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Abstract

Current Brain Computer Interface (BCI) systems are limited by relying on neuronal spikes and 

decoding limited to kinematics only. For a BCI system to be practically useful, it should be able to 

decode brain information on a continuous basis with low latency. This study investigates if force 

can be decoded from local field potentials (LFP) recorded with deep brain electrodes located at the 

Subthalamic nucleus (STN) using data from 5 patients with Parkinson’s disease, on a continuous 

basis with low latency. A Wiener-Cascade (WC) model based decoder was proposed using both 

time-domain and frequency-domain features. The results suggest that high gamma band 

(300-500Hz) activity, in addition to the beta (13-30Hz) and gamma band (55-90Hz) activity is the 

most informative for force prediction but combining all features led to better decoding 

performance. Furthermore, LFP signals preceding the force output by up to 1256 milliseconds 

were found to be predictive of the force output.

I Introduction

A Brain Computer Interface (BCI) is a system that measures brain activity, and processes 

that to replace, restore, enhance, supplement or improve the natural brain output [1]. A 

major potential clinical application of BCI is in neural control of limb prostheses to help 

patients with amputation or paralysis (due to spinal cord injuries, stroke or motor neuron 

disease e.g. amyotrophic lateral sclerosis). Most existing BCI systems used for prosthetic 

control are limited to decoding of kinematics only [2]. A neural prosthesis should allow the 

transduction of both kinematics and force information to enable finer control leading to a 

better integration in a patient’s life and improved support in daily activities. In addition, 

most BCI systems are based on processing of neural spikes for decoding movement-related 

information from the cortex. However, the utility of spike recordings for long-term neural 

prostheses is limited due to displacements as well as neuronal cell deaths [3]. Surface 

electrocorticograms (ECoGs) have previously been demonstrated to have greater stability, 

but only for a few months [4]. Local Field Potentials (LFP) recorded from the Subthalamic 

nucleus (STN) with deep brain electrodes, on the other hand, have previously been 

demonstrated to have longevity of at least seven years [5], and could thus offer a more stable 

and durable signal for BCI systems. In addition, deep brain surgeries for implanting deep 

brain electrodes are now routinely used for therapeutic reasons and are surgically safe. An 
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alternative option is to explore intra-cortical LFPs. However, intra-cortical LFPs have only 

been demonstrated to stay stable from 1 [6] to 3 years [7].

Previous evidence suggests that force information is present in the LFP recorded from STN 

[8]. We had previously shown that we can decode four stages of force development from 

LFP[9]. Furthermore, we have recently shown that a model based on low gamma (55-95 Hz) 

and beta (13-30 Hz) band activities can explain force initiation and holding trajectory on a 

set of patients [10]. However previous work [9, 10] looked at individual trials which were 

base-normalized. A practical BCI system should be able to decode the complete force profile 

as well as correctly decode periods of no force on a continuous basis with acceptable latency 

to be useful in real-time.

The aim of this study is to investigate if force can be decoded from LFPs recorded from 

electrodes placed in the STN on a continuous basis with low latency, from Parkinsonian 

patients. At the time of writing, we are not aware of any other study that has looked into 

decoding force from deep brain electrodes on a continuous basis, from human subjects. The 

closest to the work presented in this paper is the work by [11] that decodes force on a 

continuous basis from human subjects, using ECoGs with medium-density arrays and 

surface microwire arrays.

II Methods

A Experimental Paradigm & Recordings

In this study, patients were instructed to grip a force dynamometer after a visual cue (red 

light-emitting diode illuminating for 3 seconds) and continue to hold it while the LED 

stayed on. Patients were given the liberty to randomly choose their own effort level. There 

were, on average, 31 trials conducted, with each hand in a given session. Both the force 

dynamometer and LFP recordings were recorded using a TMSi porti (TMS International) 

amplifier. This paradigm is explained in more detail in [10].

