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Empirical findings suggest that the mammalian brain has two decision-making systems that act at different

speeds. We represent the faster system using standard signal detection theory. We represent the slower (but

more accurate) cortical system as the integration of sensory evidence over time until a certain level of

confidence is reached. We then consider how two such systems should be combined optimally for a range of

information linkage mechanisms. We conclude with some performance predictions that will hold if our

representation is realistic.
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1. INTRODUCTION
We consider the neural pathways of mammalian decision

making in the context of an animal attempting to forage

while avoiding predators. There is considerable evidence

that the danger posed by predators has a strong effect on

the behaviour of their prey (see Lima (1998) for a review).

Much of the theoretical work on this topic has focused on

understanding how various factors influence the optimal

behaviour of prey (e.g. Houston & McNamara 1999;

Brown & Kotler 2004). Our aim is different, in that we are

concerned with the optimal use of the neural mechanisms

involved in responding to the threat of predation. Using

parameters relating to brain structure and function, we

construct and analyse a decision-making system based on

two subsystems. One subsystem is fast while the other is

more accurate, resulting in a trade-off between the use of

the two components.

A novel aspect of our approach is that we find the optimal

way to use these subsystems given various assumptions

about the interactions between them. This means that we

are able to predict how the presence of one neural system

can shape the evolution of a new neural system.
2. BASIS FOR MODELLING ASSUMPTIONS
Experimental evidence suggests that mammalian species

have evolved at least two distinct neural pathways for

detecting and responding to signals of threat (LeDoux

1996; Morris et al. 1999; Zald 2003; Ohman 2005).

Fear conditioning and lesioning studies of rats, and

neuroimaging studies of humans, have indicated that the
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amygdala plays a central role in the processing of threat-

related sensory information, and the activation of defensive

responses. For example, Vuilleumier et al. (2003)

considered the processing of fear-related visual stimuli

(faces) in humans and showed that shorter subcortical

pathways appear to provide the amygdala with coarse

but rapid sensory information, while longer cortical

pathways provide more detailed information over a longer

time-scale.

Fear responses can be produced from visual triggers,

which are sufficiently brief that the subject is not

consciously aware of the image shown (e.g. Ohman &

Soares 1994), indicating that the triggers may be

processed and acted upon purely subcortically. On the

other hand, it has been demonstrated that cortical regions

are capable of integrating sensory evidence over time to

increase accuracy of judgments (Schall 2001; Shadlen &

Newsome 2001; Cisek & Kalaska 2005; Yang & Shadlen

2007). In particular, in a task in which a monkey has to

make a decision about a direction of motion from a noisy

visual stimulus, the neurons in the frontal and parietal

areas that correspond to the correct alternative gradually

increase their firing rate (Shadlen & Newsome 2001). This

suggests that these neurons accumulate input from

sensory neurons, which are selective for the corres-

ponding alternative. Furthermore, it has been reported

that when the level of activity of the integrating neurons

reaches a particular threshold, the choice is made and

the corresponding action is initiated (Roitman &

Shadlen 2002).

The accumulation of sensory evidence is also evident

in behavioural data: the distributions of reaction times

from choice tasks between two alternatives are very

well described by a diffusion model assuming that the

difference between evidence for the two alternatives is

integrated until it reaches a certain threshold (Laming
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Table 1. General pay-off matrix.
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Figure 1. Information gain: (a) shows the discrete signal
distributions relating to the thalamic system and (b) illustrates
the random walk nature of information gain with time in the
cortical system.
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1968; Ratcliff 1978; Ratcliff & Smith 2004). The diffusion

model is thus consistent with the above neurophysiological

data (Smith & Ratcliff 2004; Bogacz 2007). Furthermore,

it has been shown that neural network models can

implement the diffusion model for certain parameter

values (Usher & McClelland 2001; Bogacz et al. 2006;

Wong & Wang 2006).

The central nucleus of the amygdala acts as an interface

between sensory inputs and response control systems,

triggering physiological and behavioural fear reactions.

