms to the observed anatomical organization of
the brain.

Alexander et al. [34] proposed that the basal ganglia are
divided into channels that correspond to individual actions
and traverse all nuclei (because all basal nuclei include
nels, so it expresses the amount of conflict between alternatives. Thus,

according to Equation I, the more conflict between alternatives, the

higher the integrated evidence for the winning alternative needs to be

for OUTi to decrease below the threshold.

Figure I in this box shows the proposed mapping of Equation I onto

the nuclei that comprise the basal ganglia [14]. yi is computed by

cortical integrators. The output nuclei receive two inputs that

correspond to the two terms in Equation I: term �yi is provided by

the inhibitory projections of the striatum, whereas the conflict term is

computed by the network of subthalamic nucleus (STN) and globus

pallidus (GP). Bogacz and Gurney [14] proved that the required form of

the conflict term can be computed by this network if the activity of STN

neurons is proportional to the exponent of their input. Here, an

intuition for the computation of the conflict term is provided. The

conflict term in Equation I includes three operations that are

implemented in the model in the following way: first, exponentiation

of cortical input is performed by the STN; second, the summation over

channels is achieved due to the diffused projections of the STN (Figure

I), so that each output channel receives input from many STN channels

[65]; third, the logarithm is achieved due to interactions of the STN

with inhibitory GP, which compresses the range of STN activity.

box denotes the cortex; other boxes denote basal nuclei: the striatum, subthalamic

cular nucleus) and globus pallidus (GP). The arrows denote excitatory connections

tions within channels and multiple lines (i.e. those originating from STN) denote
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neurons that are selective for the movements of particular
body parts [35,36]). In the default state, the output nuclei
of the basal ganglia send tonic inhibition to all input
structures in the cortex (via the thalamus) and the brain
stem, thereby blocking the execution of any action [37,38].
The actions prescribed by the winning competitors are
selected by disinhibition: when the basal ganglia inputs
that represent a particular action are sufficiently active, a
series of selective processes within the basal ganglia nuclei
lead to the selective inhibition of the relevant channels in
the output nuclei. In turn, this output inhibition releases
the ‘winning system’ from the inhibition that enables
execution of its prescribed action [37,38].

Several simulation studies have demonstrated the
capacity of the basal ganglia to underlie decision making
[15,16,39]. Recently, Bogacz and Gurney [14] showed that
the equation that describes MSPRT maps onto a subset of
anatomy of the basal ganglia (Box 2). This theory gives an
analytic description of the computations in the basal
ganglia, thus providing a new framework for understand-
ing why the basal ganglia are organized as they are [14]. In
agreement with previous simulation studies [15,16,40,41],
this theory postulates that one of the basal nuclei, the
subthalamic nucleus, has a role in modulating the decision
process proportionally to the conflict between evidence for
various alternatives. Additionally, the work of Bogacz and
Gurney [14] specifies how the conflict should be computed
to yield optimal performance, enabling quantitative pre-
dictions. In particular, the equation for the MSPRT
criterion includes exponentiation, and the mapping
between the equation and the architecture predicts that
the firing rate of subthalamic neurons should be equal to
Figure 2. Firing rates f of subthalamic neurons as a function of input current I. (a–d) Re-

[43] [Figure 4b, 4f, 12d and 13d respectively (control condition)]. (e–g) Re-plotted dat

respectively (control condition)]. Only firing rates below 135 Hz are shown. Lines show
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an exponent of their inputs (Box 2). Such input–output
relationship is highly unusual (reported before only in the
visual system of locusts [42]). Figure 2 compares this
prediction with existing biological data. For all subthala-
mic neurons that have beenmeasured [43,44], the relation-
ship between input and firing rate follows precisely an
exponential function [14].