There were 9 patients with idiopathic Parkinson’s disease who had bilateral implantation 

deemed to have been localized in the STN. All patients gave informed consent and the study 

was approved by the local ethics committees. The recordings were undertaken 3-6 days after 

surgery when electrodes were implanted and externalized prior to implantation of a 

subcutaneous pulse generator. Out of these 18 STNs (from 9 patients), 8 STNs from 5 

patients (see Table 1) were selected for further analysis based on fulfilling either of two 

criteria. First high gamma band (55-95 Hz) synchronization had to be present at movement 

onset. This is because previous work [10] identified event-related synchronization of gamma 

band activity (termed as gamma ERS henceforth) to be strongly correlated with the ability to 

identify force development onset using a first order linear dynamic model. Second patients 

had to improve with stimulation, as evaluated by the Unified Parkinson’s Disease Rating 

Scale (UPDRS). This was taken as evidence of satisfactory targeting of the motor STN.

B Preprocessing and Feature Extraction

Each electrode had four contact points, labelled as X1-4 where X was either L (left) or R 

(right). These four monopolar channels were converted into three bipolar channels (by 
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subtracting one from the other), and the best bipolar channel was identified for each STN, 

based on movement-related beta band desynchronization [10] and used in subsequent 

analysis. Consecutive 256 millisecond windows, with an overlap of 206 milliseconds were 

used to extract various time-domain and frequency domain features. This meant that a new 

feature vector was available every 50 milliseconds. All the LFP channels had a sampling 

frequency of 2048 Hz.

Frequency-domain features—The identified LFP channel was decomposed into a time-

frequency signal by convolving with a complex Morlet wavelet [12]. A linear frequency 

scale ranging from 0 to 500 Hz (501 frequency points) and a variable number of cycles (4 to 

10, varying as a function of frequency) were used in this wavelet transform. Various 

frequency bands were then identified: 0-4 Hz, 5-7 Hz, 8-12 Hz, 13-20 Hz, 21-30 Hz, 31-45 

Hz, 46-55 Hz, 56-95 Hz, 96-105 Hz, 106-200 Hz, 201-300 Hz, 301-349 Hz and 350-500 Hz. 

The mean power in each of these bands, in a given sliding window was taken as a potential 

frequency-domain feature.

Time-domain features—Similar to the previous work [9], we explored the potential 

benefit of using additional features derived directly from the time-domain signal. Hjorth 

proposed three parameters that capture the characteristic of a signal, which are not captured 

by looking at mean power in specific frequency bands with a wavelet transform [13]. These 

three features are activity (characterizes the total power of a signal, equivalent to the 

variance of a signal), mobility (standard deviation of the power spectrum along the 

frequency axis, equivalent to the standard deviation of the slope of the original signal 

relative to standard deviation of the signal) and complexity (provides an indication of the 

smoothness of the signal relative to a sine wave). In addition, the mean value of the LFP 

signal within a sliding window was identified as a fourth feature (termed as the “mean LFP”) 

similar to the work done in [11].

C Wiener Cascade Model

Figure 1 shows a model that was adopted for decoding force, denoted by F(n), from features 

extracted from the LFPs, X(n). The objective is to find the filter coefficients of H(z) such 

that the difference between the desired signal F(n) denoting force measured from the 

dynamometer), and the decoded force, F′(n), given as output of the filter is minimum in the 

least squares sense. The input to the filter consists of X(n) and up to N lagged versions 

denoted by convolving X(n) with z–k where k ranges from 1 to N. Such a filter is called a 

Wiener filter, and is optimal in the least squares sense. The Wiener filter has traditionally 

been employed for prediction (where the desired signal would be a future sample of a signal) 

and filtering to remove additive noise (where the desired signal would be the original signal, 

without the additive noise) [14]. Equation (1) represents the predicted force, F′(n), as a 

function of M features with up to N lags, where xi (n – j) refers to the ith feature at time 

corresponding to the nth sample with a lag of j. Minimizing the sum of squares of the 

residuals (difference between the predicted force, F′(n), and the desired force, F(n)) yields a 

set of linear equations (called the normal equations) and expressed in matrix form in 

equation (2) where A is a M(N + 1)x1 matrix of aij, X is a PxM(N + 1) matrix of all the 
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features, and F is the Px1 vector of actual force where P is the total number of samples 

(corresponding to the total number of sliding windows).

(1)

(2)

(3)

Instead of minimizing only the sum of squares of residuals, a slight modification commonly 

employed is to add a regularization term (A2) to the residuals. The resulting equation is 

given by equation (3) where λ is a constant that determines the amount of regularization, 

and I is an identity matrix. This is commonly called ridge regression and guards against 

overfitting.