LeDoux (1996), who identified subcortical and cortical

routes associated with auditory fear conditioning,

suggested that the evolutionarily older, subcortical route

has persisted despite the newer, more accurate cortical

route, because it maintains an advantage in allowing

individuals to respond more rapidly in life-threatening

situations. Although these pathways have now been

studied in some detail, the actual processes by which

decisions (e.g. to flee) are made in response to stimuli

remain unclear.

By measuring response times with different background

probabilities of outcome, Carpenter & Williams (1995)

have produced empirical evidence for two decision-

making systems that operate at different speeds, but do

not suggest how these are implemented.

Such findings motivate us to assume that the mamma-

lian brain has two decision-making components and that

these components are able to process data in different ways

in a variety of contexts, including the detection of

predators. One system is assumed to process a single

stimulus very fast, to reach a binary decision without

waiting for additional information; we refer to this as the

‘thalamic system’. The second system is assumed to be

capable of reaching the same binary decisions that the first

system can reach but has, at each stage, an additional

option of waiting for more information; we refer to this as

the ‘cortical system’.
3. GENERAL SCENARIO AND APPROACH
We analyse a hypothetical situation in which an animal

forages continuously unless it decides that there is

sufficient risk of a predator being present that it should

leave to find a safe area. The animal can choose to leave

at any time. If the probability of a predator being present

is perceived to be small, the focal animal may never

choose to leave and would then forage indefinitely (unless

it is killed).

The optimal decision at any stage depends upon the

value of continuous successful foraging, vf, the cost

of taking anti-predator action, c and the probability of

survival in the presence of a predator if anti-predator

action is taken, S(T ), where the random variable T is

the time to decide to take anti-predator action. We

assume that if the animal leaves the area, then by paying

the cost c, it is able to reach an area in which it can

continue to forage without risk of predation. The

resulting pay-offs, in terms of reproductive value, are

shown in table 1.

The scenario is assumed to start with a single stimulus

(such as a sense of movement from peripheral vision, or

the sound of a twig snapping), to which the thalamic

system is capable of making an immediate response. The

cortical system is also assumed to start its assessment at
Proc. R. Soc. B (2008)
the same time, and may cause additional data to be

gathered rapidly (e.g. through visual saccades) before

reaching a decision.

We assume that the evolutionary history and learning of

the animal allows it to correctly estimate the probability, p,

of a predator being present prior to the initial stimulus,

and that there is only one possible predator so the

probability of there being no predator is (1Kp).

We first analyse the thalamic and cortical systems

independently, before considering a number of ways in

which the systems could be combined.
4. THALAMIC DECISION: SIGNAL
DETECTION THEORY
We assume that the signal, x, received by the thalamic

system via sensory inputs, is normally distributed

according to N(mthal1, sthal) or N(mthal0, sthal), depending

upon whether a predator is present or not, respectively, as

shown in figure 1a.

The optimal stand-alone performance of the thalamic

system can be calculated using standard signal detection

theory (Egan 1975). Using the pay-off matrix of table 1,

with sZS(0) being the probability of survival in the

presence of a predator if immediate anti-predator action is

taken, we find that the optimal critical threshold for signal

level is given by

fthal1ðxthresholdÞ

fthal0ðxthresholdÞ
Z

ð1KpÞ

p

ðvf Kðvf KcÞÞ

sðvf KcÞ
Z

ð1KpÞc

psðvf KcÞ
:
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The expected pay-off for the stand-alone case is then

pEðpayoff jpredatorÞC ð1KpÞEðpayoff jno predatorÞ

Z p 1KD
xthresholdKmthal1

sthal

� �� �
sðvf KcÞ

C ð1KpÞ D
xthresholdKmthal0

sthal

� �
vf

�

C 1KD
xthresholdKmthal0

sthal

� �� �
ðvf KcÞ

�

Z p 1KD
xthresholdKmthal1

sthal

� �� �
sðvf KcÞ

C ð1KpÞ vf Kc 1KD
xthresholdKmthal0

sthal

� �� �� �
;

whereD(z) denotes the cumulative distribution function for

the standard normal distribution, i.e. the probability that a

sample from a standard normal distribution is less than z.
5. CORTICAL DECISION: SEQUENTIAL
PROBABILITY RATIO TEST WITH ONE
FINITE BOUNDARY
We assume that the focal animal continues to forage until

the likelihood of a predator being present (given the

evidence accumulated so far) is sufficiently high that it is

best to leave. This scenario can be framed in terms of the

sequential probability ratio test (SPRT), which can be

implemented by the diffusion model (discussed above).