Much experimental and theoretical evidence suggests
that the basal ganglia are also involved in learning from
rewards and punishments. It has been observed that a
particular signal computed by reinforcement learning
algorithms [45] (the reward prediction errors) describes
certain aspects of the activity of dopaminergic neurons that
project to striatum [46–48] (cf. [49,50]). Moreover, recently
Frank et al. [51] provided compelling evidence that the
direct pathway from the striatum to the output nuclei is
involved in learning from rewards, whereas the indirect
pathway via globus pallidus (not shown in Figure I in Box
2) is involved in learning from punishments.

The theories of decision making and reinforcement
learning should not be viewed as contradictory but rather
as complementary: Bogacz and Gurney [14] propose that
the reinforcement learning models describe the compu-
tations of the basal ganglia during task acquisition,
whereas decision-making models describe the compu-
tations of the basal ganglia when subjects are proficient
in the task. Furthermore, they have shown that when the
connections that are involved in learning from punish-
ments (see above) are added to their model of decision
making, the network continues to implement MSPRT [14].

In summary, in the case of choice between multiple
alternatives, a model with sophisticated architecture of
plotted data on the firing rate of subthalamic neurons presented in Hallworth et al.

a from subthalamic neurons presented in Wilson et al. [44] [Figure 1c, 2c and 2f

best fit of the function f = a exp(b I). Reproduced, with permission, from Ref. [14].
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the basal ganglia implements optimally the third process
of Figure 1 (i.e. the criterion satisfaction), enabling faster
decisions than would be possible using simpler cortical
models [14,52]. Nevertheless, the cortical models provide
a good description for the first two processes of Figure 1 (i.e.
the integration of sensory evidence).

Optimal threshold
As mentioned earlier in this review, the speed–accuracy
trade-off is controlled by the height of the decision
threshold (e.g. in the diffusion model, the higher the
threshold, the slower but more accurate the decisions).
Gold and Shadlen [10] proposed that subjects in
decision-making experiments choose a threshold that
Box 3. Predictions of the optimal threshold

Here, I describe the relationship between decision time (DT) and error

rate (ER) as predicted by the diffusion model with the optimal

threshold in the sequential choice task of Gold and Shadlen [10]. DT is

defined as a fraction of reaction time (RT) that is connected with

decision processes; the remainder of RT that describes the duration of

non-decision processes (e.g. visual and motor) is denoted by T0. The

normalized DT (NDT) can be defined as the ratio of DT to the total time

in the trial that is not connected with decision making, which includes

T0 and the delay D between the response and the next stimulus – that

is, NDT = DT/(T0 + D). The thick curve in Figure I in this box shows the

predicted relationship between NDT and ER.

The relationship shown in Figure I should be satisfied for any task

parameter (i.e. for any task difficulty and delay D). The theory predicts

that subjects should produce very low ER only during very easy tasks;

hence, in this case, subjects should also be very fast, as indicated by the

left end of the curve in Figure I. Conversely, subjects should produce ER

Figure I. The relationship between the error rate (ER) and the normalized decision tim

model with the optimal threshold. Histograms show data from an experiment in whic

choice and delay D varied between blocks of trials (D was 0.5 s, 1 s or 2 s). For each bloc

each group, the height of the histogram bar shows the average NDT and the error bar s

bars show the data from a selection of subjects who earned the highest reward rate
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maximizes the reward rate, which is defined as the number
of rewards per unit of time. The expression for the reward
rate and, therefore, the optimal threshold is task specific.
Gold and Shadlen [10] considered a sequential choice task
– at the beginning of each trial, a stimulus is presented,
after which the subject is allowed to respond at any time,
and there is a fixed delay between the response and the
next stimulus. In the simplest version of this task, the
subject receives a reward if the choice is correct and there is
no penalty for errors. In this version, there is a unique
value of the decision threshold that maximizes the reward
rate [28]. (If the threshold is too low, the subject is not
accurate, so the reward rate is low; but if the threshold is
too high, the subject is too slow and the trials are so long
close to 50% only for tasks so difficult that the optimal strategy is to

guess; hence, in that case, the subjects should also be very fast, as

indicated by the right end of the curve. The longest DT (for given D)

should be obtained for ER � 18%, in which case the mean DT should be

equal to �19% of the non-decision interval in the trial.