A limitation of the Wiener filter lies in its inability to model non-linearity. Most systems 

occurring in nature are non-linear and one solution is to use a Wiener Cascade (WC) filter. 

This method has previously been used in several studies including decoding of force from 

ECoG [11]. This involves adjusting the output of the Wiener filter by fitting a high order 

polynomial (a time-independent, non-linear equation hence called a static non-linearity) to 

match to the desired output. This is equivalent to minimizing equation (2) where E(b0, 

b1, . . , bp) denotes the error in fitting the pth order polynomial equation to the output of the 

Wiener filter, F′(n), b0, b1 … bp denote the unknown coefficients of the polynomial equation 

that needs to be determined, and F(n) is the actual force, and N is the total number of 

samples.

(4)

D Cross Validation

In this work, k-fold cross validation was used. For time-series data, it is important to ensure 

that continuous chunks of data are used in each fold to ensure that the test part of the signal 

is independent of the training set. In each iteration, k – 1 folds were used for training and 

validation, and the remaining kth fold was used for testing. This process was repeated k 
times to allow testing on all folds. Consequently, it was possible to test the algorithm on an 

independent test set to assess the generalization capability of the proposed algorithm. The 

correlation between the measured force from the dynamometer and the force estimated was 

computed to assess the performance of the proposed algorithm.
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III Results & Discussion

Figure 2 illustrates force decoding using 4-fold cross validation for a single patient. Notice 

how each fold is composed of continuous chunks of data (unlike traditional cross-validation 

techniques, not appropriate for continuous time-series data). In any given iteration, 3 folds 

are used for training, while the remaining fold is used for testing.

Table 2 shows the median correlation (median of 11 folds) and the mean correlation of all 

the 8 STNs from 5 patients, with a Regularized WC filter using all the time-domain and 

frequency-domain features, a lag of 40, and a polynomial order of 3 for the static non-

linearity. Figure 3 shows the scatter plot of the median correlation (median from each testing 

fold) for each patient, against gamma ERS and it can be seen that gamma ERS correlates 

strongly with algorithm performance. Consequently, further analysis is carried out using 

only the 5 STNs from 3 patients who had high gamma ERS and the best performance 

overall. We investigated the need for cascading a static non-linearity with a standard Wiener 

filter, the variation of performance with amount of lag, the order of the polynomial of the 

non-linearity, and the presence of any potential improvement by adding more features in 

comparison with using only beta (13-30 Hz) and gamma bands (55-95 Hz) as was done in 

[10], previously.

Figure 4 shows the mean error after using only a Wiener filter and after cascading a static 

non-linearity of 3rd order, with all lags from 0 to 50. It can be seen that adding a static non-

linearity improves force decoding, and best performance seems to be achieved with a lag of 

around 20 (corresponding to using features from previous windows for up to 1256 

milliseconds).

Figure 5 shows the variation of mean error across the 5 STNs, with different polynomial 

order, from 1 to 10. It can be seen that using a 4th order polynomial gives the best prediction 

performance.

Figure 6 shows the mean and standard deviation of correlation when different features are 

added in addition to beta (13-30Hz) and gamma (55-95Hz). The figure suggests that high 

gamma band (300-500Hz) activity was the single feature providing the most improvement, 

but that using all the features together lead to even greater improvement, with low variance.

While a neural network might be considered a more suitable approach for building a non-

linear decoder, it is prone to overfitting and requires techniques like early stopping (based on 

validation error) or heavy regularization to penalize large weights. Using more layers in a 

neural network, it is possible to create a force decoder which is at least as good as the WC 

filter, but it becomes increasingly likely to overfit with increasing complexity of the network 

architecture. Figure 7 shows a specific example of using a (17-10-1) network on a single 

patient showing the mean correlation with different amounts of regularization. For reference, 

the mean correlation obtained after using a CW model is also shown. It can be seen that low 

regularization leads to overfitting (high variance) and hence worse performance than CW-

based force decoding. However, as the amount of regularization is increased, the mean 

correlation on the test set starts improving and becomes better than CW. As expected, further 

regularization leads to decreasing performance suggesting over-regularization (high bias). 
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Determining the optimal amount of regularization with a neural network is computationally 

far more expensive than CW-based decoding, as the optimal amount of regularization will 

vary from patient to patient and the additional gain in performance is minimal. This is likely 

because any non-linearity is already captured by the static non-linearity part of the CW 

model thereby obviating the need for using more computationally expensive techniques like 

neural networks.