The SPRT is a hypothesis test introduced by Wald (1945),

which tests between two hypotheses, updating the relative

likelihood of each as new data arrives until deciding (with

some pre-defined error probability) in favour of one of the

hypotheses. We use the test with only one finite boundary,

so the animal will never reach the decision to forage

permanently (i.e. regardless of new information). The test

therefore results in one of two outcomes at each stage:

(i) decide that the likelihood of a predator being present

is sufficiently high that anti-predator action should

be taken or

(ii) decide to gather additional data (before, potentially,

reaching outcome 1).

Assuming that the information received by the animal

is independent from moment to moment, the SPRT is a

statistically optimal test, in that it requires the minimum

number of samples to reach a decision with particular

error probabilities. Thus, the SPRT is the theoretical limit

of animal performance if drift does not vary across trials.

(Otherwise, a modification to the equations such as

urgency signals is required, as shown by Ditterich

(2006a,b).) Our assumption that the mammalian brain is

able to implement the SPRT is also based upon evidence

that it can be implemented in a simple cortical system

(Gold & Shadlen 2002; Bogacz et al. 2006).

The amount of time required to assess the situation will

be governed by the rate and quality of information and the

probability of making errors. If the probability of false

alarm given that there is no predator, a, is required to be

close to zero, the amount of time required to assess the

situation will be large. We assume that when there is a

predator present, the probability of survival decreases
Proc. R. Soc. B (2008)
exponentially with the amount of time spent before taking

anti-predator action. Thus, a trade-off is required between

a fast inaccurate decision and a slow accurate one.

We apply the SPRT to the problem of evaluating

predator presence, to look at the optimal speed–accuracy

trade-off of the stand-alone performance of the cortex,

before combining the cortical system with that of the

thalamus. In this scenario, only one of the SPRT

boundaries is finite, as the animal is assumed to pay no

cost for continuing to accrue information when no predator

is present, except through the possibility of accidentally

deciding that a predator is present (by crossing the positive

boundary after some time, despite negative drift).

We assume that the focal animal receives a sequence

x1, x2, . of signals. The presence or absence of a predator

is assumed to remain constant over the time of the animal

deciding whether or not to take anti-predator action. If no

predator is present, each signal is assumed to be an inde-

pendent, identically distributed random variable from a

normal distribution with mean mcort0 and variance s2. If a

predator is present, each signal is an independent, iden-

tically distributed random variable from a normal distri-

bution with mean mcort1 and variance s2, with mcort0!mcort1.

After n observations, the information captured by

the animal is summarized by ZðnÞZ
Pn

iZ1 qi, where

qiZ ln ð f1ðxiÞ=f0ðxiÞÞ, and f0(x) denotes the probability

density of signal x when no predator is present and f1(x)

denotes the probability density of signal x when a predator

is present.

As information is accumulated and n increases over

time, the movement of Z(n) is a biased random walk, as

illustrated in figure 1b.

The mean drift and variance of the random walk in log

space under each scenario (predator present or not) can

be found directly from the two signal distributions per unit

of information, as shown in the electronic supplementary

material A. As the time between each datum is reduced to

zero (and the corresponding information content with it so

that the amount of information per unit time remains

constant) and the information gain becomes a continuous

process, the random walk becomes a Brownian motion

(Wiener process) with constant drift. This is also shown

in the electronic supplementary material A.

It is clear from figure 1b that the threshold governs both

the expected decision time when a predator is present and

the likelihood of false alarm when there is no predator. A

small threshold value would result in fast decisions but a

high false-alarm rate, and vice versa with a large threshold

value. The optimal speed–accuracy trade-off can be

obtained by first representing the probability of survival

(when a predator is present) as a function of the false-

alarm rate in the pay-off matrix, so RZR(a).