Histograms in Figure I show data from the sequential choice task

presented by Holmes et al. [66]. They report that, when all subjects

were considered, DT followed the theoretical predictions only

qualitatively. However, when only 30% of subjects who earned the

most reward in the experiment were considered, DT also followed the

theoretical predictions quantitatively. The DT of other subjects was

longer than optimal, which might suggest that they attempted to

optimize a criterion that combined reward rate and accuracy [67].

Similar optimal performance curves have been derived for such

combined criteria [28,66] and provide better fit to data from all

subjects [66].

e (NDT). The thick curve shows the relationship that is predicted by the diffusion

h 80 human subjects performed the sequential choice task, in which difficulty of

k, ER and NDT were computed. The blocks were grouped by ER in bins of 5%. For

hows the standard error. White bars show the data from all subjects and coloured

in the experiment. Reproduced, with permission, from Ref. [66].



124 Review TRENDS in Cognitive Sciences Vol.11 No.3
that the reward rate is also low). The assumption that
subjects use the diffusionmodel with the optimal threshold
permits quantitative predictions regarding the relation-
ship between speed and accuracy, as discussed in Box 3.

It was also proved mathematically that the diffusion
model with the optimal threshold maximizes the reward
rate in a wide range of tasks [28]. For example, the diffu-
sion model with optimal threshold settings gives higher
reward rates than the race model with its best threshold.
This proof can be extended to the case of multiple altern-
atives to show that the MSPRT with the optimal threshold
maximizes the reward rate. Thus, the diffusion model and
the MSPRT optimize ecologically relevant criteria, expres-
sing the expected reward.

Extensions of the theory

This review has focused on a theory that describes optimal
decisions in simple choice. However, the theory has been
extended to more complex scenarios including (i) biased
choices in which one of the alternatives is more probable or
more rewarded [2,28,53–56] than the other, (ii) multidi-
mensional choices in which the alternatives need to be
compared in several aspects [57–59], and (iii) tasks in
which the information content of the stimulus varies
within the trial [60]. How the height of the decision
threshold is encoded in the cortico–basal ganglia circuit
[40,41,61] and how its optimal value can be learnt [62,63]
have also been modelled. Additionally, several studies
have investigated how the introduction of biological con-
straints in cortical integrators (i.e. nonlinearities) affects
decision performance [52,57,60].

Summary
This article has reviewed theories that make the
ecologically motivated assumption that the brain imple-
ments decision algorithms that optimize the speed and
accuracy of choices, and their trade-off. These algorithms
have been implemented by models on different levels of
abstraction, which implies that these models are compu-
tationally equivalent and, hence, produce the same beha-
viour. For example, in choices between two alternatives, a
complicated network model of cortical integrators and
the basal ganglia implements the same computation as
the diffusion model, which implies that it can describe the
same wide range of behavioural data. Furthermore, it has
been demonstrated that the optimal-decision theories are
effective tools in generating experimental predictions for
both neurobiology and behaviour. I believe that the theor-
etical approaches assuming optimal performance will
Box 4. Outstanding questions

� Which of the cortical models best describes the mechanism of

integration in the cortex?

� Can basal ganglia also implement MSPRT during task acquisition,

when it has a key role in reinforcement learning?

� Can the algorithmic framework that describes decision making in

basal ganglia in healthy people help in treating diseases that

affect the basal ganglia (e.g. Parkinson’s disease)?

� Does the brain allocate attentional resources or cognitive control

[68,69] in an optimal way for different levels of the conflict that is

present in the evidence supporting the alternatives?

www.sciencedirect.com
answer further questions (Box 4) concerning the neural
bases of decision making.
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