Lastly the force decoding performance was significantly better on the contra-lateral side than 

the ipsi-lateral side (0.61±0.19 as opposed to 0.37 ± 0.35) for the 5 STNs shortlisted, using a 

specific lag, and polynomial order.

There are a number of reasons that make it unlikely that movement artefact was responsible 

for the force decoding demonstrated in this work. Firstly, the force applied was isometric 

thereby minimizing any artefactual movement during the experiment. Secondly, the 

decoding performance improved with lag suggesting that features derived from signals from 

STN recorded prior to actual force output were involved in decoding force. Thirdly, a 

movement artefact is likely to result in wideband power across the whole frequency 

spectrum, not observed in our study. Furthermore, this work is not decoding only specific 

segments of experiment where a patient is gripping with force but the entire duration while 

the patient is undertaking the experiment. Lastly, there is a significant difference in force 

decoding performance using contra-lateral STN as opposed to ipsi-lateral STN, which is 

consistent with our understanding that, anatomically, STN is lateralized.

IV Conclusion

We are not aware of any previous study that has shown continuous decoding of force from 

local field potentials, recorded from deep cortical structures in human subjects. Furthermore, 

we have shown that there is benefit to using more features, in addition to the selected beta 

and low gamma bands, and even further improvement when more time-domain features are 

selected. There is a non-linearity which can be captured by cascading the Wiener filter with 

a static non-linearity. There is very little benefit to using neural networks to decode force, at 

the cost of significant computational complexity. A WC filter offers a fast algorithm for 

decoding force, and it is able to handle non-linear relationships obviating the need for other 

non-linear but computationally more expensive techniques. Future work will involve using 

the proposed method to decode force in real-time providing feedback (of the decoded force) 

to the patient. We believe that the method proposed in this work is fast enough to allow 

decoding at low latencies and can thus be used for online force decoding. This is likely to 

have significant implication for developing BCI systems allowing more fine-tuning of 

outputs, controlled by LFP signals from deep cortical structures (STN).
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Figure 1. 
A Wiener filter model, adapted to illustrate how force, F′(n), is decoded from features 

extracted from LFPs , X(n)
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Figure 2. 
Illustration of 4-fold cross validation, and force decoding using a WC filter with all features 

at a lag of 40
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Figure 3. 
Median correlation against gamma ERS, after using a Regularized WC filter, with a lag of 

40, a polynomial order of 3, and 11-fold cross validation

Shah et al. Page 10

Int IEEE EMBS Conf Neural Eng. Author manuscript; available in PMC 2017 August 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 4. 
Performance variation with different amounts of lag, using only a Wiener filter and a WC 

filter with a 3rd order polynomial
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Figure 5. 
Performance variation with polynomial order chosen for the static non-linearity
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Figure 6. 
Every feature added leads to improvement, and hence it is best to use all available features
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Figure 7. 
Both under and over-regularized neural network models lead to poor performance, the 

former due to high variance and the latter due to high bias
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Table 1

List of selected patients and the STNs that were selected for continuous force decoding based on gamma ERS 

and clinical assessment

Gender Age (years) PDa duration (years) STNs (L:Left, R:Right) Main symptoms

Male 49 13 L,R stiffness, bradykinesia, bilateral tremor, freezing

Male 56 10 L,R bradykinesia, rigidity, tremor, poor gait

Male 56 10 R Tremor in all four limbs

Female 66 16 L,R Shuffling, poor balance

Male 52 7 L Freezing, falls, postural instability, tremor on right side

a
PD: Parkinson’s disease
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Table 2

Overall mean and median correlation after applying a Regularized WC filter using all the time-domain and 

frequency-domain features, with a lag of 40, a polynomial order of 3 and an 11-fold cross validation

PID Contra-lateral STN (L: Left, R: Right) Median Correlation Mean Correlation

1 L 0.75 0.63

1 R 0.82 0.71

2 L 0.30 0.26

2 R 0.71 0.57

3 L 0.63 0.63

4 L 0.56 0.57

4 R 0.54 0.47

5 R 0.61 0.57
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