We assume that, a priori, the probability of a predator

being present is p. Then,

Eðpay-off ÞZ ð1KpÞðð1KaÞvf Caðvf KcÞÞCpRðaÞðvf KcÞ

Z ð1KpÞðvf KacÞCpRðaÞðvf KcÞ:

To find the optimal value of a, we note that the expected

pay-off is maximal when

dEðpay-off Þ

da
ZKð1KpÞcCpðvf KcÞ

dR

da
Z0:

We first calculate the expected probability of survival, R,

and its first derivative with respect to a.
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We assume that the probability of survival, given that

there is a predator, decreases with the decision time

according to eKqT, where T is a random variable describing

the time to reach a decision, and that this time is a function

of the position of the decision boundary. Note that the

boundary position sets the probability of false alarm, a.

In electronic supplementary material B, we show that

RZ sak1 and the optimal value of a is given by

ak1K1 Z
ð1KpÞc

pðvf KcÞk1s
;

where s is the probability of survival if immediate

action is taken in the presence of a predator and

k1Z ðKmC
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2C2qh2

p
Þ=h2.

This results in a final expected pay-off

Eðpay-off ÞZ ð1KpÞ vf Cca
1

k1

K1

� �� �
:

6. INDEPENDENT CORTEX AND THALAMUS
We now consider the performance of the two systems

when run independently. We assume that the cortical

system is reset at the start of the scenario (upon the initial

stimulation) and that the data gathered by the cortex are

independent of the thalamic trigger, within a given context

of a predator being present or not.

Figure 2a shows the critical separation of distribution

means for the cortex to match the expected pay-off of the

thalamic system as a function of p for a particular set of

parameter values.

Varying (mthal1Kmthal0) produces a family of curves,

each following the trend of figure 2a. As the probability of

a predator rises, the necessary separation in cortical

distributions increases ever more sharply for the per-

formance to match that of the thalamic system. This

indicates that the thalamic system may be better able to

deal with situations where the probability of a predator is

great (the thalamic system achieves this by often deciding

to run away immediately).

Figure 2b shows the separation of distribution means in

the cortex required to match the expected pay-off for a

range of thalamic distribution separations, when p is fixed

and the other values are held according to figure 2a.
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The near-exponential slope of the line of equivalent

performance in figure 2b is caused by the modelling

assumption that the decision for the thalamic system will

be reached in zero time. Consequently, as the separation

between the thalamic distributions increases and an ever

smaller percentage of cases are mis-classified by the

thalamic system, a significant increase in cortical separ-

ations is required to reach the same expected pay-off due

to the cortical system paying a time penalty.

We now turn to treating the thalamic and cortical

systems as two sub-components of a larger system.
7. COMBINING SYSTEMS
There are several ways in which the cortical and thalamic

systems might be combined, with the go/no-go decision

finally being governed by a central switch in some region of

the brain, such as the amygdala. McHaffie et al. (2005)

discuss why it makes sense for the architecture of the brain

to incorporate a central switch and highlight the use of

particular parts of the basal ganglia.

The general computational representation is shown

in figure 3.
(a) Simple chaining

We first consider simply linking the two independent

systems end-to-end. If the thalamic system does not

make the decision to leave the area (so the animal

continues to forage), the cortex starts to gather data

and the animal will still decide to leave if the cortical

process reaches that conclusion. We refer to this as

the ‘chained’ system.
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To calculate the expected pay-off, we first calculate

the probability of the thalamus deciding to take anti-

predator action:

Pðthal actsÞZ pPðanti-predatorjpredatorÞ

C ð1KpÞPðanti-predatorjno predatorÞ:

The likelihood of a predator being present when the

thalamic system has allowed foraging to continue is less

than p because the likelihood is conditional upon the

thalamic system having decided against anti-predator

action. The resulting conditional probability of a predator

being present when the cortex starts operating is

p0 hPðpredatorjcortex usedÞ

Z
pD

xthresholdKmthal1

sthal

� �

pD
xthresholdKmthal1

sthal

� �
C ð1KpÞD

xthresholdKmthal0

sthal

� � : ð7:1Þ

The expected pay-off, given that the cortex is used, can

now be calculated from the pay-off matrix using the actual

probability of a predator, p 0, but using the values of a and

R(a), which were optimized using the original probability

of a predator, p

Eðpay-off jcortex usedÞZ ð1Kp0Þðvf KacÞCp0RðaÞðvf KcÞ:

The overall expected pay-off for the system can therefore

be calculated as

Eðpay-off ÞZPðthal actsÞðvf KcÞ

Cð1KPðthal actsÞÞEðpay-off jcortex usedÞ:

Results for the simple combined system are shown as the

chained line in figure 4a, which describes the performance

in comparison with the stand-alone systems (and other

systems yet to be discussed) for a particular set of

parameters. For the figure, the chosen cortical separation

provides a signal-to-noise ratio of 4, which corresponds to

a fairly easy task for humans (see fig. 9b of Bogacz et al.

submitted). The chosen separation of the thalamic

distributions also corresponds to a relatively easy task for

humans, towards the easiest of the tasks described by

Maddox (2002).
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Clearly, it is possible for the chained system to have a

better performance than either subsystem acting indepen-

dently, as can be seen from figure 4a when p is small.

However, for a sufficiently high probability of a predator,

the chained system performance is forced down to the pay-

off of immediate anti-predator action. This is because if

p is sufficiently large, the cortical system will set a zero

threshold to take anti-predator action immediately, so the

overall system will always take immediate anti-predator

action no matter how separated the thalamic distribu-

tions. This can be seen by following the flow diagram of

figure 3, which shows that if either subsystem were always

to trigger immediate anti-predator action, then the overall

system performance would correspond to that action.

(b) Cortical system ‘aware’ that the thalamic

system has not acted

With simple chaining, the cortical system has been set up

optimally for the case where the probability of a predator

being present is p, but the thalamic system has already had

the opportunity to act, so the actual (conditional)

probability of a predator may alter significantly in the

knowledge that the thalamic system has not acted.

If we assume that the cortex can use p 0 (calculated

using equation (7.1)), rather than p, in the calculation of

optimal a (and thus R(a)) in the cortical system, a better

overall expected pay-off is achieved than by the simple

chained system. This is illustrated by the ‘cortex-aware’

line in figure 4a.

The overall performance of the cortex-aware system is

better than the simple chained system or, for the

parameter values of figure 4a, either subsystem operating

independently. However, with poor thalamic separations

(and thus performance), the overall system performance

can be worse than the stand-alone cortex.

(c) Thalamic system aware that the cortical

system can act

Knowing that the cortical system can still process

incoming data if the thalamus does not invoke action, it

can sometimes be beneficial for the thalamic threshold to

be increased, to allow more of the ambiguous cases to be

dealt with by the cortex.
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Maximizing the expected pay-off by altering the thalamic

threshold (with the cortex optimized as though it were stand

alone), we obtain the ‘thalamus-aware’ line of figure 4a.

Figure 4b shows that the optimal thalamic threshold is

higher when the thalamus is aware that the cortex could still

make the decision to take anti-predator action. This can be

viewed as the thalamus allowing the cortex to deal with

some of the ambiguous cases near the (stand-alone)

thalamic threshold, rather like the thalamus taking on the

additional option of being able to wait for more information.

This system suffers from the same problem as the

simple chained system in that if the cortex always takes

immediate anti-predator action, the overall system per-

formance is forced the pay-off relating to that action. For

that reason, when the probability of a predator is

sufficiently high, there is no optimal threshold value for

the case of the thalamic system being aware of the cortical

system, as shown in figure 4b.

This thalamus-aware-of-cortex case is arguably less

relevant than the cortex-aware-of-thalamus case, as the

thalamus is believed, from comparative studies, to be

phylogenetically older than the cortex (MacLean 1982).

However, understanding this thalamus-aware-of-cortex case

is important to help understand the next system, where each

subsystem is aware of the other, whether through evolution-

ary setting of parameters or direct information flow.
(d) Each subsystem aware of the other

Allowing each subsystem to be optimized with respect to

the other results in a system, which outperforms the

previous cases. The expected pay-off can be calculated

using the equations for the cortex-aware case, with the

additional maximization of expected pay-off across the

possible threshold values. The results are shown in

figure 4a,b as the ‘both-aware’ line.

The optimal thalamic threshold is still higher than the

stand-alone case because the thalamus is aware that the

cortex can still take action. However, the threshold is

lower than the case of only the thalamus being aware of the

cortex. This is because the cortex has a better knowledge

of the probability of a predator (which is reduced from p

to p 0), so with the cortex being less prone to anti-predator

action, the thalamic threshold is reduced to allow more

actions to be taken by the thalamus.

Thus far, we have assumed that each subsystem may be

aware of the other in terms of performance distributions

and thresholds. However, it is also possible that the

information used by the thalamus may also be available to

the cortex. This is the final case that we consider.
(e) Thalamus passes on likelihood estimate based

upon signal level

Rather than only knowing that the thalamic system has not

fired, it is feasible that the cortex could have access to the

signal datum (x) used by the thalamus. This datum could be

used to give the cortex a more accurate estimate of the

probability of a predator being present, which we shall call p00

p00 Z
pfthal1ðxÞ

pfthal1ðxÞC ð1KpÞfthal0ðxÞ
:

This can be used in the same cortical equations for a and R,

just as p0 was in the cortex-aware case. The alteration results

in performance that is everywhere fractionally (but only
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fractionally) better than the cortex-aware case. Conse-

quently, there is no need to consider the both-aware system

with this set-up, as we know that there will always be (only) a

very small improvement.

We have not managed to prove that the performance

discrepancy with the cortex-aware case will always be tiny,

but we have a general line of reasoning to demonstrate that

this will be the case. For this latest system (of the cortex

receiving data relating to the thalamic trigger) to be a

significant improvement upon the cortex-aware case, the

cortex would have to gain significant additional infor-

mation from the thalamic signal. The information gain

would only be significant if the thalamic distributions were

well separated—but if that were the case, then the

thalamus would already be doing a good job of reaching

the correct decision, so the effect of the cortex (and thus

the change in performance) would be small. However, this

argument would not apply if the variance of the two

thalamic distributions were not equal; the data may then

be considerably more useful to the cortex and thus the

overall system.

Contrasting the cases of similar performance (of the

cortex being aware that the thalamus has not fired, and the

cortex receiving the thalamic information), there are two

lines of reasoning, which differ over which might be more

successful in a biological organism (given that they are

each an improvement on the simple chained system). As

the benefit of passing the thalamic information comes only

with additional information flow and considerably more

calculation of a and R (which has been assumed to occur

in zero time for these results), it could be regarded as

unlikely that such an adaptation would be beneficial in the

real world. On the other hand, for the system to benefit

from the cortex being optimized according to the thalamic

distributions, the distributions themselves must be known

(in some form) by the cortex. The answer therefore

depends upon whether it is more advantageous to use

additional memory or more computation.
8. EXPECTED DECISION TIME
The expected time for the cortex to decide upon anti-

predator action, E(Tc), can be calculated for the cases

where that decision is reached as follows:

EðTcjAP actionÞ

Z
PðpredatorÞEðTcjmC;AP actionÞCPðno predatorÞEðTcjmK;AP actionÞ

PðpredatorÞPðAP actionjmCÞCPðno predatorÞPðAP actionjmKÞ
;

where ‘AP action’ denotes anti-predator action; and mC
and mK denote whether a predator is present or not,

respectively, following the convention of the electronic

supplementary material A. The denominator normalizes

the estimate, because the animal will not always take anti-

predator action if there is no predator present. With a

predator present, only those decisions which are made

before the animal is killed are taken into account (from a

mathematical perspective, this amounts to the predator

killing the focal animal instantaneously upon attack).

Electronic supplementary material C provides the

necessary calculations for expected decision times and

probabilities of anti-predator action. The expected

decision times for the various system possibilities are

shown in figure 5a.
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Contrasting the separation between cases in figure 5a

with the relatively similar pay-offs of figure 4a, it is clear

that, from an experimental perspective, it makes more

sense to study reaction times than overall pay-offs when

trying to distinguish which subsystem is prone to invoke

action in a particular circumstance. Furthermore, the

difficulty of setting and/or measuring the animal’s

perceived probability of a predator, p, can be largely

bypassed by instead measuring the probability of anti-

predator action and reaction times over a number of trials.

By varying the a priori probability of a predator and

determining both the expected decision time when anti-

predator action occurs (as in figure 5a) and the total

probability of anti-predator action occurring, we obtain

predictions that are essentially equivalent to those of

figure 5a, but which rely upon axes which are more easily

measured, as shown in figure 5b.
9. DISCUSSION
We have represented the decision-making process of the

mammalian brain using two Bayesian subsystems, one

dealing with discrete signals on an immediate basis and the

other dealing with continuous data acquisition over time.

While the parameter values we have used for plots in this

paper are been based upon realistic estimates from human

studies (Maddox 2002; Bogacz et al. submitted), the

trends we discuss apply across a wider range of values.

For very low probability that a predator is present, p,

the expected pay-off tends towards the value of

continuous foraging, vf, whereas with high p, the expected

pay-off is forced down to the reward for immediate

predator avoidance, vfKc. Therefore, the probability that

a predator is present governs expected pay-off to a greater

extent than the differences between subsystem linkage

options, as indicated in figure 4a. As p increases, the faster

(thalamic) subsystem will always tend to dominate

decisions. This modelling prediction agrees with the

empirical results of Carpenter & Williams (1995) who

found that situations which occur with a higher probability

are more likely to be dealt with by a high-speed processing

system. The finding is also consistent with the work of

Mobbs et al. (2007), who used functional magnetic

resonance imaging to study the effect of threat level upon

the activity of various regions of the human brain. The

study found that as threat levels increased, ‘brain activity
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shifted from the ventromedial prefrontal cortex to the

periaqueductal grey’, i.e. the cortex has a more significant

role when there is a low level of threat.

In behavioural ecology, studies typically focus upon

outcomes rather than mechanisms (but see Real (1992,

1993) andDukas (1998)). To truly understand theoutcomes

(including probably phylogeny, when comparative studies

are not available), we need to understand the mechanisms,

and these cansometimes bedifficult to distinguish in terms of

overall outcome (expected pay-off ). For small p, there is little

difference in overall pay-offs between the different linkage

mechanisms, as indicated in figure 4a. However, situations

with low probability can be numerous, so scaling the

difference in performance by the number of occurrences an

animal may face, the small differences can create significant

fitness pressures (cf. Houston & McNamara 1986, 1999).

From the perspective of empirical testing of the model,

although the overall pay-off does not vary significantly across

the linkage options for low p, the cases may be discriminable

by measuring latency, as indicated in figure 5a.

For high p, the lines of figure 4a are fundamentally split

into two groups. For those systems in which the cortex is

not aware of the thalamus, the cortical system will always

take immediate anti-predator action for a range of p values

close to 1. This is because for any non-zero threshold, the

variability of the Brownian motion process can have a

significant effect upon the probability of survival. When

the cortex is aware of the thalamic involvement, the cortex

need not be so prone to taking action because the thalamic

system will have dealt with many of the cases in which a

predator is present. Consequently, if our model is

representative of real mammalian brains, the thalamic

subsystem will not atrophy because it provides a fitness

benefit that the cortical system cannot subsume. This

agrees with the suggestion of LeDoux (1996), which the

evolutionarily older (thalamic) route has persisted because

it maintains an advantage in allowing individuals to

respond more rapidly in life-threatening situations.

When each subsystem is aware of the other, the optimal

performance using these systems is attained; this will

always result in a higher expected pay-off than either

system operating alone.

The extent to which each subsystem may be aware of

the other and able to optimize performance based upon

expected performance of other subsystems is not yet clear.
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However, Sole et al. (2003) provide evidence that the

actions of pigeons (Columbidae) can be accurately

described by a signal detection model that maximizes

perceived reward; the birds are able to set more than one

threshold, with each being based upon expected per-

formance in relation to other thresholds. Similar studies of

mammalian decisions (e.g. comparing humans and

dolphins; Tursiops truncatus: Smith et al. 1995) have been

carried out for certain kinds of task, again finding that

expected performance levels guide decisions. These

findings agree with the notion of the thalamic threshold

being modified appropriately when another system is

available as a back-up.

Although we have associated functions with particular

parts of the brain in this paper, animals without a

particular component may be able to reach similar

outcomes using alternative parts and processes. For

instance, Chittka et al. (2003) showed that (even without

the collective intelligence of a group) bees are able to

trade-off speed against accuracy.

Our results predict that actions or situations, which

occur infrequently, will tend to be dealt with by the cortex

rather than the thalamic system (as indicated in figure 5).

It is then natural to ask whether the cortical component of

decision making has evolved due to the fitness benefit of

being able to deal with events which occur with relatively

low probability, or to deal with common but subtle

situations which require significant amounts of data, such

as social interactions. The latter possibility is related to the

alternative explanation that the cortex developed to

monitor threat probabilities and to keep the thalamic

system updated with estimates, modifying the risk of

attack not just in terms of signals received, but in relation

to the animal’s own movements, such as the increased risk

when emerging from cover.

Empirical support for the existence of two comp-

lementary threat detection systems in humans and other

primates has come almost exclusively from studies of the

visual system (e.g. Morris et al. 1999; Ohman 2005). For

example, the cortical processing of visual images can be

disrupted by a process of ‘backward masking,’ in which very

briefly presented words or pictures are immediately followed

by other scrambled or unrelated words or pictures. When

such images are highly emotive (e.g. pictures of phobic

stimuli such as snakes or spiders), they can cause rapid

responses even though the images themselves are not

registered consciously (e.g. Ohman & Soares 1994). So,

threatening visual information can give rise to fearful/escape

responses even in the absence of cortical processing.

Moreover, two distinct neural pathways have been found

to carry visual information to different brain regions at

different rates. The magnocellular pathway carries low

quality, particularly low spatial frequency (LSF), visual

information, rapidly reaching subcortical effector sites such

as the amygdala (Vuilleumier et al. 2003). The parvocellular

pathway carries much more detailed, high spatial frequency

(HSF) information to the visual cortex, albeit at a slower rate

(Merigan & Maunsell 1993). Within the visual context,

therefore, the magnocellular and parvocellular pathways

appear to be good candidates for LeDoux’s (1996) ‘low

road’ and ‘high road’ to threat detection.

Despite its limited information-carrying capacity, the

magnocellular pathway has been demonstrated to be

capable of gathering emotionally relevant details about
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stimuli, such as whether a face is showing an emotive or

neutral expression (Winston et al. 2003; Carretié et al.

2007). There is also evidence that this rapidly available

emotional information (e.g. registration of potential threat

as a result of viewing very briefly presented images)

informs and affects visual information gathering over the

subsequent time period, redirecting gaze towards the

affective target, particularly in anxious individuals (Mogg

et al. 1995). This is consistent with our analysis in which

the cortical decision-making system is aware of and

informed by the thalamic one. Whether and to what

extent the cortical decision process may convey infor-

mation to the subcortical, thalamic decision-making

system, however, has yet to be empirically explored.

Oliva et al. (2006) experimented with hybrid images,

which are constructed by merging two pictures, one which

has been converted to an LSF image and the other having

been converted to a HSF image. The LSF image can

generally be taken in ‘at a glance,’ whereas the HSF image

requires the observer’s eyes to saccade around the image to

build up the picture from the thin lines of the image.

Presented with a hybrid image for only 30 ms, observers

reported having seen the LSF image, whereas if the image

were presented for 150 ms, the HSF image was reported.

In the context of this paper, if the LSF image is regarded as

the signal received by the thalamic system and the HSF

image can only be built by the cortical system, then the

results obtained by Oliva et al. make sense. Further, if a

hybrid image were moved (shaken) constantly so as to

make it more difficult for the cortical system to perceive

the thin lines and construct the HSF picture through

visual saccades, we would expect that only the LSF image

would be reported. This has also been observed by

A. Oliva et al. (2008, personal communication).

The extent to which each subsystem is optimized with

respect to the other (in real time, rather than through only

phylogenetic effects) could be tested by loading the cortex

with additional processing tasks. If the thalamus were then

to make more decisions (to compensate for the slowed

cortex), there would be good evidence for direct

information flow between the subsystems, not only of

decisions made but also of expected subsystem per-

formance. From an experimental perspective, results

may be complicated by animals having additional choices

available to them when sensing danger, such as freezing,

which are not included in this model. However, it may be

possible, through the use of hybrid images, to experiment

on humans in stressed and unstressed conditions to

determine the extent of the two-way optimization between

the subsystems.

This work was supported by the EPSRC. E.P. was supported
by the BBSRC.
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